1
|
Yunoki K, Watanabe T, Matsumoto T, Kuwabara T, Horinouchi T, Ito K, Ishida H, Kirimoto H. Cutaneous information processing differs with load type during isometric finger abduction. PLoS One 2022; 17:e0279477. [PMID: 36548285 PMCID: PMC9778995 DOI: 10.1371/journal.pone.0279477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
During submaximal isometric contraction, there are two different load types: maintenance of a constant limb angle while supporting an inertial load (position task) and maintenance of a constant force by pushing against a rigid restraint (force task). Previous studies demonstrated that performing the position task requires more proprioceptive information. The purpose of this study was to investigate whether there would be a difference in cutaneous information processing between the position and force tasks by assessing the gating effect, which is reduction of amplitude of somatosensory evoked potentials (SEPs), and cutaneomuscular reflex (CMR). Eighteen healthy adults participated in this study. They contracted their right first dorsal interosseous muscle by abducting their index finger to produce a constant force against a rigid restraint that was 20% maximum voluntary contraction (force task), or to maintain a target position corresponding to 10° abduction of the metacarpophalangeal joint while supporting a load equivalent to 20% maximum voluntary contraction (position task). During each task, electrical stimulation was applied to the digital nerves of the right index finger, and SEPs and CMR were recorded from C3' of the International 10-20 system and the right first dorsal interosseous muscle, respectively. Reduction of the amplitude of N33 component of SEPs was significantly larger during the force than position task. In addition, the E2 amplitude of CMR was significantly greater for the force than position task. These findings suggest that cutaneous information processing differs with load type during static muscle contraction.
Collapse
Affiliation(s)
- Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tatsunori Watanabe
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda-ku, Japan
| | - Takayuki Kuwabara
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Rehabilitation, Uonuma Kikan Hospital, Minamiuonuma, Niigata, Japan
| | - Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanami Ito
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruki Ishida
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
2
|
Change-Driven M100 Component in the Bilateral Secondary Somatosensory Cortex: A Magnetoencephalographic Study. Brain Topogr 2018; 32:435-444. [DOI: 10.1007/s10548-018-0687-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
|
3
|
Hautasaari P, Saloranta H, Savić AM, Korniloff K, Kujala UM, Tarkka IM. Bilateral activations in operculo-insular area show temporal dissociation after peripheral electrical stimulation in healthy adults. Eur J Neurosci 2018; 52:4604-4612. [PMID: 29766591 DOI: 10.1111/ejn.13946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Interhemispheric transfer is necessary for sensory integration and coordination of body sides. We studied how somatosensory input from one body side may reach both body sides. First, we investigated with 17 healthy adults in which uni- and bilateral brain areas were involved in consecutive stages of automatic sensory processing of non-nociceptive peripheral stimulation. Somatosensory evoked fields (SEFs) to electrical stimulation were recorded with 306-channel magnetoencephalography in two conditions. First, SEFs were registered following sensory radial nerve (RN) stimulation to dorsal surface of the right hand and second, following median nerve (MN) stimulation at the right wrist. Cortical activations were located in contralateral postcentral gyrus after MN and RN stimulations and in bilateral operculo-insular area after RN stimulation. First component occurred earlier after MN than RN stimulation. Middle latency components had similar latencies with stronger activation in contralateral postcentral gyrus after MN than RN stimulation. Interestingly, long latency components located in bilateral operculo-insular area after RN stimulation showed latency difference between hemispheres, i.e. activation peaked earlier in contralateral than in ipsilateral side. Additional experiments comparing novel intracutaneous nociceptive, RN and MN electrical stimuli confirmed bilateral long latency activation elicited by each stimulus type and highlighted latency differences between hemispheres. Variations in activation of bilateral operculo-insular areas may corroborate their role in pain network and in multisensory integration. Our findings imply that these areas present a relay station in multisensory stimulus detection.
