1
|
Pang H, Lei D, Huang J, Guo Y, Fan C. Elevated PGT promotes proliferation and inhibits cell apoptosis in preeclampsia by Erk signaling pathway. Mol Cell Probes 2023; 67:101896. [PMID: 36731680 DOI: 10.1016/j.mcp.2023.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/12/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Prostaglandins participate in maternal recognition of pregnancy, implantation and maintenance of gestation. Prostaglandin transporter (PGT), as a candidate molecule of prostaglandin carriers, might be involved in the pathogenesis of preeclampsia. In preeclampsia (PE) patients' placental tissue, we identified PGT by RNA sequencing, measured its expression pattern by quantitative real-time PCR and Western blot. PGT was found to be upregulated in preeclamptic placental tissue. The expression pattern of PGT in PE was double confirmed by eight Gene Expression Omnibus (GEO) databases. In abortion tissues at 6-8 weeks, we then observed the cellular location of PGT by Immunofluorescence technique (IF) and found PGT located in trophoblast cell of the placenta of early pregnancy. In vitro studies revealed that forced expression of PGT in HTR8/Sveno cell inhibited its apoptosis, but promoted its proliferation by activating Erk signaling. In vivo study, we used reduced uterine perfusion pressure (RUPP) rat model and L-NAME-induced preeclampsia-like rats to study the possible role of PGT in preeclampsia. And PGT was found to be upregulated in both preeclampsia rat models by Immunohistochemical (IHC) staining. Newly identified PGT plays an important role in trophoblast proliferation via Erk signaling, providing new insights for understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Huiyuan Pang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Di Lei
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Jinfa Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China
| | - Yuping Guo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi Province, PR China
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, PR China.
| |
Collapse
|
2
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
3
|
Lopes FR, Silva LM, Zimpel R, Munhoz AK, Vieira-Neto A, Pereira MHC, Poindexter M, Gambarini ML, Thatcher WW, Vasconcelos JLM, Santos JEP. Prostaglandin F 2α influences pre-ovulatory follicle characteristics and pregnancy per AI in anovular dairy cows. Theriogenology 2020; 153:122-132. [PMID: 32454318 DOI: 10.1016/j.theriogenology.2020.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/08/2020] [Accepted: 04/29/2020] [Indexed: 11/29/2022]
Abstract
Objectives were to determine the effects of a dose of PGF2α administered 2 days before timed artificial insemination (AI) on LH pulsatility, characteristics of the pre-ovulatory follicle, and pregnancy per artificial insemination (P/AI) in anovular dairy cows, particularly in cows not subjected to hyperthermia. In experiment 1, 2,011 lactating Holstein cows had ovaries scanned by ultrasound to determine corpus luteum (CL) presence and only those without a CL in two consecutive exams were enrolled (n = 437). Cows had the estrous cycle synchronized with an estradiol-progesterone based protocol starting on experiment Day -11 and timed AI on Day 0. Cows were assigned randomly to receive a single dose of 25 mg of PGF2α as dinoprost on Day -4 (1PGF, n = 222) or two doses of 25 mg each of PGF2α, one on Day -4 and one on Day -2 (2PGF, n = 215). Rectal temperatures were evaluated on the day of AI and 7 days later and cows were classified as being normothermic (<39.1 °C) or hyperthermic (≥39.1 °C). Ovulatory responses and P/AI were determined. In experiment 2, cows with regressed CL were exposed to low concentrations of progesterone and then randomly assigned to the same estrous synchronization protocol and treatments, 1PGF (n = 28) and 2PGF (n = 28). Blood was sampled and analyzed for concentrations of progesterone, and for concentrations of LH and 13,14-dihydro-15-keto-PGF2α metabolite (PGFM) every 15 min starting 1 h before to 6 h after treatments and then every 2 h from 12 to 59 h after treatments. The pre-ovulatory follicle was aspirated 44 h after treatments and concentrations of estradiol quantified. In experiment 1, treatment of anovular cows with a second dose of PGF2α increased P/AI in normothermic cows (19.8 [18/91] vs. 38.8% [31/80]), but not