1
|
Intracellular Signaling. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
2
|
Hao Y, Xin M, Feng L, Wang X, Wang X, Ma D, Feng J. Review Cerebral Ischemic Tolerance and Preconditioning: Methods, Mechanisms, Clinical Applications, and Challenges. Front Neurol 2020; 11:812. [PMID: 33071923 PMCID: PMC7530891 DOI: 10.3389/fneur.2020.00812] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide, and it is increasing in prevalence. The limited therapeutic window and potential severe side effects prevent the widespread clinical application of the venous injection of thrombolytic tissue plasminogen activator and thrombectomy, which are regarded as the only approved treatments for acute ischemic stroke. Triggered by various types of mild stressors or stimuli, ischemic preconditioning (IPreC) induces adaptive endogenous tolerance to ischemia/reperfusion (I/R) injury by activating a multitude cascade of biomolecules, for example, proteins, enzymes, receptors, transcription factors, and others, which eventually lead to transcriptional regulation and epigenetic and genomic reprogramming. During the past 30 years, IPreC has been widely studied to confirm its neuroprotection against subsequent I/R injury, mainly including local ischemic preconditioning (LIPreC), remote ischemic preconditioning (RIPreC), and cross preconditioning. Although LIPreC has a strong neuroprotective effect, the clinical application of IPreC for subsequent cerebral ischemia is difficult. There are two main reasons for the above result: Cerebral ischemia is unpredictable, and LIPreC is also capable of inducing unexpected injury with only minor differences to durations or intensity. RIPreC and pharmacological preconditioning, an easy-to-use and non-invasive therapy, can be performed in a variety of clinical settings and appear to be more suitable for the clinical management of ischemic stroke. Hoping to advance our understanding of IPreC, this review mainly focuses on recent advances in IPreC in stroke management, its challenges, and the potential study directions.
Collapse
Affiliation(s)
| | | | | | | | | | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Man H, Bi Y, Yu Y, Wang S, Zhao Z, Qiao X, Ju W. Associated factors of early neurological deterioration in isolated acute lacunar infarction in basal ganglia. JOURNAL OF NEURORESTORATOLOGY 2019. [DOI: 10.26599/jnr.2019.9040007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
4
|
Protective Effect of 4-Methoxy Benzyl Alcohol on the Blood–Brain Barrier after Cerebral Ischemia Reperfusion Injury. J Stroke Cerebrovasc Dis 2017; 26:1258-1265. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/27/2016] [Accepted: 01/20/2017] [Indexed: 02/03/2023] Open
|
5
|
Shi SH, Qi ZF, Luo YM, Ji XM, Liu KJ. Normobaric oxygen treatment in acute ischemic stroke: a clinical perspective. Med Gas Res 2016; 6:147-153. [PMID: 27867482 PMCID: PMC5110139 DOI: 10.4103/2045-9912.191360] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute ischemic stroke is a common and serious neurological disease. Oxygen therapy has been shown to increase oxygen supply to ischemic tissues and improve outcomes after cerebral ischemia/reperfusion. Normobaric hyperoxia (NBO), an easily applicable and non-invasive method, shows protective effects on acute ischemic stroke animals and patients in pilot studies. However, many critical scientific questions are still unclear, such as the therapeutic time window of NBO, the long-term effects and the benefits of NBO in large clinic trials. In this article, we review the current literatures on NBO treatment of acute ischemic stroke in preclinical and clinical studies and try to analyze and identify the key gaps or unknowns in our understanding about NBO. Based on these analyses, we provide suggestions for future studies.