Collapse
Affiliation(s)
- Pekka Hautasaari
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Harri Saloranta
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Andrej M Savić
- School of Electrical Engineering, University of Belgrade, Belgrade, Serbia.,Tecnalia Serbia Ltd., Belgrade, Serbia
| | - Katariina Korniloff
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Urho M Kujala
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Ina M Tarkka
- Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Marasco PD, Bourbeau DJ, Shell CE, Granja-Vazquez R, Ina JG. The neural response properties and cortical organization of a rapidly adapting muscle sensory group response that overlaps with the frequencies that elicit the kinesthetic illusion. PLoS One 2017; 12:e0188559. [PMID: 29182648 PMCID: PMC5705069 DOI: 10.1371/journal.pone.0188559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2017] [Indexed: 11/18/2022] Open
Abstract
Kinesthesia is the sense of limb movement. It is fundamental to efficient motor control, yet its neurophysiological components remain poorly understood. The contributions of primary muscle spindles and cutaneous afferents to the kinesthetic sense have been well studied; however, potential contributions from muscle sensory group responses that are different than the muscle spindles have not been ruled out. Electrophysiological recordings in peripheral nerves and brains of male Sprague Dawley rats with a degloved forelimb preparation provide evidence of a rapidly adapting muscle sensory group response that overlaps with vibratory inputs known to generate illusionary perceptions of limb movement in humans (kinesthetic illusion). This group was characteristically distinct from type Ia muscle spindle fibers, the receptor historically attributed to limb movement sensation, suggesting that type Ia muscle spindle fibers may not be the sole carrier of kinesthetic information. The sensory-neural structure of muscles is complex and there are a number of possible sources for this response group; with Golgi tendon organs being the most likely candidate. The rapidly adapting muscle sensory group response projected to proprioceptive brain regions, the rodent homolog of cortical area 3a and the second somatosensory area (S2), with similar adaption and frequency response profiles between the brain and peripheral nerves. Their representational organization was muscle-specific (myocentric) and magnified for proximal and multi-articulate limb joints. Projection to proprioceptive brain areas, myocentric representational magnification of muscles prone to movement error, overlap with illusionary vibrational input, and resonant frequencies of volitional motor unit contraction suggest that this group response may be involved with limb movement processing.
Collapse
Affiliation(s)
- Paul D. Marasco
- Advanced Platform Technology Center of Excellence, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| | - Dennis J. Bourbeau
- Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio, United States of America
| | - Courtney E. Shell
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Rafael Granja-Vazquez
- Laboratory for Bionic Integration, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jason G. Ina
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, United States of America
| |
Collapse
|
5
|
Facilitation of information processing in the primary somatosensory area in the ball rotation task. Sci Rep 2017; 7:15507. [PMID: 29138504 PMCID: PMC5686197 DOI: 10.1038/s41598-017-15775-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/01/2017] [Indexed: 11/08/2022] Open
Abstract
Somatosensory input to the brain is known to be modulated during voluntary movement. It has been demonstrated that the response in the primary somatosensory cortex (SI) is generally gated during simple movement of the corresponding body part. This study investigated sensorimotor integration in the SI during manual movement using a motor task combining movement complexity and object manipulation. While the amplitude of M20 and M30 generated in the SI showed a significant reduction during manual movement, the subsequent component (M38) was significantly higher in the motor task than in the stationary condition. Especially, that in the ball rotation task showed a significant enhancement compared with those in the ball grasping and stone and paper tasks. Although sensorimotor integration in the SI generally has an inhibitory effect on information processing, here we found facilitation. Since the ball rotation task seems to be increasing the demand for somatosensory information to control the complex movements and operate two balls in the palm, it may have resulted in an enhancement of M38 generated in the SI.
Collapse
|
6
|
Taoka M, Toda T, Hihara S, Tanaka M, Iriki A, Iwamura Y. A systematic analysis of neurons with large somatosensory receptive fields covering multiple body regions in the secondary somatosensory area of macaque monkeys. J Neurophysiol 2016; 116:2152-2162. [PMID: 27559139 PMCID: PMC5102307 DOI: 10.1152/jn.00241.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/12/2016] [Indexed: 11/22/2022] Open
Abstract
Previous neurophysiological studies performed in macaque monkeys have revealed complex somatosensory responses in the secondary somatosensory area (SII), such as large receptive fields (RFs), as well as bilateral ones. However, systematic analyses of neurons with large RFs have not been performed. In the present study, we recorded single-unit activities in SII of awake macaque monkeys to investigate systematically large RFs by dividing the whole body into four body regions (head, trunk, forelimb, and hindlimb). Recorded neurons were classified into two types, according to whether the RFs were confined to one body region: single (n = 817) and combined (n = 282) body-region types. These two types were distinct in terms of the percentage of bilateral RFs: 55% in the single-region type and 90% in the combined type, demonstrating that two types of RF enlargement occur simultaneously in the combined type, namely, RF convergence from different body regions and RF convergence from both hemibodies. Among the combined-type RFs, two tendencies of RF convergence were found: 1) the distal parts of the limbs (i.e., hand and foot) and the mouth are interconnected, and 2) the trunk RFs extend continuously toward the distal parts of the limb and head to cover the entire body surface. Our distribution analysis on unfolded maps clarified that neurons having RFs with these two tendencies were distributed within specific subregions in SII.
