1
|
Peña-Ortega F. Clinical and experimental aspects of breathing modulation by inflammation. Auton Neurosci 2018; 216:72-86. [PMID: 30503161 DOI: 10.1016/j.autneu.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is produced by local or systemic alterations and mediated mainly by glia, affecting the activity of various neural circuits including those involved in breathing rhythm generation and control. Several pathological conditions, such as sudden infant death syndrome, obstructive sleep apnea and asthma exert an inflammatory influence on breathing-related circuits. Consequently breathing (both resting and ventilatory responses to physiological challenges), is affected; e.g., responses to hypoxia and hypercapnia are compromised. Moreover, inflammation can induce long-lasting changes in breathing and affect adaptive plasticity; e.g., hypoxic acclimatization or long-term facilitation. Mediators of the influences of inflammation on breathing are most likely proinflammatory molecules such as cytokines and prostaglandins. The focus of this review is to summarize the available information concerning the modulation of the breathing function by inflammation and the cellular and molecular aspects of this process. I will consider: 1) some clinical and experimental conditions in which inflammation influences breathing; 2) the variety of experimental approaches used to understand this inflammatory modulation; 3) the likely cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, QRO 76230, México.
| |
Collapse
|
2
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
3
|
Li P, Li HX, Jiang HY, Zhu L, Wu HY, Li JT, Lai JH. Expression of NG2 and platelet-derived growth factor receptor alpha in the developing neonatal rat brain. Neural Regen Res 2017; 12:1843-1852. [PMID: 29239330 PMCID: PMC5745838 DOI: 10.4103/1673-5374.219045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα) is a marker of oligodendrocyte precursor cells in the central nervous system. NG2 is also considered a marker of oligodendrocyte precursor cells. However, whether there are differences in the distribution and morphology of oligodendrocyte precursor cells labeled by NG2 or PDGFRα in the developing neonatal rat brain remains unclear. In this study, by immunohistochemical staining, NG2 positive (NG2+) cells were ubiquitous in the molecular layer, external pyramidal layer, internal pyramidal layer, and polymorphic layer of the cerebral cortex, and corpus callosum, external capsule, piriform cortex, and medial septal nucleus. NG2+ cells were stellate or fusiform in shape with long processes that were progressively decreased and shortened over the course of brain development. The distribution and morphology of PDGFRα positive (PDGFRα+) cells were coincident with NG2+ cells. The colocalization of NG2 and PDGFRα in the cell bodies and processes of some cells was confirmed by double immunofluorescence labeling. Moreover, cells double-labeled for NG2 and PDGFRα were predominantly in the early postnatal stage of development. The numbers of NG2+/PDGFRα+ cells and PDGFRα+ cells decreased, but the number of NG2+ cells increased from postnatal days 3 to 14 in the developing brain. In addition, amoeboid microglial cells of the corpus callosum, newborn brain macrophages in the normal developing brain, did not express NG2 or PDGFRα, but NG2 expression was detected in amoeboid microglia after hypoxia. The present results suggest that NG2 and PDGFRα are specific markers of oligodendrocyte precursor cells at different stages during early development. Additionally, the NG2 protein is involved in inflammatory and pathological processes of amoeboid microglial cells.