Collapse
Affiliation(s)
- Shu-Hai Shi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China; Pediatric Intensive Care, First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia Autonomous Region, China
| | - Zhi-Feng Qi
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu-Min Luo
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xun-Ming Ji
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ke Jian Liu
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China; Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
6
|
He F, Duan X, Dai R, Wang W, Yang C, Lin Q. PROTECTIVE EFFECTS OF ETHYL ACETATE EXTRACTION FROM GASTRODIA ELATA BLUME ON BLOOD-BRAIN BARRIER IN FOCAL CEREBRAL ISCHEMIA REPERFUSION. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 13:199-209. [PMID: 28852737 PMCID: PMC5566145 DOI: 10.21010/ajtcam.v13i4.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Damage of the blood brain barrier (BBB) during the process of cerebral ischemic injury is a key factor which influences the therapeutic efficacy to the cerebral ischemic injury. The present study was designed to verify the mechanisms underlying the protective effects of the ethyl acetate (EtOAc) extraction from Gastrodia elata Blume (GEB) on the BBB by developing a model of cerebral ischemia-reperfusion in rats. Material and methods: MCAO/R model in rats was developed through a thread embolism method. The neurological scales, the moisture and the evans blue (EB) contents of brains were detected. Meanwhile, the release of nitric oxide (NO) and activities of NO synthase (NOS) in brain tissues were measured. Western blotting analyses were also performed to assess the protein expressions of AQP-4, Occludin and Claudin-5 in brain tissue. Results: After rats were pretreated with different concentrations of EtOAc extractions from GEB, the neurologic scores, the EB contents in the brain tissues and the moisture of the brains were significantly decreased. Meanwhile, the release of NO, the activities of nNOS and iNOS were notably inhibited. Furthemore, the protein expression of AQP-4 was markedly decreased, but the protein expressions of -5 and Occludin were significantly increased. Conclusion: the EtOAc extracts of GEB may decrease the permeability of BBB when focal cerebral ischemia occurs. The inhibition of the NOS pathways, the attenuation of the protein expression of AQP-4 and the enhancement of the expressions of the tight junction proteins may contribute to the protective effects of the EtOAc extracts from GEB on BBB.
Collapse
Affiliation(s)
- Fangyan He
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Xiaohua Duan
- The Key Modern Research Laboratory for Ethno-pharmacognosy of Yunnan Higher School, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Rong Dai
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Wei Wang
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Cui Yang
- Ethnic Drug Screening & Pharmacology Center, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming 650500, China
| | - Qing Lin
- The Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| |
Collapse
|
7
|
Weaver J, Liu KJ. Does normobaric hyperoxia increase oxidative stress in acute ischemic stroke? A critical review of the literature. Med Gas Res 2015; 5:11. [PMID: 26306184 PMCID: PMC4547432 DOI: 10.1186/s13618-015-0032-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022] Open
Abstract
Stroke, one of the most debilitating cerebrovascular and nuerological diseases, is a serious life-threatening condition and a leading cause of long-term adult disability and brain damage, either directly or by secondary complications. Most effective treatments for stroke are time dependent such as the only FDA-approved therapy, reperfusion with tissue-type plasminogen activator; thus, improving tissue oxygenation with normobaric hyperoxia (NBO) has been considered a logical and potential important therapy. NBO is considered a good approach because of its potential clinical advantages, and many studies suggest that NBO is neuroprotective, reducing ischemic brain injury and infarct volume in addition to improving pathologic and neurobehavorial outcomes. However, increased reactive oxygen species (ROS) generation may occur when tissue oxygen level is too high or too low. Therefore, a major concern with NBO therapy in acute ischemic stroke is the potential increase of ROS, which could exacerbate brain injury. The purpose of this review is to critically review the current literature reports on the effect of NBO treatment on ROS and oxidative stress with respect to acute ischemic stroke. Considering the available data from relevant animal models, NBO does not increase ROS or oxidative stress if applied for a short duration; therefore, the potential that NBO is a viable neuroprotective strategy for acute ischemic stroke is compelling. The benefits of NBO may significantly outweigh the risks of potential increase in ROS generation for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- John Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, BRaIN Imaging Center, MSC10 5620, 1 University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Center of Biomedical Research Excellence, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA ; Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 USA