Collapse
Affiliation(s)
- M Taoka
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan; .,Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - T Toda
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| | - S Hihara
- Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - M Tanaka
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan.,Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - A Iriki
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan.,Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan; and.,Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Saitama, Japan
| | - Y Iwamura
- Department of Physiology, Toho University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
|
8
|
Taoka M, Tanaka M, Hihara S, Ojima H, Iriki A. Neural response to movement of the hand and mouth in the secondary somatosensory cortex of Japanese monkeys during a simple feeding task. Somatosens Mot Res 2013; 30:140-52. [PMID: 23607637 DOI: 10.3109/08990220.2013.779246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neural activity was recorded in the secondary somatosensory cortex (SII) of macaque monkeys during a simple feeding task. Around the border between the representations of the hand and face in SII, we found neurons that became active during both retrieving with the hand and eating; 59% had receptive fields (RFs) in the hand/face and the remaining 41% had no RFs. Neurons that responded to touching objects were rarely found. This suggests their sensorimotor function rather than tactile object recognition.
Collapse
Affiliation(s)
- Miki Taoka
- Section of Cognitive Neurobiology, Department of Maxillofacial Biology, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
9
|
Wasaka T, Kakigi R. The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution. BMC Neurosci 2012; 13:138. [PMID: 23126264 PMCID: PMC3508609 DOI: 10.1186/1471-2202-13-138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background A mechanism that monitors the congruence between sensory inputs and motor outputs is necessary to control voluntary movement. The representation of limb position is constantly updated on the basis of somatosensory and visual information and efference copy from motor areas. However, the cortical mechanism underlying detection of limb position using somatosensory and visual information has not been elucidated. This study investigated the influence of visual feedback on information processing in somatosensory areas during movement execution using magnetoencephalography. We used an experimental condition in which the visual information was incongruent despite the motor execution and somatosensory feedback being congruent. Subjects performed self-paced bimanual movements of both thumbs, either symmetric or asymmetric, under normal visual and mirrored conditions. The mirror condition provided a visual feedback by showing a reflection of the subject’s right hand in place of the left hand. Therefore, in the Asymmetric task of the Mirror condition, subjects saw symmetric movements despite performing asymmetric movements. Results Activation in the primary somatosensory area (SI) revealed inhibition of neural activity and that in the secondary somatosensory area (SII) showed enhancement with voluntary movement. In addition, the SII contralateral to the side of stimulation was significantly enhanced in the Asymmetric task of the Mirror condition, which provided non-veridical visual feedback. Conclusions These results suggested that visual information influenced the neuronal activity concerning sensorimotor interaction in the SII during motor execution. The SII contributes to the detection of unpredicted visual feedback of movement execution.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 4448585, Japan.
| | | |
Collapse
|
10
|
Beudel M, Zijlstra S, Mulder T, Zijdewind I, de Jong BM. Secondary sensory area SII is crucially involved in the preparation of familiar movements compared to movements never made before. Hum Brain Mapp 2012; 32:564-79. [PMID: 21391247 DOI: 10.1002/hbm.21044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Secondary sensorimotor regions are involved in sensorimotor integration and movement preparation. These regions take part in parietal-premotor circuitry that is not only active during motor execution but also during movement observation and imagery. This activation particularly occurs when observed movements belong to one's own motor repertoire, consistent with the finding that motor imagery only improves performance when one can actually make such movement. We aimed to investigate whether imagery or observation of a movement that was never made before causes parietal-premotor activation or that the ability to perform this movement is indeed a precondition. Nine subjects [group Already Knowing It (AKI)] could abduct their hallux (moving big toe outward). Seven subjects initially failed to make such movement (Absolute Zero A0 group). They had to imagine, observe, or execute this movement, whereas fMRI data were obtained both before and after training. Contrasting abduction observation between the AKI-group and A0-group showed increased left SII and supplementary motor area activation. Comparing the observation of hallux flexion with abduction showed increased bilateral SII activation in the A0 and not in the AKI group. Prolonged training resulted in equal performance and similar cerebral activation patterns in the two groups. Thereby, conjunction analysis of the correlations on subject's range of abduction during execution, imagery, and observation of hallux abduction showed exclusive bilateral SII activation. The reduced SII involvement in A0 may imply that effective interplay between sensory predictions and feedback does not take place without actual movement experience. However, this can be acquired by training.