in hyperthermic cows. Synchronization was not affected by treatment, but it was greater for normothermic than hyperthermic cows (87.1 [149/171] vs. 77.8% [207/266]). When only synchronized cows were evaluated, the same responses were observed; treatment with 2PGF increased P/AI compared with 1PGF in normothermic cows (23.1 [18/78] vs. 43.7% [31/71]), but not in hyperthermic cows. In experiment 2, administration of 25 mg of dinoprost in 2PGF resulted in concentrations of PGFM 26-fold greater than 1PGF in the first 6 h after treatment (48 vs. 1,242 pg/mL). Cows receiving 2PGF had smaller basal LH concentration (0.57 vs. 0.46 ng/mL) and less frequent LH pulses (4.5 vs. 3.9 pulses/6 h), but duration of the LH surge was longer for 2PGF than 1PGF (13.1 vs. 15.5 h). Treatment with 2PGF increased the diameter and volume of the pre-ovulatory follicle, and concentration of estradiol (115 vs. 262 ng/mL) and total follicular estradiol content (124 vs. 505 ng) compared with 1PGF. Collectively, these results suggest that PGF2α has a role in fertility of anovular cows that is unrelated to its luteolytic effect.
Collapse
Affiliation(s)
- F R Lopes
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil; Department of Animal Sciences, University of Florida, United States
| | - L M Silva
- Department of Animal Sciences, University of Florida, United States
| | - R Zimpel
- Department of Animal Sciences, University of Florida, United States
| | - A K Munhoz
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil
| | - A Vieira-Neto
- Department of Animal Sciences, University of Florida, United States
| | - M H C Pereira
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil
| | - M Poindexter
- Department of Animal Sciences, University of Florida, United States
| | - M L Gambarini
- Department of Animal Sciences, University of Florida, United States
| | - W W Thatcher
- Department of Animal Sciences, University of Florida, United States; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, 32611-0910, United States
| | - J L M Vasconcelos
- Departamento de Produção Animal, UNESP, Botucatu, São Paulo, 18618-000, Brazil
| | - J E P Santos
- Department of Animal Sciences, University of Florida, United States; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, 32611-0910, United States.
| |
Collapse
|
4
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
5
|
Wong CT, Wais J, Crawford DA. Prenatal exposure to common environmental factors affects brain lipids and increases risk of developing autism spectrum disorders. Eur J Neurosci 2015. [DOI: 10.1111/ejn.13028] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christine T. Wong
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
| | - Joshua Wais
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
| | - Dorota A. Crawford
- School of Kinesiology and Health Science; York University; Toronto ON Canada M3J 1P3
- Neuroscience Graduate Diploma Program; York University; Toronto ON Canada M3J 1P3
- Department of Biology; York University; Toronto ON Canada M3J 1P3
| |
Collapse
|
6
|
Schuster VL, Chi Y, Lu R. The Prostaglandin Transporter: Eicosanoid Reuptake, Control of Signaling, and Development of High-Affinity Inhibitors as Drug Candidates. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2015; 126:248-57. [PMID: 26330684 PMCID: PMC4530674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We discovered the prostaglandin transporter (PGT) and cloned the human cDNA and gene. PGT transports extracellular prostaglandins (PGs) into the cytoplasm for enzymatic inactivation. PGT knockout mice have elevated prostaglandin E2 (PGE2) and neonatal patent ductus arteriosus, which reflects PGT's control over PGE2 signaling at EP1/EP4 cell-surface receptors. Interestingly, rescued PGT knockout pups have a nearly normal phenotype, as do human PGT nulls. Given the benign phenotype of PGT genetic nulls, and because PGs are useful medicines, we have approached PGT as a drug target. Triazine library screening yielded a lead compound of inhibitory constant 50% (IC50) = 3.7 μM, which we developed into a better inhibitor of IC50 378 nM. Further structural improvements have yielded 26 rationally designed derivatives with IC50 < 100 nM. The therapeutic approach of increasing endogenous PGs by inhibiting PGT offers promise in diseases such as pulmonary hypertension and obesity.