| |
Collapse
|
8
|
Thushara Vijayakumar N, Sangwan A, Sharma B, Majid A, Rajanikant GK. Cerebral Ischemic Preconditioning: the Road So Far…. Mol Neurobiol 2015; 53:2579-93. [PMID: 26081149 DOI: 10.1007/s12035-015-9278-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 06/02/2015] [Indexed: 12/25/2022]
Abstract
Cerebral preconditioning constitutes the brain's adaptation to lethal ischemia when first exposed to mild doses of a subtoxic stressor. The phenomenon of preconditioning has been largely studied in the heart, and data from in vivo and in vitro models from past 2-3 decades have provided sufficient evidence that similar machinery exists in the brain as well. Since preconditioning results in a transient protective phenotype labeled as ischemic tolerance, it can open many doors in the medical warfare against stroke, a debilitating cerebrovascular disorder that kills or cripples thousands of people worldwide every year. Preconditioning can be induced by a variety of stimuli from hypoxia to pharmacological anesthetics, and each, in turn, induces tolerance by activating a multitude of proteins, enzymes, receptors, transcription factors, and other biomolecules eventually leading to genomic reprogramming. The intracellular signaling pathways and molecular cascades behind preconditioning are extensively being investigated, and several first-rate papers have come out in the last few years centered on the topic of cerebral ischemic tolerance. However, translating the experimental knowledge into the clinical scaffold still evades practicality and faces several challenges. Of the various preconditioning strategies, remote ischemic preconditioning and pharmacological preconditioning appears to be more clinically relevant for the management of ischemic stroke. In this review, we discuss current developments in the field of cerebral preconditioning and then examine the potential of various preconditioning agents to confer neuroprotection in the brain.
Collapse
Affiliation(s)
- N Thushara Vijayakumar
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Amit Sangwan
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Bhargy Sharma
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India
| | - Arshad Majid
- Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - G K Rajanikant
- School of Biotechnology, DBT-Centre for Bioinformatics, National Institute of Technology Calicut, Calicut, 673601, India.
| |
Collapse
|
9
|
Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G. Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 2015; 9:147. [PMID: 25972779 PMCID: PMC4413676 DOI: 10.3389/fnins.2015.00147] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023] Open
Abstract
The innate immune system plays a dualistic role in the evolution of ischemic brain damage and has also been implicated in ischemic tolerance produced by different conditioning stimuli. Early after ischemia, perivascular astrocytes release cytokines and activate metalloproteases (MMPs) that contribute to blood–brain barrier (BBB) disruption and vasogenic oedema; whereas at later stages, they provide extracellular glutamate uptake, BBB regeneration and neurotrophic factors release. Similarly, early activation of microglia contributes to ischemic brain injury via the production of inflammatory cytokines, including tumor necrosis factor (TNF) and interleukin (IL)-1, reactive oxygen and nitrogen species and proteases. Nevertheless, microglia also contributes to the resolution of inflammation, by releasing IL-10 and tumor growth factor (TGF)-β, and to the late reparative processes by phagocytic activity and growth factors production. Indeed, after ischemia, microglia/macrophages differentiate toward several phenotypes: the M1 pro-inflammatory phenotype is classically activated via toll-like receptors or interferon-γ, whereas M2 phenotypes are alternatively activated by regulatory mediators, such as ILs 4, 10, 13, or TGF-β. Thus, immune cells exert a dualistic role on the evolution of ischemic brain damage, since the classic phenotypes promote injury, whereas alternatively activated M2 macrophages or N2 neutrophils prompt tissue remodeling and repair. Moreover, a subdued activation of the immune system has been involved in ischemic tolerance, since different preconditioning stimuli act via modulation of inflammatory mediators, including toll-like receptors and cytokine signaling pathways. This further underscores that the immuno-modulatory approach for the treatment of ischemic stroke should be aimed at blocking the detrimental effects, while promoting the beneficial responses of the immune reaction.
