1
|
Johnson MB, Suptela SR, Sipprell SE, Marriott I. Substance P Exacerbates the Inflammatory and Pro-osteoclastogenic Responses of Murine Osteoclasts and Osteoblasts to Staphylococcus aureus. Inflammation 2023; 46:256-269. [PMID: 36040535 PMCID: PMC10314328 DOI: 10.1007/s10753-022-01731-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 11/05/2022]
Abstract
Staphylococcus aureus infections of bone tissue are associated with inflammatory bone loss. Resident bone cells, including osteoblasts and osteoclasts, can perceive S. aureus and produce an array of inflammatory and pro-osteoclastogenic mediators, thereby contributing to such damage. The neuropeptide substance P (SP) has been shown to exacerbate microbially induced inflammation at sites such as the gut and the brain and has previously been shown to affect bone cell differentiation and activity. Here we demonstrate that the interaction of SP with its high affinity receptor, neurokinin-1 receptor (NK-1R), expressed on murine osteoblasts and osteoclasts, augments the inflammatory responses of these cells to S. aureus challenge. Additionally, SP alters the production of pro- and anti-osteoclastogenic factors by bacterially challenged bone cells and their proteolytic functions in a manner that would be anticipated to exacerbate inflammatory bone loss at sites of infection. Furthermore, we have demonstrated that the clinically approved NK-1R antagonist, aprepitant, attenuates local inflammatory and pro-osteoclastogenic mediator expression in an in vivo mouse model of post-traumatic staphylococcal osteomyelitis. Taken together, these results indicate that SP/NK-1R interactions could play a significant role in the initiation and/or progression of damaging inflammation in S. aureus bone infections and suggest that the repurposing of currently approved NK-1R antagonists might represent a promising new adjunct therapy for such conditions.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Samantha R Suptela
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Sophie E Sipprell
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA
| | - Ian Marriott
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, 28223, USA.
| |
Collapse
|
2
|
Lee S, Jo S, Talbot S, Zhang HXB, Kotoda M, Andrews NA, Puopolo M, Liu PW, Jacquemont T, Pascal M, Heckman LM, Jain A, Lee J, Woolf CJ, Bean BP. Novel charged sodium and calcium channel inhibitor active against neurogenic inflammation. eLife 2019; 8:48118. [PMID: 31765298 PMCID: PMC6877086 DOI: 10.7554/elife.48118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Voltage-dependent sodium and calcium channels in pain-initiating nociceptor neurons are attractive targets for new analgesics. We made a permanently charged cationic derivative of an N-type calcium channel-inhibitor. Unlike cationic derivatives of local anesthetic sodium channel blockers like QX-314, this cationic compound inhibited N-type calcium channels more effectively with extracellular than intracellular application. Surprisingly, the compound is also a highly effective sodium channel inhibitor when applied extracellularly, producing more potent inhibition than lidocaine or bupivacaine. The charged inhibitor produced potent and long-lasting analgesia in mouse models of incisional wound and inflammatory pain, inhibited release of the neuropeptide calcitonin gene-related peptide (CGRP) from dorsal root ganglion neurons, and reduced inflammation in a mouse model of allergic asthma, which has a strong neurogenic component. The results show that some cationic molecules applied extracellularly can powerfully inhibit both sodium channels and calcium channels, thereby blocking both nociceptor excitability and pro-inflammatory peptide release.
Collapse
Affiliation(s)
- Seungkyu Lee
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, Canada
| | | | - Masakazu Kotoda
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Nick A Andrews
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Michelino Puopolo
- Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, United States
| | - Pin W Liu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Thomas Jacquemont
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Maud Pascal
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Laurel M Heckman
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Aakanksha Jain
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States
| | - Jinbo Lee
- Sage Partner International, Andover, United States
| | - Clifford J Woolf
- FM Kirby Neurobiology Research Center, Boston Children's Hospital, Boston, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
3
|
Bastos-Pereira AL, Fraga D, Dreifuss AA, Zampronio AR. Central mediators of the zymosan-induced febrile response. J Basic Clin Physiol Pharmacol 2018; 28:555-562. [PMID: 28981444 DOI: 10.1515/jbcpp-2017-0061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/15/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Zymosan is a fungal cell wall protein-carbohydrate complex that is known to activate inflammatory pathways through the Toll-like receptors and is commonly used to induce fever. Nevertheless, the central mediators that are involved in the zymosan-induced febrile response are only partially known. METHODS The present study evaluated the participation of prostaglandins, substance P, endothelin-1 (ET-1), and endogenous opioids (eOPs) in the zymosan-induced febrile response by using inhibitors and antagonists in male Wistar rats. RESULTS Both nonselective (indomethacin) and selective (celecoxib) cyclooxygenase inhibitors reduced the febrile response induced by an intraperitoneal (i.p.) injection of zymosan. Indomethacin also blocked the increase in the prostaglandin E2 levels in the cerebrospinal fluid. An intracerebroventricular injection of the neurokinin-1, ETB, and μ-opioid receptor antagonists also reduced the febrile response induced by the i.p. injected zymosan. Moreover, the μ-opioid receptor antagonist CTAP also reduced the febrile response induced by intra-articular injection of zymosan. CONCLUSIONS These results demonstrate that prostaglandins, substance P, ET-1, and eOPs are central mediators of the zymosan-induced febrile response.