Collapse
|
7
|
Abstract
Limited drug penetration is an obstacle that is often encountered in treatment of central nervous system (CNS) diseases including pain and cerebral hypoxia. Over the past several years, biochemical characteristics of the brain (i.e., tight junction protein complexes at brain barrier sites, expression of influx and efflux transporters) have been shown to be directly involved in determining CNS permeation of therapeutic agents; however, the vast majority of these studies have focused on understanding those mechanisms that prevent drugs from entering the CNS. Recently, this paradigm has shifted toward identifying and characterizing brain targets that facilitate CNS drug delivery. Such targets include the organic anion-transporting polypeptides (OATPs in humans; Oatps in rodents), a family of sodium-independent transporters that are endogenously expressed in the brain and are involved in drug uptake. OATP/Oatp substrates include drugs that are efficacious in treatment of pain and/or cerebral hypoxia (i.e., opioid analgesic peptides, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors). This clearly suggests that OATP/Oatp isoforms are viable transporter targets that can be exploited for optimization of drug delivery to the brain and, therefore, improved treatment of CNS diseases. This review summarizes recent knowledge in this area and emphasizes the potential that therapeutic targeting of OATP/Oatp isoforms may have in facilitating CNS drug delivery and distribution. Additionally, information presented in this review will point to novel strategies that can be used for treatment of pain and cerebral hypoxia.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Medical Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ 85724-5050, USA.
| | | |
Collapse
|
8
|
Dukhande VV, Sharma GC, Lai JCK, Farahani R. Chronic hypoxia-induced alterations of key enzymes of glucose oxidative metabolism in developing mouse liver are mTOR dependent. Mol Cell Biochem 2011; 357:189-97. [DOI: 10.1007/s11010-011-0889-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/17/2011] [Indexed: 12/22/2022]
|
9
|
du Souich P, Fradette C. The effect and clinical consequences of hypoxia on cytochrome P450, membrane carrier proteins activity and expression. Expert Opin Drug Metab Toxicol 2011; 7:1083-100. [DOI: 10.1517/17425255.2011.586630] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
The physiology of developmental changes in BOLD functional imaging signals. Dev Cogn Neurosci 2011; 1:199-216. [PMID: 22436508 DOI: 10.1016/j.dcn.2011.04.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
BOLD fMRI (blood oxygenation level dependent functional magnetic resonance imaging) is increasingly used to detect developmental changes of human brain function that are hypothesized to underlie the maturation of cognitive processes. BOLD signals depend on neuronal activity increasing cerebral blood flow, and are reduced by neural oxygen consumption. Thus, developmental changes of BOLD signals may not reflect altered information processing if there are concomitant changes in neurovascular coupling (the mechanism by which neuronal activity increases blood flow) or neural energy use (and hence oxygen consumption). We review how BOLD signals are generated, and explain the signalling pathways which convert neuronal activity into increased blood flow. We then summarize in broad terms the developmental changes that the brain's neural circuitry undergoes during growth from childhood through adolescence to adulthood, and present the changes in neurovascular coupling mechanisms and energy use which occur over the same period. This information provides a framework for assessing whether the BOLD changes observed during human development reflect altered cognitive processing or changes in neurovascular coupling and energy use.