Collapse
Affiliation(s)
- Ping Li
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province; Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Heng-Xi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hong-Yan Jiang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Lie Zhu
- Department of Plastic Surgery, Changzheng Hospital, Shanghai, China
| | - Hai-Ying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jin-Tao Li
- Neuroscience Institute, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiang-Hua Lai
- College of Forensic Science, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
4
|
Friedrich U, Datta S, Schubert T, Plössl K, Schneider M, Grassmann F, Fuchshofer R, Tiefenbach KJ, Längst G, Weber BHF. Synonymous variants in HTRA1 implicated in AMD susceptibility impair its capacity to regulate TGF-β signaling. Hum Mol Genet 2015; 24:6361-73. [PMID: 26310622 DOI: 10.1093/hmg/ddv346] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2023] Open
Abstract
High-temperature requirement A1 (HTRA1) is a secreted serine protease reported to play a role in the development of several cancers and neurodegenerative diseases. Still, the mechanism underlying the disease processes largely remains undetermined. In age-related macular degeneration (AMD), a common cause of vision impairment and blindness in industrialized societies, two synonymous polymorphisms (rs1049331:C>T, and rs2293870:G>T) in exon 1 of the HTRA1 gene were associated with a high risk to develop disease. Here, we show that the two polymorphisms result in a protein with altered thermophoretic properties upon heat-induced unfolding, trypsin accessibility and secretion behavior, suggesting unique structural features of the AMD-risk-associated HTRA1 protein. Applying MicroScale Thermophoresis and protease digestion analysis, we demonstrate direct binding and proteolysis of transforming growth factor β1 (TGF-β1) by normal HTRA1 but not the AMD-risk-associated isoform. As a consequence, both HTRA1 isoforms strongly differed in their ability to control TGF-β mediated signaling, as revealed by reporter assays targeting the TGF-β1-induced serpin peptidase inhibitor (SERPINE1, alias PAI-1) promoter. In addition, structurally altered HTRA1 led to an impaired autocrine TGF-β signaling in microglia, as measured by a strong down-regulation of downstream effectors of the TGF-β cascade such as phosphorylated SMAD2 and PAI-1 expression. Taken together, our findings demonstrate the effects of two synonymous HTRA1 variants on protein structure and protein interaction with TGF-β1. As a consequence, this leads to an impairment of TGF-β signaling and microglial regulation. Functional implications of the altered properties on AMD pathogenesis remain to be clarified.
Collapse
Affiliation(s)
- Ulrike Friedrich
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Shyamtanu Datta
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Thomas Schubert
- Department of Biochemistry, University of Regensburg, 2bind GmbH, Josef Engert Straße 13, 93053 Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Klaus-Jürgen Tiefenbach
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany and
| | - Gernot Längst
- Department of Biochemistry, University of Regensburg
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany,
| |
Collapse
|
5
|
Parmar J, Jones NM. Hypoxic preconditioning can reduce injury-induced inflammatory processes in the neonatal rat brain. Int J Dev Neurosci 2015; 43:35-42. [PMID: 25824817 DOI: 10.1016/j.ijdevneu.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/20/2022] Open
Abstract
Inflammation plays an important role in the pathophysiology of neonatal hypoxic-ischemic (HI) brain injury. Studies have shown that hypoxic preconditioning (HP) can ameliorate brain damage, but its effects on inflammation remain unknown. Postnatal day 6 (P6), Sprague-Dawley rats were divided into normoxia and hypoxia (8% oxygen, 3h) groups. On P7, some pups underwent a right carotid artery occlusion followed by hypoxia (8% oxygen, 3h) while under 1.5% isofluorane anesthesia and the remaining pups underwent sham surgery without occlusion. Animals were sacrificed 5 days later and fixed tissue was used to examine changes in neurons, astrocytes, and microglia in the cortex. Fresh tissue was collected to determine cortical levels of proinflammatory cytokines using ELISA. There was a significant loss in the number of NeuN positive cells in the cortex following HI injury, which was improved when HP was given prior to HI. There was an increase in cortical area of astrocyte staining after HI injury compared to control. HP before HI was able to reduce area of GFAP staining back to control levels. HI caused a large increase in the number of activated microglia compared to control and HP was able to significantly reduce this, although not back to control levels. HP alone increased microglial activation. Interleukin-1β levels were increased in the cortex 5 days after HI, but HP was not able to significantly reduce this change. The neuroprotective effects of HP appear to be mediated by affecting cellular inflammatory processes in the brain following HI injury.
Collapse
Affiliation(s)
- Jasneet Parmar
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia
| | - Nicole M Jones
- Department of Pharmacology, School of Medical Sciences, UNSW Australia, New South Wales, Australia.
| |
Collapse
|
6
|
Xiang P, Zhu L, Jiang H, He BP. The activation of NG2 expressing cells is downstream to microglial reaction and mediated by the transforming growth factor beta 1. J Neuroimmunol 2015; 279:50-63. [PMID: 25670001 DOI: 10.1016/j.jneuroim.2015.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/25/2014] [Accepted: 01/14/2015] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated the mechanism of activation of NG2 expressing cells. Application of microglial inhibitors not only attenuated morphological changes but also significantly retarded increase in the number of NG2 expressing cells. Intracerebral injection of TGF-β1 led to a profound activation of NG2 glia as well as an earlier accumulation of NG2(+)-microglia, whilst inhibition of TGF-β1 Smad2/3 signalling pathway eventually attenuated their active responses. We conclude that the activation of NG2 expressing cells is an event downstream to microglial reaction and TGF-β1 secreted from microglia might play an important role in modulation of the function of NG2 expressing cells.
