1
|
Pontes JGDM, Nani JVS, Correia BSB, Carneiro Costa TBB, Stanisic D, Hayashi MAF, Tasic L. An Investigation of the Sodium Nitroprusside Effects on Serum Lipids in an Animal Model of Schizophrenia by the Magnetic Resonance Study. ACS OMEGA 2024; 9:48480-48487. [PMID: 39676991 PMCID: PMC11635526 DOI: 10.1021/acsomega.4c07072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Schizophrenia (SCZ) is a multifactorial mental illness with limited knowledge concerning pathogenesis, contributing to the lack of effective therapies. More recently, the use of a nitric oxide donor named sodium nitroprusside (sNP) was suggested as a potential therapeutic drug for the treatment of SCZ. Despite the mixed results regarding the effectiveness of the sNP in reducing SCZ symptoms, successful trials on sNP in treatment-resistant SCZ were published. We have also demonstrated the power of evaluating the lipidic profiles of human clinical and animal model samples to identify the biomarkers of the pharmacological response to the diagnosis of mental disorders. Aim of this work is to evaluate the sNP effects in an animal model for SCZ studies through lipidomic profiles assessed by magnetic resonance spectroscopy (NMR). Lipidic profiling of serum from these animals indicated a more pronounced effect of sNP on lipids in the 0.50-6.00 ppm spectral region. Chemometric analysis also indicated an approximation of the lipidic profiling of SCZ animal model rats treated with sNP compared to that of the control group. In addition, we have compared the sNP treatment with other antipsychotics classically used in the clinic, such as haloperidol and clozapine, and the sNP treatment evaluated herein confirms the potential of sNP for the treatment of SCZ.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - João Victor Silva Nani
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM, CNPq), Ribeirão Preto 14026, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil
| | - Banny Silva Barbosa Correia
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Tássia Brena Barroso Carneiro Costa
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Danijela Stanisic
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Mirian A F Hayashi
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM, CNPq), Ribeirão Preto 14026, Brazil
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil
| | - Ljubica Tasic
- Laboratório de Química Biológica (LQB), Departamento de Química Orgânica, Instituto de Química, and INCT-Bio (CNPq), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| |
Collapse
|
2
|
Hong J, Dai P, Liang H, Sun G, Qi W, Bi Y. Extrasynaptic distribution of NMDA receptors in cochlear inner hair cell afferent signaling complex. J Chem Neuroanat 2024; 137:102417. [PMID: 38570170 DOI: 10.1016/j.jchemneu.2024.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/30/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE The distribution and role of NMDA receptors is unclear in the afferent signaling complex of the cochlea. The present study aimed to examine the distribution of NMDA receptors in cochlear afferent signaling complex of the adult mouse, and their relationship with ribbon synapses of inner hair cells (IHCs) and GABAergic efferent terminals of the lateral olivocochlear (LOC). METHODS Immunofluorescence staining in combination with confocal microscopy was used to investigate the distribution of glutamatergic NMDA and AMPA receptors in afferent terminals of SGNs, and their relationship with ribbon synapses of IHCs and GABAergic efferent terminals of LOC. RESULTS Terminals with AMPA receptors along with Ribbons of IHC formed afferent synapses in the basal pole of IHCs, and those with NMDA receptors were mainly distributed longitudinally in the IHCs nuclei region. Significant difference was found in the distribution of NMDA and AMPA receptors in IHC afferent signaling complex (P<0.05). Some GABAergic terminals colocalized with NMDA receptors at the IHC nucleus region (P>0.05). CONCLUSION There is significant difference in the distribution of NMDA and AMPA receptors in cochlear afferent signaling complex. NMDA receptors are present in the extra-synaptic region of ribbon synapses of IHCs, and they are related to GABA efferent terminals of the afferent signaling complex.
