1
|
Quintana L, Salazar V. Social behavior in South American electric fishes: Linking neuroendocrine regulation, signal plasticity, and reproductive strategies. Neuroscience 2025; 573:154-166. [PMID: 40101891 DOI: 10.1016/j.neuroscience.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Cross-species analysis can provide valuable insights into the neural and hormonal mechanisms underlying behavior. South American weakly electric fishes (order Gymnotiformes) are ideal models due to their well-characterized electric signals, which convey important social information. These signals are quantifiable and traceable to specific brain and peripheral substrates. This review focuses on social electric signaling in two nocturnal gymnotiform species found syntopically in Uruguay: Gymnotus omarorum and Brachyhypopomus gauderio. We examine the influence of sex, social context, and neuromodulators on signal flexibility across day/night and seasonal cycles. Common features include a nocturnal increase in basal electric rate mediated by melatonin, enhancing awareness and social engagement; androgen-mediated seasonal protection of electric signals against high summer temperatures; and the production of social electric signals, such as chirps and interruptions, during social interactions, modulated by vasotocinergic and serotonergic systems. Key differences lie in neuromodulator involvement and signal plasticity: B. gauderio exhibits greater signal flexibility, with sex- and context-dependent waveform changes and a broader repertoire of transient social signals used in dyadic interactions, supported by distinct neural mechanisms. These differences likely reflect species-specific reproductive strategies and their associated costs, such as predation pressure. This review underscores the value of studying electric behavior to understand the integration of internal states with environmental and social cues, offering insights into mechanisms underlying behavioral responses to natural challenges.
Collapse
Affiliation(s)
- Laura Quintana
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Avenida Italia 3318, Montevideo, Uruguay; Grupo Cronobiología, Comisión Sectorial de Investigación Científica, Universidad de la República, Montevideo, Uruguay.
| | - Vielka Salazar
- Department of Biology, Cape Breton University, 1250 Grand Lake Road, Sydney, Nova Scotia B1P6L2, Canada.
| |
Collapse
|
2
|
Borde M, Caputi ÁA. The sensory-effector cycle, contributions from a native species. Neuroscience 2025; 571:108-129. [PMID: 39947508 DOI: 10.1016/j.neuroscience.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
The analysis of the action-perception cycle in Gymnotus omarorum has proven that this native species is an excellent model system to study the dynamics of this loop and the implementation mechanisms of its different stages. This analysis provided insight into cell and synaptic function, plasticity, circuitry ensemble, and neural codes. This research has also contributed to the development of Neuroscience that led to the foundation of the Sociedad Uruguaya de Neurociencias which anniversary this issue celebrates. This article first considers the features that these fish offer to the conceptual analysis of reafferent systems. Second, it focuses on some of the stages involved in the sensory effector cycle. This includes the analysis of: a) how the electromotor system contributes to the understanding of central pattern generators of rhythms and action patterns; b) how electric images are formed, peripherally encoded, and contribute to the understanding of how imaging molds perception; c) how sensory detection and behavioral responses to novel events may be used for describing the dynamics of the cycle; d) how the pulsed imaging strategy illustrates the importance of using a code of packeted well timed spikes for fast detection of sensory features; and e) how the interactions between electro- and skeletomotor control using the Mauthner initiated escape response serve as a useful neuroethological case study. We conclude by considering some still open questions and research perspectives that, together with the exceptional advantages offered by electric fish, provide promising advances in the general understanding of the neural basis of the sensory-motor loop.