Collapse
Affiliation(s)
- Diana Amantea
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | | | - Cristina Tassorelli
- C. Mondino National Neurological Institute Pavia, Italy ; Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - María I Cuartero
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Iván Ballesteros
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Michelangelo Certo
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy
| | - María A Moro
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Ignacio Lizasoain
- Unidad de Investigación Neurovascular, Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid and Instituto de Investigación Hospital 12 de Octubre Madrid, Spain
| | - Giacinto Bagetta
- Section of Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria Rende, Italy ; Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University Consortium for Adaptive Disorders and Head Pain, University of Calabria Rende, Italy
| |
Collapse
|
10
|
Deng J, Lei C, Chen Y, Fang Z, Yang Q, Zhang H, Cai M, Shi L, Dong H, Xiong L. Neuroprotective gases – Fantasy or reality for clinical use? Prog Neurobiol 2014; 115:210-45. [DOI: 10.1016/j.pneurobio.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 12/17/2022]
|
11
|
Garcia-Bonilla L, Benakis C, Moore J, Iadecola C, Anrather J. Immune mechanisms in cerebral ischemic tolerance. Front Neurosci 2014; 8:44. [PMID: 24624056 PMCID: PMC3940969 DOI: 10.3389/fnins.2014.00044] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
Stressor-induced tolerance is a central mechanism in the response of bacteria, plants, and animals to potentially harmful environmental challenges. This response is characterized by immediate changes in cellular metabolism and by the delayed transcriptional activation or inhibition of genetic programs that are not generally stressor specific (cross-tolerance). These programs are aimed at countering the deleterious effects of the stressor. While induction of this response (preconditioning) can be established at the cellular level, activation of systemic networks is essential for the protection to occur throughout the organs of the body. This is best signified by the phenomenon of remote ischemic preconditioning, whereby application of ischemic stress to one tissue or organ induces ischemic tolerance (IT) in remote organs through humoral, cellular and neural signaling. The immune system is an essential component in cerebral IT acting simultaneously both as mediator and target. This dichotomy is based on the fact that activation of inflammatory pathways is necessary to establish IT and that IT can be, in part, attributed to a subdued immune activation after index ischemia. Here we describe the components of the immune system required for induction of IT and review the mechanisms by which a reprogrammed immune response contributes to the neuroprotection observed after preconditioning. Learning how local and systemic immune factors participate in endogenous neuroprotection could lead to the development of new stroke therapies.
Collapse
Affiliation(s)
- Lidia Garcia-Bonilla
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Corinne Benakis
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Jamie Moore
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| | - Josef Anrather
- Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA
| |
Collapse
|
12
|
Saadat A, Shariat Maghani SS, Rostami Z, Davoudi A, Davoudi F, Shafie A, Eynollahi B. Normobaric hyperoxia preconditioning ameliorates cisplatin nephrotoxicity. Ren Fail 2013; 36:5-8. [PMID: 24059271 DOI: 10.3109/0886022x.2013.832604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cisplatin is a potent anticancer drug, but its nephrotoxicity limits the clinical use of it. To reduce the Cisplatin-induced nephrotoxicity, various interventions have been implicated. The aim of this study was to examine whether preconditioning with normobaric hyperoxia would prevent Cisplatin-induced nephrotoxicity in patient with solid tumor. METHODS In a prospective study, 80 adult patients with solid tumor who were treated with Cisplatin between February 2011 and December 2011 were included. Forty-three patients were exposed to pure oxygen via non-rebreathing reservoir mask which increased the provided oxygen rate to 60% oxygen for 2 hours at 48, 24, and 6 hours before intravenous administration of Cisplatin and 37 patients received only Cisplatin as a control group. Estimated glomerular filtration rate (eGFR) calculated in all patients on day 1 before and on days 1, 3, 6, 30 after Cisplatin exposures. RESULTS Patients treated with Cisplatin and 60% oxygen showed a mild improvement in eGFR and mild reduction of serum creatinine after 30 days with statistically mild significant differences (p = 0.048). CONCLUSION This study showed that normobaric and intermittent precondition of 60% oxygen prior to Cisplatin treatment had an acute transient adverse effect on renal function; however, the improvement of renal function will be seen after 30 days. Thus, it may help to prevent Cisplatin nephrotoxicity.