Collapse
Affiliation(s)
- Juan Hong
- Department of Otorhinolaryngology, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Peidong Dai
- ENT Institute, Eye & ENT Hospital of Fudan University; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai 200031, China
| | - Huazheng Liang
- Monash Suzhou Research Institute, Suzhou Industrial Park, Jiangsu, China
| | - Guangbin Sun
- Department of Otorhinolaryngology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Weidong Qi
- Department of Otorhinolaryngology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Yong Bi
- Department of Neurology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
3
|
Heinrich UR, Meuser R, Ernst BP, Schmidtmann I, Dietrich D, Stauber RH, Strieth S. Regulation of Endothelial Nitric Oxide Synthase in the Reticular Lamina of the Organ of Corti by a Nitric Oxide Donor. J Histochem Cytochem 2021; 69:731-739. [PMID: 34666550 DOI: 10.1369/00221554211054642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the vertebrate cochlea, the reticular lamina seals the organ of Corti against the endolymph filled scala media. After noise exposure, fast alterations in the endothelial nitric oxide synthase (eNOS) expression level were identified in this cochlear structure. Minor amounts of nitric oxide (NO) produced by eNOS or applied by NO donors such as S-nitroso-N-acetyl-penicillamine (SNAP) might protect this vulnerable part of the organ of Corti, on the line of gap junctions of supporting cells and cochlear microcirculation. In n=5 anesthetized guinea pigs, SNAP was intravenously applied in two concentrations. Six untreated animals served as controls. The cochleae were removed and prepared for immunoelectron microscopy using specific gold-labeled anti-eNOS antibodies. The density of the gold particles was quantified for seven cellular regions in the reticular lamina at the ultrastructural level. Following SNAP application, a significant increase in eNOS expression (+176%) was detected compared with controls (p=0.012). The increase occurred mainly in actin-rich cuticular structures and the prominent microtubules bundles. Correlation analysis revealed three clear and five moderate cellular associations for controls, whereas only one clear and one moderate after SNAP application. Thus, application of the NO donor SNAP resulted in an increase in eNOS expression in distinct regions of the reticular lamina.
Collapse
Affiliation(s)
| | - Regina Meuser
- Institute for Medical Biometry, Epidemiology and Informatics
| | - Benjamin Philipp Ernst
- University Medical Center Mainz, Mainz, Germany, and Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Dimo Dietrich
- University Medical Center Mainz, Mainz, Germany, and Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | | | - Sebastian Strieth
- University Medical Center Mainz, Mainz, Germany, and Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| |
Collapse
|
4
|
Khaliulin I, Kartawy M, Amal H. Sex Differences in Biological Processes and Nitrergic Signaling in Mouse Brain. Biomedicines 2020; 8:biomedicines8050124. [PMID: 32429146 PMCID: PMC7277573 DOI: 10.3390/biomedicines8050124] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) represents an important signaling molecule which modulates the functions of different organs, including the brain. S-nitrosylation (SNO), a post-translational modification that involves the binding of the NO group to a cysteine residue, is a key mechanism of nitrergic signaling. Most of the experimental studies are carried out on male animals. However, significant differences exist between males and females in the signaling mechanisms. To investigate the sex differences in the SNO-based regulation of biological functions and signaling pathways in the cortices of 6–8-weeks-old mice, we used the mass spectrometry technique, to identify S-nitrosylated proteins, followed by large-scale computational biology. This work revealed significant sex differences in the NO and SNO-related biological functions in the cortices of mice for the first-time. The study showed significant SNO-induced enrichment of the synaptic processes in female mice, but enhanced SNO-related cytoskeletal processes in the male mice. Proteins, which were S-nitrosylated in the cortices of mice of both groups, were more abundant in the female brain. Finally, we investigated the shared molecular processes that were found in both sexes. This study presents a mechanistic insight into the role of S-nitrosylation in both sexes and provides strong evidence of sex difference in many biological processes and signalling pathways, which will open future research directions on sex differences in neurological disorders.