Collapse
Affiliation(s)
- M Beudel
- Department of Neurology, University Medical Center Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
11
|
Modulation of somatosensory processing in dual tasks: an event-related brain potential study. Exp Brain Res 2011; 216:575-84. [DOI: 10.1007/s00221-011-2961-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 11/16/2011] [Indexed: 10/15/2022]
|
12
|
Yamashiro K, Inui K, Otsuru N, Urakawa T, Kakigi R. Temporal window of integration in the somatosensory modality: An MEG study. Clin Neurophysiol 2011; 122:2276-81. [DOI: 10.1016/j.clinph.2011.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/07/2011] [Accepted: 03/24/2011] [Indexed: 11/26/2022]
|
13
|
Wasaka T, Kakigi R. Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution. Neuroimage 2011; 59:1501-7. [PMID: 21889595 DOI: 10.1016/j.neuroimage.2011.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 11/25/2022] Open
Abstract
The role of sensory information in motor control has been studied, but the cortical processing underlying cross-modal relationship between visual and somatosensory information for movement execution remains a matter of debate. Visual estimates of limb positions are congruent with proprioceptive estimates under normal visual conditions, but a mismatch between the watched and felt movement of the hand disrupts motor execution. We investigated whether activation in somatosensory areas was affected by the discordance between the intended and an executed action. Subjects performed self-paced thumb movement of the left hand under normal visual and mirror conditions. The Mirror condition provided a non-veridical and unexpected visual feedback. The results showed activity in the primary somatosensory area to be inhibited and activity in the secondary somatosensory area (SII) to be enhanced with voluntary movement, and neural responses in the SII and parietal cortex were strongly affected by the unexpected visual feedback. These results provide evidence that the visual information plays a crucial role in activation in somatosensory areas during motor execution. A mechanism that monitors sensory inputs and motor outputs congruent with current intension is necessary to control voluntary movement.
Collapse
Affiliation(s)
- Toshiaki Wasaka
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
14
|
Legon W, Dionne JK, Meehan SK, Staines WR. Non-dominant hand movement facilitates the frontal N30 somatosensory evoked potential. BMC Neurosci 2010; 11:112. [PMID: 20822535 PMCID: PMC2940928 DOI: 10.1186/1471-2202-11-112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/07/2010] [Indexed: 11/16/2022] Open
Abstract
Background Previous literature has shown that the frontal N30 is increased during movement of the hand contralateral to median nerve stimulation. This finding was a result of non-dominant left hand movement in right-handed participants. It is unclear however if the effect depends upon non-dominant hand movement or if this is a generalized phenomenon across the upper-limbs. This study tests the effect of dominant and non-dominant hand movement upon contralateral frontal and parietal somatosensory evoked potentials (SEPs) and further tests if this relationship persists in left hand dominant participants. Median nerve SEPs were elicited from the wrist contralateral to movement in both right hand and left hand dominant participants alternating the movement hand in separate blocks. Participants were required to volitionally squeeze (~ 20% of a maximal voluntary contraction) a pressure-sensitive bulb every ~3 seconds with the hand contralateral to median nerve stimulation. SEPs were continuously collected during the task and individual traces were grouped into time bins relative to movement according to the timing of components of the Bereitschaftspotential. SEPs were then averaged and quantified from both FCZ and CP3/4 scalp electrode sites during both the squeeze task and at rest. Results The N30 is facilitated during non-dominant hand movement in both right and left hand dominant individuals. There was no effect for dominant hand movement in either group. Conclusions N30 amplitude increase may be a result of altered sensory gating from motor areas known to be specifically active during non-dominant hand movement.
Collapse
Affiliation(s)
- Wynn Legon
- Department of Kinesiology, University of Waterloo, 200 University Ave, West, Waterloo, Ontario N2L3G1, Canada
| | | | | | | |
Collapse
|
15
|
Simões-Franklin C, Whitaker TA, Newell FN. Active and passive touch differentially activate somatosensory cortex in texture perception. Hum Brain Mapp 2010; 32:1067-80. [PMID: 20669167 DOI: 10.1002/hbm.21091] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 01/29/2010] [Accepted: 04/12/2010] [Indexed: 11/06/2022] Open
Abstract
The neural mechanisms behind active and passive touch are not yet fully understood. Using fMRI we investigated the brain correlates of these exploratory procedures using a roughness categorization task. Participants either actively explored a surface (active touch) or the surface was moved under the participant's stationary finger (passive touch). The stimuli consisted of three different grades of sandpaper which participants were required to categorize as either coarse, medium, or fine. Exploratory procedure did not affect performance although the coarse and fine surfaces were more easily categorized than the medium surface. An initial whole brain analysis revealed activation of sensory and cognitive areas, including post-central gyrus and prefrontal cortical areas, in line with areas reported in previous studies. Our main analysis revealed greater activation during active than passive touch in the contralateral primary somatosensory region but no effect of stimulus roughness. In contrast, activation in the parietal operculum (OP) was significantly affected by stimulus roughness but not by exploration procedure. Active touch also elicited greater and more distributed brain activity compared with passive touch in areas outside the somatosensory region, possibly due to the motor component of the task. Our results reveal that different cortical areas may be involved in the processing of surface exploration and surface texture, with exploration procedures affecting activations in the primary somatosensory cortex and stimulus properties affecting relatively higher cortical areas within the somatosensory system.