Collapse
Affiliation(s)
- Michel Borde
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay.
| | - Ángel A Caputi
- Sistema Nacional de Investigadores. Montevideo, Uruguay.
| |
Collapse
|
3
|
Wu L, Sun W, Zhou J, Li Y, Li J, Song Z, Song C, Xu S, Yue X, Li X. Comparative transcriptome analysis reveals growth and molecular pathway of body color regulation in turbot (Scophthalmus maximus) exposed to different light spectrum. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101165. [PMID: 38007980 DOI: 10.1016/j.cbd.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
Fish body color changes play vital roles in adapting to ecological light environment and influencing market value. However, the initial mechanisms governing the changes remain unknown. Here, we scrutinized the impact of light spectrum on turbot (Scophthalmus maximus) body coloration, exposing them to red, blue, and full light spectra from embryo to 90 days post hatch. Transcriptome and quantitative real-time PCR (qRT-PCR) analyses were employed to elucidate underlying biological processes. The results showed that red light induced dimorphism in turbot juvenile skin pigmentation: some exhibited black coloration (Red_Black_Surface, R_B_S), while others displayed lighter skin (Red_White_Bottom, R_W_B), with red light leading to reduced skin lightness (L*) and body weight, particularly in R_B_S group. Transcriptomic and qRT-PCR analyses showcased upregulated gene expressions related to melanin synthesis in R_B_S individuals, notably tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), and dopachrome tautomerase (dct), alongside solute carrier family 24 member 5 (slc24a5) and oculocutaneous albinism type II (oca2) as pivotal regulators. Nervous system emerged as a critical mediator in spectral environment-driven color regulation. N-methyl d-aspartate (NMDA) glutamate receptor, and calcium signaling pathway emerged as pivotal links intertwining spectral conditions, neural signal transduction, and color regulation. The individual differences in NMDA glutamate receptor expression and subsequent neural excitability seemed responsible for dichromatic body coloration in red light-expose juveniles. This study provides new insights into the comprehending of fish adaptation to environment and methods for fish body color regulation and could potentially help enhance the economic benefit of fish farming industry.
Collapse
Affiliation(s)
- Lele Wu
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Wen Sun
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jiale Zhou
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Yaolin Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, PR China
| | - Shihong Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xinlu Yue
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd, Weihai 264200, PR China
| | - Xian Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266001, PR China.
| |
Collapse
|
4
|
Comas V, Borde M. Glutamatergic control of a pattern-generating central nucleus in a gymnotiform fish. J Neurophysiol 2021; 125:2339-2355. [PMID: 33978492 DOI: 10.1152/jn.00584.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of central pattern-generating networks (CPGs) may change under the control exerted by various neurotransmitters and modulators to adapt its behavioral outputs to different environmental demands. Although the mechanisms underlying this control have been well established in invertebrates, most of their synaptic and cellular bases are not yet well understood in vertebrates. Gymnotus omarorum, a pulse-type gymnotiform electric fish, provides a well-suited vertebrate model to investigate these mechanisms. G. omarorum emits rhythmic and stereotyped electric organ discharges (EODs), which function in both perception and communication, under the command of an electromotor CPG. This nucleus is composed of electrotonically coupled intrinsic pacemaker cells, which pace the rhythm, and bulbospinal projecting relay cells that contribute to organize the pattern of the muscle-derived effector activation that produce the EOD. Descending influences target CPG neurons to produce adaptive behavioral electromotor responses to different environmental challenges. We used electrophysiological and pharmacological techniques in brainstem slices of G. omarorum to investigate the underpinnings of the fast transmitter control of its electromotor CPG. We demonstrate that pacemaker, but not relay cells, are endowed with ionotropic and metabotropic glutamate receptor subtypes. We also show that glutamatergic control of the CPG likely involves two types of synapses contacting pacemaker cells, one type containing both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors and the other one only-NMDA receptor. Fast neurotransmitter control of vertebrate CPGs seems to exploit the kinetics of the involved postsynaptic receptors to command different behavioral outputs. The prospect of common neural designs to control CPG activity in vertebrates is discussed.NEW & NOTEWORTHY Underpinnings of neuromodulation of central pattern-generating networks (CPG) have been well characterized in many species. The effects of fast neurotransmitter systems remain, however, poorly understood. This research uses in vitro electrophysiological and pharmacological techniques to show that the neurotransmitter control of a vertebrate CPG in gymnotiform fish involves the convergence of only-NMDA and AMPA-NMDA glutamatergic synapses onto neurons that pace the rhythm. These inputs may organize different behavioral outputs according to their distinct functional properties.