Collapse
Affiliation(s)
- Alireza Saadat
- Department of Hematology & Oncology, Baghiyatallah University of Medical Sciences , Tehran , Iran
| | | | | | | | | | | | | |
Collapse
|
13
|
Lisi S, Sisto M, Lofrumento DD, D'Amore M. Sjögren's syndrome autoantibodies provoke changes in gene expression profiles of inflammatory cytokines triggering a pathway involving TACE/NF-κB. J Transl Med 2012; 92:615-24. [PMID: 22157716 DOI: 10.1038/labinvest.2011.190] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We explore the association of the inflammatory gene expression profile observed in the chronic inflammatory autoimmune disorder Sjögren's syndrome (SS) with changes in TNF-α converting enzyme (TACE), tumor necrosis factor (TNF)-α and nuclear factor (NF)-κB levels showing that pathways that include TNF-α signaling converge on NF-κB contributing to exacerbate the diseases. The treatment of human salivary gland epithelial cells (SGECs) with SS anti-Ro/SSA autoantibodies (Abs) result in a progressive increase in NF-κB-DNA binding, that includes a marked enhancement in NF-κB subunit p65 protein-DNA binding. A human cytokine multi-analyte array demonstrated that the NF-κB proinflammatory target genes, increased by anti-Ro/SSA Abs treatment, includes CXC chemokines (CXCL1, CXCL6 and CXCL9), CC chemokines (CCL2, CCL13 and CCL20), interleukins (IL-1α, IL-1β, IL-1F8, IL-6, IL-8, IL-9, IL-13, IL-17 and IL-22) and their receptors (IL-1RN, IL-10Rα, IL-13Rα, CCR1, CCR2, CCR3, CCR4 and CXCR1). Blockade of TACE through the use of the specific inhibitor TAPI-1 regulates proinflammatory cytokines production in SGEC treated with anti-Ro/SSA Abs inhibiting NF-κB nuclear translocation and activation. To further investigate the role of NF-κB on anti-Ro/SSA Abs-determined proinflammatory gene expression, we used the inhibitory protein IκB-α dominant negative super-repressor as inhibitor of NF-κB-DNA binding, demonstrating that transfection with dominant-negative IκB-α in anti-Ro/SSA-treated SGEC determined a marked reduction of proinflammatory cytokines gene expression. Although further studies are needed to clarify the mechanisms underlying SS, our results demonstrate that SS Abs exert their pathogenic effects via triggering the TACE/TNF-α/NF-κB axis.
Collapse
Affiliation(s)
- Sabrina Lisi
- Department of Human Anatomy and Histology, Laboratory of Cell Biology, University of Bari Medical School, Bari, Italy.
| | | | | | | |
Collapse
|
14
|
Bigdeli MR, Asheghabadi M, Khalili A. Time course of neuroprotection induced by normobaric hyperoxia in focal cerebral ischemia. Neurol Res 2012; 34:439-46. [PMID: 22449485 DOI: 10.1179/1743132812y.0000000013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The purpose of this study was to determine if normobaric hyperoxia (HO) preconditioning offers durable neuroprotection against cerebral ischemia and the role of reactive oxygen species in the ischemic tolerance mechanism. MATERIALS AND METHODS Rats were divided into four experimental main groups. First main group which was comprised four subgroups, were exposed to 90% HO for 6 days, 4 hours per day and subjected to 60 minutes of right middle cerebral artery occlusion (MCAO) after 2, 5, 10, and 15 days. Second group acted as control, was exposed to 21% oxygen (RA; room air) in the same chamber, and subjected to 60 minutes of right MCAO. Third main group comprised two subgroups, were exposed to 90% HO for 6 days, 4 hours per day, received normal saline (NS; 2HO+NS) and dimethylthiourea (DT) just before inhaling 90% HO (2HO+DT). Forth main group was exposed to 21% oxygen (2RA) in the same chamber and received normal saline (2RA+NS) and DT just before inhaling 21% oxygen (2RA+DT). Last two main groups were subjected to 60 minutes of right MCAO after 2 days. After 24-hour reperfusion, neurological deficit score (NDS), infarct volume, brain water content, and Evans blue extravasations were assessed in all animals. RESULTS First main group compared with the RA group, NDS, infarct volume, Brain water content, and Evans blue extravasations were reduced in 2, 5, and 10 days significantly, whereas there was no difference among groups 2HO+DT, 2RA+DT, and 2RA+NS. CONCLUSIONS In the model of transient focal cerebral ischemia, hyperoxia preconditioning induced effective but transient neuroprotective effects.