Collapse
|
11
|
Murakami K, Mathew R, Huang J, Farahani R, Peng H, Olson SC, Etlinger JD. Smurf1 ubiquitin ligase causes downregulation of BMP receptors and is induced in monocrotaline and hypoxia models of pulmonary arterial hypertension. Exp Biol Med (Maywood) 2010; 235:805-13. [PMID: 20558834 DOI: 10.1258/ebm.2010.009383] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reduced bone morphogenetic protein (BMP) receptor (BMPR) expression and BMP signaling have been implicated in vascular cell proliferation and remodeling associated with pulmonary arterial hypertension (PAH). The low penetrance of the BMPR II disease gene in familial PAH suggests that additional genetic or environmental factors are involved in clinical manifestation of PAH. Smurf1 ubiquitin ligase, together with inhibitory SMAD 6/7, forms a negative feedback loop for the attenuation of BMP signals by downregulating BMPR and signaling molecules and, in addition, functions in the integration of MAPK/Ras mitogenic pathways. The present study found that Smurf1 was significantly elevated in pulmonary arteries of monocrotaline and hypoxia-induced PAH rats. In the pulmonary artery of hypoxia-exposed mice, elevation of Smurf1 and SMAD7 was correlated with reduced expression of BMPR II protein. Over-expression of Smurf1 in cultured cells induced ubiquitination and degradation of BMPR I and II whereas ligase-inactive Smurf1 reduced ubiquitination and elevated their protein levels, thus serving a dominant-negative function. Smurf1-induced receptor degradation was inhibited by both proteasomal and lysosomal inhibitors. Thus, Smurf1 reduces steady-state levels of BMPRs by ubiquitination and subsequent degradation involving proteasomes and lysosomes. Therefore, these results show that Smurf1 induction could be a key event for triggering downregulation of BMP signaling and causing vascular cell proliferation and remodeling in PAH and that abrogating Smurf1 function could be a strategy for PAH therapeutics.
Collapse
Affiliation(s)
- Koko Murakami
- The Center for Pulmonary Hypertension Translational Research, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Van Poucke M, Melkebeek V, Erkens T, Van Zeveren A, Cox E, Peelman LJ. Molecular cloning and characterization of the porcine prostaglandin transporter (SLCO2A1): evaluation of its role in F4 mediated neonatal diarrhoea. BMC Genet 2009; 10:64. [PMID: 19807916 PMCID: PMC2763009 DOI: 10.1186/1471-2156-10-64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/06/2009] [Indexed: 01/22/2023] Open
Abstract
Background Because prostaglandins are involved in many (patho)physiological processes, SLCO2A1 was already characterized in several species in an attempt to unravel specific processes/deficiencies. Here, we describe the molecular cloning and characterization of the porcine ortholog in order to evaluate its possible involvement in F4 enterotoxigenic E. coli mediated neonatal diarrhoea, based on a positional candidate gene approach study. Results Porcine SLCO2A1 is organized in 14 exons, containing an open reading frame of 1935 bp, encoding a 12-transmembrane organic anion cell surface transporter of 644 aa. The -388 to -5 upstream region comprises a (CpG)48 island containing a number of conserved promoter elements, including a TATA box. A potential alternative promoter region was found in the conserved -973 to -700 upstream region. No consensus polyadenylation signal was discovered in the 3' UTR. Repeat sequences were found in 15% of all the non coding sequences. As expected for a multifunctional protein, a wide tissue distribution was observed. mRNA expression was found in the adrenal gland, bladder, caecum, colon (centripetal coil/centrifugal coil), diaphragm, duodenum, gallbladder, heart, ileum, jejunum, kidney, liver, longissimus dorsi muscle, lung, lymph node, mesenterium, rectum, spleen, stomach, tongue and ureter, but not in the aorta, oesophagus and pancreas. The promoter region and the exons (including the splice sites) of SLCO2A1 were resequenced in 5 F4ab/ac receptor positive and 5 F4ab/ac receptor negative pigs. Two silent and 2 missense (both S → L at position 360 and 633) mutations were found, but none was associated with the F4ab/ac receptor phenotype. In addition, no phenotype associated differential mRNA expression or alternative/abberant splicing/polyadenylation was found in the jejunum. Conclusion The molecular cloning and characterization of porcine SLCO2A1 not only contributes to the already existing knowledge about the transporter in general, but enables studies on porcine prostaglandin related processes/deficiencies as patient and/or model. Here we examined its possible involvement as receptor in F4 enterotoxigenic E. coli mediated neonatal diarrhoea. Because no phenotype associated differences could be found in the gene sequence nor in its jejunal transcription profile of F4ab/ac receptor positive/negative pigs, SLCO2A1 can most likely be excluded as receptor for F4 bacteria.