Collapse
Affiliation(s)
- Virginia Comas
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Michel Borde
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Borde M, Quintana L, Comas V, Silva A. Hormone‐mediated modulation of the electromotor CPG in pulse‐type weakly electric fish. Commonalities and differences across species. Dev Neurobiol 2020; 80:70-80. [DOI: 10.1002/dneu.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Michel Borde
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Virginia Comas
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Laboratorio de Neurociencias Facultad de Ciencias Universidad de la República Montevideo Uruguay
| |
Collapse
|
6
|
Field CE, Petersen TA, Alves-Gomes JA, Braun CB. A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response. Front Integr Neurosci 2019; 13:55. [PMID: 31632247 PMCID: PMC6783576 DOI: 10.3389/fnint.2019.00055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
The weakly electric gymnotiform fish produce a rhythmic electric organ discharge (EOD) used for communication and active electrolocation. The EOD frequency is entrained to a medullary pacemaker nucleus. During communication and exploration, this rate can be modulated by a pre-pacemaker network, resulting in specific patterns of rate modulation, including stereotyped communication signals and dynamic interactions with conspecifics known as a Jamming Avoidance Response (JAR). One well-known stereotyped signal is the chirp, a brief upward frequency sweep usually lasting less than 500 ms. The abrupt change in frequency has dramatic effects on phase precession between two signalers. We report here on chirping in Brachyhypopmus cf. sullivani, Microsternarchus cf. bilineatus Lineage C, and Steatogenys cf. elegans during conspecific playback experiments. Microsternarchus also exhibits two behaviors that include chirp-like extreme frequency modulations, EOD interruptions with hushing silence and tumultuous rises, and these are described in terms of receiver impact. These behaviors all have substantial impact on interference caused by conspecifics and may be a component of the JAR in some species. Chirps are widely used in electronic communications systems, sonar, and other man-made active sensing systems. The brevity of the chirp, and the phase disruption it causes, makes chirps effective as attention-grabbing or readiness signals. This conforms to the varied assigned functions across gymnotiforms, including pre-combat aggressive or submissive signals or during courtship and mating. The specific behavioral contexts of chirp expression vary across species, but the physical structure of the chirp makes it extremely salient to conspecifics. Chirps may be expected in a wide range of behavioral contexts where their function depends on being noticeable and salient. Further, in pulse gymnotiforms, the chirp is well structured to comprise a robust jamming signal to a conspecific receiver if specifically timed to the receiver's EOD cycle. Microsternarchus and Steatogenys exploit this feature and include chirps in dynamic jamming avoidance behaviors. This may be an evolutionary re-use of a circuitry for a specific signal in another context.
Collapse
Affiliation(s)
- Caitlin E Field
- Department of Psychology, Hunter College, The City University of New York, New York, NY, United States.,New York City Department of Parks and Recreation, New York, NY, United States
| | - Thiago Alexandre Petersen
- Laboratório de Fisiologia Comportamental e Evolução, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - José A Alves-Gomes
- Laboratório de Fisiologia Comportamental e Evolução, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Christopher B Braun
- Department of Psychology, Hunter College, The City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Lucas KM, Warrington J, Lewis TJ, Lewis JE. Neuronal Dynamics Underlying Communication Signals in a Weakly Electric Fish: Implications for Connectivity in a Pacemaker Network. Neuroscience 2019; 401:21-34. [PMID: 30641115 DOI: 10.1016/j.neuroscience.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 11/19/2022]
Abstract
Neuronal networks can produce stable oscillations and synchrony that are under tight control yet flexible enough to rapidly switch between dynamical states. The pacemaker nucleus in the weakly electric fish comprises a network of electrically coupled neurons that fire synchronously at high frequency. This activity sets the timing for an oscillating electric organ discharge with the lowest cycle-to-cycle variability of all known biological oscillators. Despite this high temporal precision, pacemaker activity is behaviorally modulated on millisecond time-scales for the generation of electrocommunication signals. The network mechanisms that allow for this combination of stability and flexibility are not well understood. In this study, we use an in vitro pacemaker preparation from Apteronotus leptorhynchus to characterize the neural responses elicited by the synaptic inputs underlying electrocommunication. These responses involve a variable increase in firing frequency and a prominent desynchronization of neurons that recovers within 5 oscillation cycles. Using a previously developed computational model of the pacemaker network, we show that the frequency changes and rapid resynchronization observed experimentally are most easily explained when model neurons are interconnected more densely and with higher coupling strengths than suggested by published data. We suggest that the pacemaker network achieves both stability and flexibility by balancing coupling strength with interconnectivity and that variation in these network features may provide a substrate for species-specific evolution of electrocommunication signals.