Collapse
|
4
|
Hepatocyte Growth Factor and MET Support Mouse Enteric Nervous System Development, the Peristaltic Response, and Intestinal Epithelial Proliferation in Response to Injury. J Neurosci 2015; 35:11543-58. [PMID: 26290232 DOI: 10.1523/jneurosci.5267-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Factors providing trophic support to diverse enteric neuron subtypes remain poorly understood. We tested the hypothesis that hepatocyte growth factor (HGF) and the HGF receptor MET might support some types of enteric neurons. HGF and MET are expressed in fetal and adult enteric nervous system. In vitro, HGF increased enteric neuron differentiation and neurite length, but only if vanishingly small amounts (1 pg/ml) of glial cell line-derived neurotrophic factor were included in culture media. HGF effects were blocked by phosphatidylinositol-3 kinase inhibitor and by MET-blocking antibody. Both of these inhibitors and MEK inhibition reduced neurite length. In adult mice, MET was restricted to a subset of calcitonin gene-related peptide-immunoreactive (IR) myenteric plexus neurons thought to be intrinsic primary afferent neurons (IPANs). Conditional MET kinase domain inactivation (Met(fl/fl); Wnt1Cre+) caused a dramatic loss of myenteric plexus MET-IR neurites and 1-1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyamine perchlorate (DiI) labeling suggested reduced MET-IR neurite length. In vitro, Met(fl/fl); Wnt1Cre+ mouse bowel had markedly reduced peristalsis in response to mucosal deformation, but normal response to radial muscle stretch. However, whole-bowel transit, small-bowel transit, and colonic-bead expulsion were normal in Met(fl/fl); Wnt1Cre+ mice. Finally, Met(fl/fl); Wnt1Cre+ mice had more bowel injury and reduced epithelial cell proliferation compared with WT animals after dextran sodium sulfate treatment. These results suggest that HGF/MET signaling is important for development and function of a subset IPANs and that these cells regulate intestinal motility and epithelial cell proliferation in response to bowel injury. SIGNIFICANCE STATEMENT The enteric nervous system has many neuronal subtypes that coordinate and control intestinal activity. Trophic factors that support these neuron types and enhance neurite growth after fetal development are not well understood. We show that a subset of adult calcitonin gene-related peptide (CGRP)-expressing myenteric neurons produce MET, the receptor for hepatocyte growth factor, and that loss of MET activity affects peristalsis in response to mucosal stroking, reduces MET-immunoreactive neurites, and increases susceptibility to dextran sodium sulfate-induced bowel injury. These observations may be relevant for understanding and treating intestinal motility disorders and also suggest that enhancing the activity of MET-expressing CGRP neurons might be a useful strategy to reduce bowel inflammation.
Collapse
|
5
|
Pintér E, Pozsgai G, Hajna Z, Helyes Z, Szolcsányi J. Neuropeptide receptors as potential drug targets in the treatment of inflammatory conditions. Br J Clin Pharmacol 2015; 77:5-20. [PMID: 23432438 DOI: 10.1111/bcp.12097] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/08/2013] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the nervous, endocrine and immune systems exists via regulator molecules, such as neuropeptides, hormones and cytokines. A number of neuropeptides have been implicated in the genesis of inflammation, such as tachykinins and calcitonin gene-related peptide. Development of their receptor antagonists could be a promising approach to anti-inflammatory pharmacotherapy. Anti-inflammatory neuropeptides, such as vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, α-melanocyte-stimulating hormone, urocortin, adrenomedullin, somatostatin, cortistatin, ghrelin, galanin and opioid peptides, are also released and act on their own receptors on the neurons as well as on different inflammatory and immune cells. The aim of the present review is to summarize the most prominent data of preclinical animal studies concerning the main pharmacological effects of ligands acting on the neuropeptide receptors. Promising therapeutic impacts of these compounds as potential candidates for the development of novel types of anti-inflammatory drugs are also discussed.