Collapse
|
5
|
Salum C, Schmidt F, Michel PP, Del-Bel E, Raisman-Vozari R. Signaling Mechanisms in the Nitric Oxide Donor- and Amphetamine-Induced Dopamine Release in Mesencephalic Primary Cultured Neurons. Neurotox Res 2015; 29:92-104. [DOI: 10.1007/s12640-015-9562-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/27/2015] [Accepted: 09/09/2015] [Indexed: 12/30/2022]
|
6
|
Chen J, Zheng Y, Xiong H, Ou Y. NMDA receptors are involved in the regulation of BMP4-mediated survival in rat cochlear epithelial cells. Neurosci Lett 2014; 566:275-9. [DOI: 10.1016/j.neulet.2014.02.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 11/28/2022]
|
7
|
Polony G, Humli V, Andó R, Aller M, Horváth T, Harnos A, Tamás L, Vizi ES, Zelles T. Protective effect of rasagiline in aminoglycoside ototoxicity. Neuroscience 2014; 265:263-73. [PMID: 24508748 DOI: 10.1016/j.neuroscience.2014.01.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 12/28/2022]
Abstract
Sensorineural hearing losses (SNHLs; e.g., ototoxicant- and noise-induced hearing loss or presbycusis) are among the most frequent sensory deficits, but they lack effective drug therapies. The majority of recent therapeutic approaches focused on the trials of antioxidants and reactive oxygen species (ROS) scavengers in SNHLs. The rationale for these studies was the prominent role of disturbed redox homeostasis and the consequent ROS elevation. Although the antioxidant therapies in several animal studies seemed to be promising, clinical trials have failed to fulfill expectations. We investigated the potential of rasagiline, an FDA-approved monomanine oxidase type B inhibitor (MAO-B) inhibitor type anti-parkinsonian drug, as an otoprotectant. We showed a dose-dependent alleviation of the kanamycin-induced threshold shifts measured by auditory brainstem response (ABR) in an ototoxicant aminoglycoside antibiotic-based hearing loss model in mice. This effect proved to be statistically significant at a 6-mg/kg (s.c.) dose. The most prominent effect appeared at 16kHz, which is the hearing sensitivity optimum for mice. The neuroprotective, antiapoptotic and antioxidant effects of rasagiline in animal models, all targeting a specific mechanism of aminoglycoside injury, may explain this otoprotection. The dopaminergic neurotransmission enhancer effect of rasagiline might also contribute to the protection. Dopamine (DA), released from lateral olivocochlear (LOC) fibers, was shown to exert a protective action against excitotoxicity, a pathological factor in the aminoglycoside-induced SNHL. We have shown that rasagiline enhanced the electric stimulation-evoked release of DA from an acute mouse cochlea preparation in a dose-dependent manner. Using inhibitors of voltage-gated Na(+)-, Ca(2+) channels and DA transporters, we revealed that rasagiline potentiated the action potential-evoked release of DA by inhibiting the reuptake. The complex, multifactorial pathomechanism of SNHLs most likely requires drugs acting on multiple targets for effective therapy. Rasagiline, with its multi-target action and favorable adverse effects profile, might be a good candidate for a clinical trial testing the otoprotective indication.
Collapse
Affiliation(s)
- G Polony
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - V Humli
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - R Andó
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - M Aller
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - T Horváth
- Department of Otorhinolaryngology, Bajcsy-Zsilinszky Hospital, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - A Harnos
- Department of Biomathematics and Informatics, Szent István University, Budapest, Hungary
| | - L Tamás
- Department of Otorhinolaryngology, Head and Neck Surgery, Semmelweis University, Budapest, Hungary
| | - E S Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - T Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
8
|
Cossenza M, Socodato R, Portugal CC, Domith ICL, Gladulich LFH, Encarnação TG, Calaza KC, Mendonça HR, Campello-Costa P, Paes-de-Carvalho R. Nitric oxide in the nervous system: biochemical, developmental, and neurobiological aspects. VITAMINS AND HORMONES 2014; 96:79-125. [PMID: 25189385 DOI: 10.1016/b978-0-12-800254-4.00005-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a very reactive molecule, and its short half-life would make it virtually invisible until its discovery. NO activates soluble guanylyl cyclase (sGC), increasing 3',5'-cyclic guanosine monophosphate levels to activate PKGs. Although NO triggers several phosphorylation cascades due to its ability to react with Fe II in heme-containing proteins such as sGC, it also promotes a selective posttranslational modification in cysteine residues by S-nitrosylation, impacting on protein function, stability, and allocation. In the central nervous system (CNS), NO synthesis usually requires a functional coupling of nitric oxide synthase I (NOS I) and proteins such as NMDA receptors or carboxyl-terminal PDZ ligand of NOS (CAPON), which is critical for specificity and triggering of selected pathways. NO also modulates CREB (cAMP-responsive element-binding protein), ERK, AKT, and Src, with important implications for nerve cell survival and differentiation. Differences in the regulation of neuronal death or survival by NO may be explained by several mechanisms involving localization of NOS isoforms, amount of NO being produced or protein sets being modulated. A number of studies show that NO regulates neurotransmitter release and different aspects of synaptic dynamics, such as differentiation of synaptic specializations, microtubule dynamics, architecture of synaptic protein organization, and modulation of synaptic efficacy. NO has also been associated with synaptogenesis or synapse elimination, and it is required for long-term synaptic modifications taking place in axons or dendrites. In spite of tremendous advances in the knowledge of NO biological effects, a full description of its role in the CNS is far from being completely elucidated.