Collapse
|
16
|
Pre-movement gating of somatosensory-evoked potentials by self-initiated movements: the effects of ageing and its implication. Clin Neurophysiol 2009; 120:1143-8. [PMID: 19435674 DOI: 10.1016/j.clinph.2009.01.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 01/17/2009] [Accepted: 01/22/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To study whether the gating effect of the self-initiated movements on the cortical somatosensory-evoked potentials (SEPs) is affected by ageing. METHODS The SEPs elicited by stimulating the right median nerve were recorded in 14 young and 16 older healthy subjects, while self-initiated movements of the right fingers were performed at 5-10 s intervals. The amplitudes of the major components of the SEPs at F3 and C3' (2 cm posterior to C3) during the pre-movement period were analysed as the resting condition subserving the baseline. RESULTS The amplitudes at rest were significantly greater in the elderly than in the younger subjects. The amplitudes of P27, N35 and P45 at C3' as well as N30 at F3 decreased significantly during the pre-movement period. However, the ratio of amplitudes in the pre-movement period to the resting period in the elderly was not significantly different from that in the younger subjects, except for the interaction of N30. CONCLUSIONS The effect of age on the gating of N30 at F3 may indicate an altered preparatory processing of self-initiated movement in the elderly. The gating effect of older subjects at C3' is almost comparable to that of young ones, which appears to be a compensatory mechanism to maintain the precise movements. SIGNIFICANCE Ageing affects the SEPs differently at rest and pre-movement gating.
Collapse
|
17
|
Hsiao S. Central mechanisms of tactile shape perception. Curr Opin Neurobiol 2008; 18:418-24. [PMID: 18809491 DOI: 10.1016/j.conb.2008.09.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 11/19/2022]
Abstract
Studies show that while the cortical mechanisms of two-dimensional (2D) form and motion processing are similar in touch and vision, the mechanisms of three-dimensional (3D) shape processing are different. 2D form and motion are processed in areas 3b and 1 of SI cortex by neurons with receptive fields (RFs) composed of excitatory and inhibitory subregions. 3D shape is processed in area 2 and SII and relies on the integration of cutaneous and proprioceptive inputs. The RFs of SII neurons vary in size and shape with heterogeneous structures consisting of orientation-tuned fingerpads mixed with untuned excitatory or inhibitory fingerpads. Furthermore, the sensitivity of the neurons to cutaneous inputs changes with hand conformation. We hypothesize that these RFs are the kernels underlying tactile object recognition.
Collapse
Affiliation(s)
- Steven Hsiao
- Department of Neuroscience and the Krieger Mind/Brain Institute, The Johns Hopkins University, 338 Krieger Hall, Baltimore, MD 21218, United States.
| |
Collapse
|
18
|
Sakamoto K, Nakata H, Kakigi R. Somatotopic representation of the tongue in human secondary somatosensory cortex. Clin Neurophysiol 2008; 119:2125-34. [DOI: 10.1016/j.clinph.2008.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 04/25/2008] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
|
19
|
Nakata H, Tamura Y, Sakamoto K, Akatsuka K, Hirai M, Inui K, Hoshiyama M, Saitoh Y, Yamamoto T, Katayama Y, Kakigi R. Evoked magnetic fields following noxious laser stimulation of the thigh in humans. Neuroimage 2008; 42:858-68. [DOI: 10.1016/j.neuroimage.2008.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/23/2008] [Accepted: 05/09/2008] [Indexed: 01/29/2023] Open
|
20
|
Sakamoto K, Nakata H, Kakigi R. Somatosensory-evoked magnetic fields following stimulation of the tongue in humans. Clin Neurophysiol 2008; 119:1664-73. [DOI: 10.1016/j.clinph.2008.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/26/2008] [Accepted: 03/25/2008] [Indexed: 11/28/2022]
|