Collapse
Affiliation(s)
- Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary; János Szentágothai Research Centre, University of Pécs, Ifjúság u. 20., H-7624, Pécs, Hungary
| | | | | | | | | |
Collapse
|
6
|
Localisation and activation of the neurokinin 1 receptor in the enteric nervous system of the mouse distal colon. Cell Tissue Res 2014; 356:319-32. [PMID: 24728885 DOI: 10.1007/s00441-014-1822-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 01/20/2014] [Indexed: 12/31/2022]
Abstract
The substance P neurokinin 1 receptor (NK1R) regulates motility, secretion, inflammation and pain in the intestine. The distribution of the NK1R is a key determinant of the functional effects of substance P in the gut. Information regarding the distribution of NK1R in subtypes of mouse enteric neurons is lacking and is the focus of the present study. NK1R immunoreactivity (NK1R-IR) is examined in whole-mount preparations of the mouse distal colon by indirect immunofluorescence and confocal microscopy. The distribution of NK1R-IR within key functional neuronal subclasses was determined by using established neurochemical markers. NK1R-IR was expressed by a subpopulation of myenteric and submucosal neurons; it was mainly detected in large multipolar myenteric neurons and was colocalized with calcitonin gene-related peptide, neurofilament M, choline acetyltransferase and calretinin. The remaining NK1R-immunoreactive neurons were positive for nitric oxide synthase. NK1R was expressed by most of the submucosal neurons and was exclusively co-expressed with vasoactive intestinal peptide, with no overlap with choline acetyltransferase. Treatment with substance P resulted in the concentration-dependent internalisation of NK1R from the cell surface into endosome-like structures. Myenteric NK1R was mainly expressed by intrinsic primary afferent neurons, with minor expression by descending interneurons and inhibitory motor neurons. Submucosal NK1R was restricted to non-cholinergic secretomotor neurons. These findings highlight key differences in the neuronal distribution of NK1R-IR between the mouse, rat and guinea-pig, with important implications for the functional role of NK1R in regulating intestinal motility and secretion.
Collapse
|
7
|
A systematic review of the evidence for central nervous system plasticity in animal models of inflammatory-mediated gastrointestinal pain. Inflamm Bowel Dis 2014; 20:176-95. [PMID: 24284415 DOI: 10.1097/01.mib.0000437499.52922.b1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal pain frequently accompanies inflammatory disorders of the gastrointestinal tract (GIT), and animal models of GIT inflammation have been developed to explore the role of the central nervous system (CNS) in this process. Here, we summarize the evidence from animal studies for CNS plasticity following GIT inflammation. METHODS A systematic review was conducted to identify studies that: (1) used inflammation of GIT organs, (2) assessed pain or visceral hypersensitivity, and (3) presented evidence of CNS involvement. Two hundred and eight articles were identified, and 79 were eligible for analysis. RESULTS Rats were most widely used (76%). Most studies used adult animals (42%) with a bias toward males (74%). Colitis was the most frequently used model (78%) and 2,4,6-trinitrobenzenesulfonic acid the preferred inflammatory agent (33%). Behavioral (58%), anatomical/molecular (44%), and physiological (24%) approaches were used alone or in combination to assess CNS involvement during or after GIT inflammation. Measurement times varied widely (<1 h-> 2 wk after inflammation). Blinded outcomes were used in 42% studies, randomization in 10%, and evidence of visceral inflammation in 54%. Only 3 studies fulfilled our criteria for high methodological quality, and no study reported sample size calculations. CONCLUSIONS The included studies provide strong evidence for CNS plasticity following GIT inflammation, specifically in the spinal cord dorsal horn. This evidence includes altered visceromotor responses and indices of referred pain, elevated neural activation and peptide content, and increased neuronal excitability. This evidence supports continued use of this approach for preclinical studies; however, there is substantial scope to improve study design.