Collapse
|
15
|
Michalski D, Härtig W, Schneider D, Hobohm C. Use of normobaric and hyperbaric oxygen in acute focal cerebral ischemia - a preclinical and clinical review. Acta Neurol Scand 2011; 123:85-97. [PMID: 20456243 DOI: 10.1111/j.1600-0404.2010.01363.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High socioeconomic burden is attributed to acute ischemic stroke, but treatment strategies are still limited. Normobaric (NBO) and hyperbaric oxygen therapy (HBO) were frequently investigated in preclinical studies following acute focal cerebral ischemia with predominantly beneficial effects in different outcome measurements. Best results were achieved in transient cerebral ischemia, starting HBO early after artery occlusion, and by using relatively high pressures. On molecular level, oxygen application leads to blood-brain barrier stabilization, reduction of excitotoxic metabolites, and inhibition of inflammatory processes. Therefore, NBO and HBO appear excessively hopeful in salvaging impaired brain cells during ischemic stroke. However, harmful effects have been noted contributing to damaging properties, for example, vasoconstriction and free oxygen radicals. In the clinical setting, NBO provided positive results in a single clinical trial, but HBO failed to show efficacy in three randomized trials. To date, the translation of numerous evidentiary experimental results into clinical implementation remains open. Recently, oxygen became interesting as an additional therapy to neuroprotective or recanalization drugs to combine positive effects. Further preclinical research is needed exploring interactions between NBO, HBO, and key factors with multiphasic roles in acute damaging and delayed inflammatory processes after cerebral ischemia, for example, matrix-metalloproteinases and hypoxia-inducible factor-1α.
Collapse
Affiliation(s)
- D Michalski
- Department of Neurology, University of Leipzig, Germany.
| | | | | | | |
Collapse
|
16
|
Abstract
This review focuses on the role of ADAM-17 in disease. Since its debut as the tumor necrosis factor converting enzyme (TACE), ADAM-17 has been reported to be an indispensible regulator of almost every cellular event from proliferation to migration. The central role of ADAM-17 in cell regulation is rooted in its diverse array of substrates: cytokines, growth factors, and their receptors as well as adhesion molecules are activated or inactivated by their cleavage with ADAM-17. It is therefore not surprising that ADAM-17 is implicated in numerous human diseases including cancer, heart disease, diabetes, rheumatoid arthritis, kidney fibrosis, Alzheimer's disease, and is a promising target for future treatments. The specific role of ADAM-17 in the pathophysiology of these diseases is very complex and depends on the cellular context. To exploit the therapeutic potential of ADAM-17, it is important to understand how its activity is regulated and how specific organs and cells can be targeted to inactivate or activate the enzyme.
Collapse
Affiliation(s)
- Monika Gooz
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
17
|
Abstract
Preconditioning (PC) describes a phenomenon whereby a sub-injury inducing stress can protect against a later injurious stress. Great strides have been made in identifying the mechanisms of PC-induced protection in animal models of brain injury. While these may help elucidate potential therapeutic targets, there are questions over the clinical utility of cerebral PC, primarily because of questions over the need to give the PC stimulus prior to the injury, narrow therapeutic windows and safety. The object of this review is to address the question of whether there may indeed be a clinical use for cerebral PC and to discuss the deficiencies in our knowledge of PC that may hamper such clinical translation.