Collapse
Affiliation(s)
- Kathleen M Lucas
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Julie Warrington
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Timothy J Lewis
- Department of Mathematics, University of California Davis, Davis, CA 95616, USA
| | - John E Lewis
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa K1N 6N5, Canada.
| |
Collapse
|
8
|
Comas V, Langevin K, Silva A, Borde M. Distinctive mechanisms underlie the emission of social electric signals of submission in Gymnotus omarorum. J Exp Biol 2019; 222:jeb.195354. [DOI: 10.1242/jeb.195354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
Abstract
South American weakly electric fish (order Gymnotiformes) rely on a highly conserved and relatively fixed electromotor circuit to produce species-specific electric organ discharges (EOD) and a variety of meaningful adaptive EOD modulations. The command for each EOD arises from a medullary pacemaker nucleus composed by electrotonically coupled intrinsic pacemaker and bulbospinal projecting relay cells. During agonistic encounters Gymnotus omarorum signals submission by interrupting its EOD (offs) and by emitting transient high rate barrages of low amplitude discharges (chirps). Previous studies in gymnotiformes have shown that electric signal diversity is based on the segregation of descending synaptic inputs to pacemaker or relay cells and differential activation of the neurotransmitter receptors -for glutamate or γ-aminobutyric acid (GABA)- of these cells. Therefore, we tested whether GABAergic and glutamatergic inputs to pacemaker nucleus neurons are involved in the emission of submissive electric signals in G. omarorum. We found that GABA applied to pacemaker cells evokes EOD interruptions that closely resembled natural offs. Although in other species chirping is likely due to glutamatergic suprathreshold depolarization of relay cells, here, application of glutamate to these cells was unable to replicate the emission of this submissive signal. Nevertheless, chirp-like discharges were emitted after the enhancement of excitability of relay cells by blocking an IA-type potassium current and, in some cases, by application of vasotocin, a status-dependent modulator peptide of G. omarorum agonistic behavior. Modulation of electrophysiological properties of pacemaker nucleus neurons in gymnotiformes emerges as a novel putative mechanism, endowing electromotor networks with higher functional versatility.