Collapse
Affiliation(s)
- Ping Xiang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lie Zhu
- Department of Plastic Surgery, Chang Zheng Hospital, Shanghai, China
| | - Hua Jiang
- Department of Plastic Surgery, Chang Zheng Hospital, Shanghai, China
| | - Bei Ping He
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
7
|
Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS One 2014; 9:e106544. [PMID: 25192322 PMCID: PMC4156357 DOI: 10.1371/journal.pone.0106544] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 08/07/2014] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor-βs (TGF-βs) regulate cellular proliferation, differentiation, and survival. TGF-βs bind to type I (TGF-βRI) and II receptors (TGF-βRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-βRIII). TGF-β may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-β is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-β1-3 after MCAO. To establish how TGF-βs exert their actions following MCAO, the present study describes the induction of TGF-βRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-βRI had significant expression: neurons in cortical layer IV contained TGF-βRI. At 24 h after the occlusion, no TGF-β receptors showed induction. At 72 h following MCAO, all four types of TGF-β receptors were induced in the infarct area, while TGF-βRI and RII also appeared in the penumbra. Most cells with elevated TGF-βRI mRNA levels were microglia. TGF-βRII co-localized with both microglial and endothelial markers while TGF-βRIII and Alk1 were present predominantly in endothels. All four TGF-β receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-βRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-βRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-β receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-β receptor expression is preceded by increased TGF-β expression. TGF-βRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-βRII, and RIII in endothels within the infarct where TGF-β1 may be their ligand. At later time points, TGF-βRIII may also appear in glial cells to potentially affect signal transduction via TGF-βRI and RII.
Collapse
Affiliation(s)
- Gabriella Pál
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Gábor Lovas
- Department of Neurology, Semmelweis University, Budapest, Hungary
- Department of Neurology, Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
8
|
Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 2012; 8:66-78. [PMID: 22367679 DOI: 10.1007/s11481-012-9347-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/09/2012] [Indexed: 12/14/2022]
Abstract
Amoeboid microglial cells (AMCs) in the developing brain display surface receptors and antigens shared by the monocyte-derived tissue macrophages. Activation of AMCs in the perinatal brain has been associated with periventricular white matter damage in hypoxic-ischemic conditions. The periventricular white matter, where the AMCs preponderate, is selectively vulnerable to hypoxia as manifested by death of premyelinating oligodendrocytes and degeneration of axons leading to neonatal mortality and long-term neurodevelopmental deficits. AMCs respond vigorously to hypoxia by producing excess amounts of inflammatory cytokines e.g. the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) along with glutamate, nitric oxide (NO) and reactive oxygen species which collectively cause oligodendrocyte death, axonal degeneration as well as disruption of the immature blood brain barrier. A similar phenomenon is observed in the hypoxic developing cerebellum in which activated AMCs induced Purkinje neuronal death through production of TNF-α and IL-1β via their respective receptors. Hypoxia is also implicated in retinopathy of prematurity in which activation of AMCs has been shown to cause retinal ganglion cell death through production of TNF-α and IL-1β and NO. Because AMCs play a pivotal role in hypoxic injuries in the developing brain affecting both neurons and oligodendrocytes, a fuller understanding of the underlying molecular mechanisms of microglial activation under such conditions would be desirable for designing of a novel therapeutic strategy for management of hypoxic damage.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117597, Singapore.