Collapse
Affiliation(s)
- Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael M. Wang
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Bigdeli MR, Rahnema M, Khoshbaten A. Preconditioning with Sublethal Ischemia or Intermittent Normobaric Hyperoxia Up-regulates Glutamate Transporters and Tumor Necrosis Factor-α Converting Enzyme in the Rat Brain. J Stroke Cerebrovasc Dis 2009; 18:336-42. [DOI: 10.1016/j.jstrokecerebrovasdis.2008.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/26/2008] [Accepted: 12/16/2008] [Indexed: 12/22/2022] Open
|
19
|
Bigdeli MR, Rasoulian B, Meratan AA. In vivo normobaric hyperoxia preconditioning induces different degrees of antioxidant enzymes activities in rat brain tissue. Eur J Pharmacol 2009; 611:22-9. [DOI: 10.1016/j.ejphar.2009.03.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 02/28/2009] [Accepted: 03/10/2009] [Indexed: 11/17/2022]
|
20
|
Bigdeli MR. Preconditioning with prolonged normobaric hyperoxia induces ischemic tolerance partly by upregulation of antioxidant enzymes in rat brain tissue. Brain Res 2009; 1260:47-54. [DOI: 10.1016/j.brainres.2008.12.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/14/2008] [Accepted: 12/17/2008] [Indexed: 11/24/2022]
|
21
|
Cao Z, Gao W, Tao G, Fan Y, Liu F, Gao Y. Thirty-five percent oxygen pre-conditioning protects PC12 cells against death induced by hypoxia. Free Radic Res 2008; 43:58-67. [PMID: 19061057 DOI: 10.1080/10715760802585244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study is designed to investigate the effect of pre-conditioning with 35% O2 on PC12 cell death induced by hypoxia. This study investigated whether 35% O2 pre-conditioning for 3 h, followed by 12 h recovery, can protect PC12 cells against death induced by subsequent exposure to hypoxia for 72 h. The result showed that pre-conditioning with 35% O2 partly blocked the decrease in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction induced by hypoxia in PC12 cells. PC12 cells pre-conditioned with 35% O2 could generate a small quantity of reactive oxygen species (ROS), which activated the extracellular signal-regulated kinase (ERK) signalling pathway, then the over-expression of the B-cell lymphoma/leukaemia-2 (Bcl-2) was induced, which subsequently protected PC12 cell against death resulting from hypoxia exposure. In conclusion, 35% O2 pre-conditioning could protect PC12 cells against hypoxic insult.
Collapse
Affiliation(s)
- Zhongping Cao
- Department of Pathophysiology and High Altitude Physiology, Key Laborary of High Aititude Medicine of Educative Ministry, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Valeur HS, Valen G. Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 2008; 104:22-32. [DOI: 10.1007/s00395-008-0756-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 09/19/2008] [Indexed: 12/27/2022]
|
23
|
Bigdeli MR, Hajizadeh S, Froozandeh M, Heidarianpour A, Rasoulian B, Asgari AR, Pourkhalili K, Khoshbaten A. Normobaric hyperoxia induces ischemic tolerance and upregulation of glutamate transporters in the rat brain and serum TNF-alpha level. Exp Neurol 2008; 212:298-306. [PMID: 18538765 DOI: 10.1016/j.expneurol.2008.03.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/11/2008] [Accepted: 03/31/2008] [Indexed: 01/13/2023]
Abstract
Recent studies suggest that intermittent and prolonged normobaric hyperoxia (HO) results in ischemic tolerance to reduce ischemic brain injury. In this research, we attempted to see changes in excitatory amino acid transporters (EAATs) and TNF-alpha levels following prolonged and intermittent hyperoxia preconditioning. Rats were divided into four experimental groups, each of 21 animals. The first two were exposed to 95% inspired HO for 4 h/day for 6 consecutive days (intermittent HO, InHO) or for 24 continuous hours (prolonged HO, PrHO). The second two groups acted as controls, and were exposed to 21% oxygen in the same chamber. Each main group was subdivided to middle cerebral artery occlusion (MCAO-operated), sham-operated (without MCAO), and intact (without any surgery) subgroups. After 24 h from pretreatment, MCAO-operated subgroups were subjected to 60 min of right MCAO. After 24 h reperfusion, neurologic deficit score (NDS) and infarct volume were measured in MCAO-operated subgroups. EAATs expression and serum TNF-alpha levels were assessed in sham-operated and intact subgroups. Preconditioning with prolonged and intermittent HO decreased NDS and upregulated EAAT1, EAAT2, and EAAT3 and increased serum TNF-alpha levels significantly. Although further studies are needed to clarify the mechanisms of ischemic tolerance, the intermittent and prolonged HO seems to partly exert their effects via increase serum TNF-alpha levels and upregulation of EAATs.
Collapse
|