Collapse
Affiliation(s)
- Virginia Comas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kim Langevin
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Michel Borde
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
9
|
Perrone R, Migliaro A, Comas V, Quintana L, Borde M, Silva A. Local vasotocin modulation of the pacemaker nucleus resembles distinct electric behaviors in two species of weakly electric fish. ACTA ACUST UNITED AC 2014; 108:203-12. [PMID: 25125289 DOI: 10.1016/j.jphysparis.2014.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/25/2014] [Accepted: 07/25/2014] [Indexed: 12/24/2022]
Abstract
The neural bases of social behavior diversity in vertebrates have evolved in close association with hypothalamic neuropeptides. In particular, arginine-vasotocin (AVT) is a key integrator underlying differences in behavior across vertebrate taxa. Behavioral displays in weakly electric fish are channeled through specific patterns in their electric organ discharges (EODs), whose rate is ultimately controlled by a medullary pacemaker nucleus (PN). We first explored interspecific differences in the role of AVT as modulator of electric behavior in terms of EOD rate between the solitary Gymnotus omarorum and the gregarious Brachyhypopomus gauderio. In both species, AVT IP injection (10μg/gbw) caused a progressive increase of EOD rate of about 30%, which was persistent in B. gauderio, and attenuated after 30min in G. omarorum. Secondly, we demonstrated by in vitro electrophysiological experiments that these behavioral differences can be accounted by dissimilar effects of AVT upon the PN in itself. AVT administration (1μM) to the perfusion bath of brainstem slices containing the PN produced a small and transient increase of PN activity rate in G. omarorum vs the larger and persistent increase previously reported in B. gauderio. We also identified AVT neurons, for the first time in electric fish, using immunohistochemistry techniques and confirmed the presence of hindbrain AVT projections close to the PN that might constitute the anatomical substrate for AVT influences on PN activity. Taken together, our data reinforce the view of the PN as an extremely plastic medullary central pattern generator that not only responds to higher influences to adapt its function to diverse contexts, but also is able to intrinsically shape its response to neuropeptide actions, thus adding a hindbrain target level to the complexity of the global integration of central neuromodulation of electric behavior.
Collapse
Affiliation(s)
- Rossana Perrone
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Adriana Migliaro
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| | - Virginia Comas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800 Montevideo, Uruguay.
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay.
| | - Michel Borde
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Gral. Flores 2125, 11800 Montevideo, Uruguay.
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
10
|
Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D. Sex-specific role of a glutamate receptor subtype in a pacemaker nucleus controlling electric behavior. ACTA ACUST UNITED AC 2014; 108:155-66. [PMID: 24794754 DOI: 10.1016/j.jphysparis.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 02/03/2023]
Abstract
Electric communication signals, produced by South American electric fish, vary across sexes and species and present an ideal opportunity to examine the bases of signal diversity, and in particular, the mechanisms underlying sexually dimorphic behavior. Gymnotiforms produce electric organ discharges (EOD) controlled by a hindbrain pacemaker nucleus (PN). Background studies have identified the general cellular mechanisms that underlie the production of communication signals, EOD chirps and interruptions, typically displayed in courtship and agonistic contexts. Brachyhypopomus gauderio emit sexually dimorphic signals, and recent studies have shown that the PN acquires the capability of generating chirps seasonally, only in breeding males, by modifying its glutamatergic system. We hypothesized that sexual dimorphism was caused by sexual differences in the roles of glutamate receptors. To test this hypothesis, we analyzed NMDA and AMPA mediated responses in PN slice preparations by field potential recordings, and quantified one AMPA subunit mRNA, in the PNs of males and females during the breeding season. In situ hybridization of GluR2B showed no sexual differences in quantities between the male and female PN. Functional responses of the PN to glutamate and AMPA, on the other hand, showed a clear cut sexual dimorphism. In breeding males, but not females, the PN responded to glutamate and AMPA with bursting activity, with a temporal pattern that resembled the pattern of EOD chirps. In this study, we have been successful in identifying cellular mechanisms of sexual dimorphic communication signals. The involvement of AMPA receptors in PN activity is part of the tightly regulated changes that account for the increase in signal diversity during breeding in this species, necessary for a successful reproduction.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Erik Harvey-Girard
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Carolina Lescano
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Omar Macadar
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Lorenzo
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
11
|