Collapse
|
8
|
Kay JC, Xia CM, Liu M, Shen S, Yu SJ, Chung C, Qiao LY. Endogenous PI3K/Akt and NMDAR act independently in the regulation of CREB activity in lumbosacral spinal cord in cystitis. Exp Neurol 2013; 250:366-75. [PMID: 24184018 DOI: 10.1016/j.expneurol.2013.10.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/15/2013] [Accepted: 10/22/2013] [Indexed: 02/08/2023]
Abstract
The integral interaction of signaling components in the regulation of visceral inflammation-induced central sensitization in the spinal cord has not been well studied. Here we report that phosphoinositide 3-kinase (PI3K)-dependent Akt activation and N-methyl-d-aspartic acid receptor (NMDAR) in lumbosacral spinal cord independently regulate the activation of cAMP response element-binding protein (CREB) in vivo in a rat visceral pain model of cystitis induced by intraperitoneal injection of cyclophosphamide (CYP). We demonstrate that suppression of endogenous PI3K/Akt activity with a potent PI3K inhibitor LY294002 reverses CYP-induced phosphorylation of CREB, however, it has no effect on CYP-induced phosphorylation of NR1 at Ser(897) and Ser(896); conversely, inhibition of NMDAR in vivo with MK801 fails to block CYP-induced Akt activation but significantly attenuates CYP-induced CREB phosphorylation in lumbosacral spinal cord. This novel interrelationship of PI3K/Akt, NMDAR, and CREB activation in lumbosacral spinal cord is further confirmed in an ex vivo spinal slice culture system exposed to an excitatory neurotransmitter calcitonin gene-related peptide (CGRP). Consistently we found that CGRP-triggered CREB activation can be blocked by both PI3K inhibitor LY294002 and NMDAR antagonists MK801 and D-AP5. However, CGRP-triggered Akt activation cannot be blocked by MK801 or D-AP5; vice versa, LY294002 pretreatment that suppresses the Akt activity fails to reverse CGRP-elicited NR1 phosphorylation. These results suggest that PI3K/Akt and NMDAR independently regulate spinal plasticity in visceral pain model, and target of a single pathway is necessary but not sufficient in treatment of visceral hypersensitivity.
Collapse
Affiliation(s)
- Jarren C Kay
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chun-Mei Xia
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miao Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Shanwei Shen
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sharon J Yu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Chulwon Chung
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Li-Ya Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
9
|
Valdez-Morales E, Guerrero-Alba R, Ochoa-Cortes F, Benson J, Spreadbury I, Hurlbut D, Miranda-Morales M, Lomax AE, Vanner S. Release of endogenous opioids during a chronic IBD model suppresses the excitability of colonic DRG neurons. Neurogastroenterol Motil 2013; 25:39-46.e4. [PMID: 22963585 DOI: 10.1111/nmo.12008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endogenous opioids are implicated in pain-regulation in chronic inflammatory bowel disease (IBD). We sought to examine whether endogenous opioids suppress the excitability of colonic nociceptive dorsal root ganglia (DRG) neurons during chronic IBD, and if so, whether modulation of underlying voltage-gated K(+) currents was involved. METHODS The effects of chronic dextran sulfate sodium (DSS) colitis on afferent signaling in mice was studied using patch clamp recordings. Colonic DRG neurons were identified using Fast Blue retrograde labeling and recordings obtained from small DRG neurons (<40 pF). KEY RESULTS In current-clamp recordings, the rheobase of neurons was increased 47% (P < 0.01) and action potential discharge at twice rheobase decreased 23% (P < 0.05) following incubation in colonic supernatants from chronic DSS mice. β-endorphin increased 14-fold, and tissue opioid immunoreactivity and expression in CD4+ cells observed by flow cytometry increased in chronic DSS colons. Incubation of naïve neurons in the μ-opioid receptor agonist D-Ala(2), N- MePhe(4), Gly-ol (DAMGO) (10 nM) partially recapitulated the effects of supernatants from DSS mice on rheobase. Supernatant effects were blocked by the μ-opioid receptor antagonist naloxone. In voltage clamp, chronic DSS supernatants and DAMGO increased I(A) K(+) currents. CONCLUSIONS & INFERENCES The release of endogenous opioids during chronic inflammation in mice suppresses the excitability of nociceptive DRG neurons. Targeting immune cells may provide a novel means of modulating IBD pain.