Collapse
Affiliation(s)
- Marcelo Cossenza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Fisiologia e Farmacologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Renato Socodato
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camila C Portugal
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Ivan C L Domith
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luis F H Gladulich
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Thaísa G Encarnação
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Karin C Calaza
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Henrique R Mendonça
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Roberto Paes-de-Carvalho
- Programa de Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
9
|
Heinrich UR, Helling K. Nitric oxide--a versatile key player in cochlear function and hearing disorders. Nitric Oxide 2012; 27:106-16. [PMID: 22659013 DOI: 10.1016/j.niox.2012.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/10/2012] [Accepted: 05/24/2012] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent processes of cell protection or, alternatively, cell destruction seem to depend, among other things, on changes in the local cochlear NO-concentration. These alterations can occur at the cellular level or within a distinct cell population both leading to an NO-imbalance within the hearing organ. This dysfunction can result in hearing loss or even in deafness. In cases of cochlear malfunction, regulatory systems such as the gap junction system, the blood vessels or the synaptic region might be affected temporarily or permanently by an altered NO-level. This review discusses potential cellular mechanisms how NO might contribute to different forms of hearing disorders. Approaches of NO-reduction are evaluated and the transfer of results obtained from experimental animal models to human medication is discussed.
Collapse
Affiliation(s)
- Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of The Johannes Gutenberg-University Mainz, Germany.
| | | |
Collapse
|
10
|
Abstract
According to current knowledge, it must be assumed that temporary idiopathic hearing loss and its spontaneous remission are based on mechanical and/or pathological alterations in the inner ear. The causal mechanisms might be based on inter-individual variations. Induced by dose-dependent activators, temporary as well as permanent damage might occur. Sudden hearing loss may be initiated by an increase in the local nitric oxide (NO) concentration. Spontaneous remission, i.e. functional restoration, can be explained by a local decrease in the NO concentration. In this context, regulatory systems such as the gap-junction system, blood vessels or synapses might be affected. In addition, alterations in the hormone level of estrogen and mineralocorticoids, as well as cellular glutathione and vitamin levels, might lead to temporary alterations in the inner ear. Recent experimental findings indicate a role for the shuttle protein Survivin in the spontaneous remission of sudden hearing loss.
Collapse
|
11
|
Lendvai B, Halmos GB, Polony G, Kapocsi J, Horváth T, Aller M, Sylvester Vizi E, Zelles T. Chemical neuroprotection in the cochlea: The modulation of dopamine release from lateral olivocochlear efferents. Neurochem Int 2011; 59:150-8. [DOI: 10.1016/j.neuint.2011.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 01/16/2023]
|
12
|
5-HT6/7 Receptor Antagonists Facilitate Dopamine Release in the Cochlea via a GABAergic Disinhibitory Mechanism. Neurochem Res 2008; 33:2364-72. [DOI: 10.1007/s11064-008-9796-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 06/25/2008] [Indexed: 01/01/2023]
|