Nogueira J, Caputi AA. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off. ACTA ACUST UNITED AC 2014; 216:2380-92. [PMID: 23761463 DOI: 10.1242/jeb.082651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review deals with the question: what is the relationship between the properties of a neuron and the role that the neuron plays within a given neural circuit? Answering this kind of question requires collecting evidence from multiple neuron phenotypes and comparing the role of each type in circuits that perform well-defined computational tasks. The focus here is on the spherical neurons in the electrosensory lobe of the electric fish Gymnotus omarorum. They belong to the one-spike-onset phenotype expressed at the early stages of signal processing in various sensory modalities and diverse taxa. First, we refer to the one-spike neuron intrinsic properties, their foundation on a low-threshold K(+) conductance, and the potential roles of this phenotype in different circuits within a comparative framework. Second, we present a brief description of the active electric sense of weakly electric fish and the particularities of spherical one-spike-onset neurons in the electrosensory lobe of G. omarorum. Third, we introduce one of the specific tasks in which these neurons are involved: the trade-off between self- and allo-generated signals. Fourth, we discuss recent evidence indicating a still-undescribed role for the one-spike phenotype. This role deals with the blockage of the pathway after being activated by the self-generated electric organ discharge and how this blockage favors self-generated electrosensory information in the context of allo-generated interference. Based on comparative analysis we conclude that one-spike-onset neurons may play several functional roles in animal sensory behavior. There are specific adaptations of the neuron's 'response function' to the circuit and task. Conversely, the way in which a task is accomplished depends on the intrinsic properties of the neurons involved. In short, the role of a neuron within a circuit depends on the neuron and its functional context.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avenida General Flores, 2125 Montevideo, Uruguay
| | | |
Collapse
|
12
|
A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:75-88. [PMID: 20924588 DOI: 10.1007/s00359-010-0588-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Our long-term goal is to approach the understanding of the anatomical and physiological bases for communication signal diversity in gymnotiform fishes as a model for vertebrate motor pattern generation. Brachyhypopomus gauderio emits, in addition to its electric organ discharge (EOD) at basal rate, a rich repertoire of rate modulations. We examined the structure of the pacemaker nucleus, responsible for the EOD rate, to explore whether its high output signal diversity was correlated to complexity in its neural components or regional organization. We confirm the existence of only two neuron types and show that the previously reported dorsal-caudal segregation of these neurons is accompanied by rostral-caudal regionalization. Pacemaker cells are grouped dorsally in the rostral half of the nucleus, and relay cells are mainly ventral and more abundant in the caudal half. Relay cells are loosely distributed from the center to the periphery of the nucleus in correlation to somata size. Our findings support the hypothesis that regional organization enables a higher diversity of rate modulations, possibly offering distinct target areas to modulatory inputs. Since no anatomical or electrophysiological seasonal or sexual differences were found, we explored these aspects from a functional point of view in a companion article.
Collapse
|
13
|
Comas V, Borde M. Neural substrate of an increase in sensory sampling triggered by a motor command in a gymnotid fish. J Neurophysiol 2010; 104:2147-57. [PMID: 20719924 DOI: 10.1152/jn.00076.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite recent advances that have elucidated the effects of collateral of motor commands on sensory processing structures, the neural mechanisms underlying the modulation of active sensory systems by internal motor-derived signals remains poorly understood. This study deals with the neural basis of the modulation of the motor component of an active sensory system triggered by a central motor command in a gymnotid fish. In Gymnotus omarorum, activation of Mauthner cells, a pair of reticulospinal neurons responsible for the initiation of escape responses in most teleosts, evokes an abrupt and prolonged increase in the rate of the electric organ discharge (EOD), the output signal of the electrogenic component of the active electrosensory system. We show here that prepacemaker neural structures (PPs) that control the discharge of the command nucleus for EODs are key elements of this modulation. Retrograde labeling combined with injections of glutamate at structures that contain labeled neurons showed that PPs are composed of a bilateral group of dispersed brain stem neurons that extend from the diencephalon to the caudal medulla. Blockade of discrete PPs regions during the Mauthner cell-initiated electrosensory modulation indicate that the long duration of this modulation relied on activation of diencephalic PPs, whereas its peak amplitude depended on the recruitment of medullary PPs. Temporal correlation of motor and sensory consequences of Mauthner cell activation suggests that the Mauthner cell-initiated enhancement of electrosensory sampling is involved in the selection of escape trajectory.
Collapse
Affiliation(s)
- Virginia Comas
- Departmento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | |
Collapse
|