Collapse
Affiliation(s)
- E Valdez-Morales
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qiao LY, Grider JR. Colitis induces calcitonin gene-related peptide expression and Akt activation in rat primary afferent pathways. Exp Neurol 2009; 219:93-103. [PMID: 19422825 PMCID: PMC2728778 DOI: 10.1016/j.expneurol.2009.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 12/30/2022]
Abstract
Previous study has shown that colitis-induced increases in calcitonin gene-related peptide (CGRP) immunoreactivity in bladder afferent neurons result in sensory cross-sensitization. To further determine the effects of colitis on CGRP expression in neurons other than bladder afferents, we examined and compared the levels of CGRP mRNA and immunoreactivity in the lumbosacral dorsal root ganglia (DRG) and spinal cord before and during colitis in rats. We also examined the changes in CGRP immunoreactivity in colonic afferent neurons during colitis. Results showed increases in CGRP mRNA levels in L1 (2.5-fold, p<0.05) and S1 DRG (1.9-2.4-fold, p<0.05). However, there were no changes in CGRP mRNA levels in L1 and S1 spinal cord during colitis. CGRP protein was significantly increased in L1 (2.5-fold increase, p<0.05) but decreased in S1 (50% decrease, p<0.05) colonic afferent neurons, which may reflect CGRP release from these neurons during colitis. In L1 spinal cord, colitis caused increases in the number of CGRP nerve fibers in the deep lamina region extending to the gray commissure where the number of phospho-Akt neurons was also increased. In S1 spinal cord, colitis caused the increases in the intensity of CGRP fibers in the regions of dorso-lateral tract, and caused the increases in the level of phospho-Akt in the superficial dorsal horn of the spinal cord. In spinal cord slice culture, exogenous CGRP increased the phosphorylation level of Akt but not the phosphorylation level of extracellular-signal regulated kinase ERK1/2 even though our previous studies showed that colitis increased the phosphorylation level of ERK1/2 in L1 and S1 spinal cord. These results suggest that CGRP is synthesized in the DRG and may transport to the spinal cord where it initiates signal transduction during colitis.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298-0551, USA.
| | | |
Collapse
|
11
|
Miranda A, Nordstrom E, Mannem A, Smith C, Banerjee B, Sengupta JN. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience 2007; 148:1021-32. [PMID: 17719181 PMCID: PMC2128774 DOI: 10.1016/j.neuroscience.2007.05.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/13/2007] [Accepted: 06/11/2007] [Indexed: 01/04/2023]
Abstract
The transient receptor potential vanilloid 1 receptor (TRPV1) is an important nociceptor involved in neurogenic inflammation. We aimed to examine the role of TRPV1 in experimental colitis and in the development of visceral hypersensitivity to mechanical and chemical stimulation. Male Sprague-Dawley rats received a single dose of trinitrobenzenesulfonic acid (TNBS) in the distal colon. In the preemptive group, rats received the TRPV1 receptor antagonist JYL1421 (10 mumol/kg, i.v.) or vehicle 15 min prior to TNBS followed by daily doses for 7 days. In the post-inflammation group, rats received JYL1421 daily for 7 days starting on day 7 following TNBS. The visceromotor response (VMR) to colorectal distension (CRD), intraluminal capsaicin, capsaicin vehicle (pH 6.7) or acidic saline (pH 5.0) was assessed in all groups and compared with controls and naïve rats. Colon inflammation was evaluated with H&E staining and myeloperoxidase (MPO) activity. TRPV1 immunoreactivity was assessed in the thoraco-lumbar (TL) and lumbo-sacral (LS) dorsal root ganglia (DRG) neurons. In the preemptive vehicle group, TNBS resulted in a significant increase in the VMR to CRD, intraluminal capsaicin and acidic saline compared the JYL1421-treated group (P<0.05). Absence of microscopic colitis and significantly reduced MPO activity was also evident compared with vehicle-treated rats (P<0.05). TRPV1 immunoreactivity in the TL (69.1+/-4.6%) and LS (66.4+/-4.2%) DRG in vehicle-treated rats was increased following TNBS but significantly lower in the preemptive JYL1421-treated group (28.6+/-3.9 and 32.3+/-2.3 respectively, P<0.05). JYL1421 in the post-inflammation group improved microscopic colitis and significantly decreased the VMR to CRD compared with vehicle (P<0.05, >/=30 mm Hg) but had no effect on the VMR to chemical stimulation. TRPV1 immunoreactivity in the TL and LS DRG was no different from vehicle or naïve controls. These results suggest an important role for TRPV1 channel in the development of inflammation and subsequent mechanical and chemical visceral hyperalgesia.
Collapse
Affiliation(s)
- A Miranda
- Department of Pediatrics, Division of Pediatric Gastroenterology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | |
Collapse
|