Collapse
Affiliation(s)
- Mario Van Poucke
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
13
|
Choi K, Zhuang H, Crain B, Doré S. Expression and localization of prostaglandin transporter in Alzheimer disease brains and age-matched controls. J Neuroimmunol 2008; 195:81-7. [PMID: 18353443 DOI: 10.1016/j.jneuroim.2008.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 01/28/2008] [Accepted: 01/30/2008] [Indexed: 12/31/2022]
Abstract
Neuroinflammation, a major contributor to neurodegenerative diseases, involves the contribution of activated microglia, reactive astrocytes, and infiltrating inflammatory cells. Stress and various acute or chronic brain injuries stimulate the generation of free radicals and glutamate, triggering inflammatory pathways that lead to increases in chemokines, cytokines, and prostaglandins. Prostaglandins are lipid mediators of inflammation that are produced from arachidonic acid by cyclooxygenase enzymes. They are generally believed to be in all tissues and organs. Their transport through the lipid bilayers of the cell membranes/organelles is facilitated by the prostaglandin transporter (PGT). In this study, middle frontal gyrus brain tissue from patients diagnosed with Alzheimer disease (AD) and that of age-matched control brains were examined to determine the protein expression pattern of PGT and its possible role in modulating neuroinflammation associated with AD. Immunohistochemical and immunofluorescent studies showed that PGT protein was expressed in all the brain tissues examined and was localized in neurons, microglia, and astrocytes. Interestingly, Western blot analysis revealed that the PGT level was significantly less in AD than in age-matched control brain homogenates. Further work is warranted to address the possibility and implications that prostaglandins might not be cleared at a proper rate in AD brains.
Collapse
Affiliation(s)
- Koyi Choi
- Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | | | | | | |
Collapse
|
14
|
Golovko MY, Murphy EJ. An improved LC-MS/MS procedure for brain prostanoid analysis using brain fixation with head-focused microwave irradiation and liquid-liquid extraction. J Lipid Res 2008; 49:893-902. [PMID: 18187404 DOI: 10.1194/jlr.d700030-jlr200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-performance liquid chromatography with tandem mass spectrometry detection (LC-MS/MS) allows a highly selective, sensitive, simultaneous analysis for prostanoids (PG) without derivatization. However, high chemical background noise reduces LC-MS/MS selectivity and sensitivity for brain PG analysis. Four common methods using different solvent systems for PG extraction were tested. Although these methods had the same recovery of PG, the modified acetone extraction followed by liquid/liquid purification had the greatest sensitivity. This method combined with hexane/2-propanol extraction permits the simultaneous analysis of other lipid molecules and PG in the same extract. We also determined that PG mass in brain powder stored at -80 degrees C was reduced 2- to 4- fold in 4 weeks; however, PG were stable for long periods (>3 months) in hexane/2-propanol extracts. PG mass was increased significantly when mice were euthanized by decapitation and the brains rapidly flash-frozen rather than euthanized using head-focused microwave irradiation. This reduction is not the result of PG trapping or destruction in microwave-irradiated brains, demonstrating its importance in limiting mass artifacts during brain PG analysis. Our improved procedure for brain PG analysis provides a reliable, rapid means to detect changes in brain PG mass under both basal and pathological conditions and demonstrates the importance of sample preparation in this process.
Collapse
Affiliation(s)
- Mikhail Y Golovko
- Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota, Grand Forks, ND 58202-9037, USA
| | | |
Collapse
|