| | | | | |
Collapse
|
9
|
Nuclear co-localization and functional interaction of COX-2 and HIF-1α characterize bone metastasis of human breast carcinoma. Breast Cancer Res Treat 2010; 129:433-50. [PMID: 21069452 DOI: 10.1007/s10549-010-1240-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/21/2010] [Indexed: 12/31/2022]
Abstract
The aim of this article is to identify nuclear co-localization of COX-2 and HIF-1α in human-bone metastasis of breast cancer, index of transcriptionally activated cells and functional for gene expression. In particular, we verified whether hypoxia exerted a direct role on metastasis-gene expression or through COX-2 signaling, due to the relevance for clinical implications to individuate molecular targets for diagnosis and therapy. The experiments were performed in vitro with two metastatic clones, 1833 and MDA-231BO, and the parental MDA-MB231 cells, in vivo (1833-xenograft model), and in human-bone metastasis specimens. In 1833 cells in vitro, COX-2 signaling pathway was critical for nuclear HIF-1α-protein expression/translocation, mechanisms determining HIF-1 activity and gene expression. The data were corroborated by immunohistochemistry in human-bone metastasis specimens. COX-2 and HIF-1α showed wide co-localization in the nucleus, indicative of COX-2-nuclear import in transcriptionally activated metastatic cells and consistent with COX-2-HIF-1α functional interaction. A network of microenvironmental signals controlled COX-2 induction and HIF-1 activation downstream. In fact, hypoxia through HGF and TGF-β1 autoregulatory loops triggered a specific array of transcription factors responsible for COX-2 transactivation. The novelty was that HGF and TGF-β1 biological signals were produced by hypoxic metastatic cells and, therefore, the microenvironment seemed to be modified by metastatic-cell engraftment in the bone. In agreement, HIF-1α expression in bone marrow supportive cells occurred in metastasis-bearing animals. Altogether, the data supported the pre-metastatic-niche theory. Our observations might be useful to design therapies against bone metastasis, by affecting the phenotype changes of metastatic cells occurring at the secondary growth site through COX-2-HIF-1 interaction.
Collapse
|
10
|
Heikkinen PT, Nummela M, Leivonen SK, Westermarck J, Hill CS, Kähäri VM, Jaakkola PM. Hypoxia-activated Smad3-specific dephosphorylation by PP2A. J Biol Chem 2009; 285:3740-3749. [PMID: 19951945 DOI: 10.1074/jbc.m109.042978] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The transforming growth factor-beta (TGF-beta) maintains epithelial homeostasis and suppresses early tumor formation, but paradoxically at later stages of tumor progression, TGF-beta promotes malignancy. TGF-beta activates phosphorylation of Smad2 and -3 effectors. Smad2 and -3 are known to have different functions, but differential regulation of their phosphorylation has not been described. Here we show that upon hypoxia, the TGF-beta-induced phosphorylation of Smad3 was inhibited, although Smad2 remained phosphorylated. The inhibition of Smad3 phosphorylation was not due to TGF-beta receptor inactivation. We show that Smad3 was dephosphorylated by PP2A (protein phosphatase 2A) specifically under hypoxic conditions. The hypoxic Smad3 dephosphorylation required intact expression of the essential scaffold component PR65 of PP2A. PP2A physically interacted with Smad3 that occurred only in hypoxia. Accordingly, Smad3-associated PP2A activity was found under hypoxic conditions. Hypoxia attenuated the nuclear accumulation of TGF-beta-induced Smad3 but did not affect Smad2. Moreover, the influence of TGF-beta on a set of Smad3-activated genes was attenuated by hypoxia, and this was reversed by chemical PP2A inhibition. Our data demonstrate the existence of a Smad3-specific phosphatase and identify a novel role for PP2A. Moreover, our data implicate a novel mechanism by which hypoxia regulates growth factor responses.
Collapse
Affiliation(s)
- Pekka T Heikkinen
- From the Turku Centre for Biotechnology, Turku University and Åbo Akademi University, FI-20520 Turku, Finland; Turku University School of Biological Sciences, Turku University, FI-20520 Turku, Finland
| | - Marika Nummela
- From the Turku Centre for Biotechnology, Turku University and Åbo Akademi University, FI-20520 Turku, Finland
| | | | - Jukka Westermarck
- From the Turku Centre for Biotechnology, Turku University and Åbo Akademi University, FI-20520 Turku, Finland; the Institute of Medical Technology and University Hospital, Tampere University, FI-33014 Tampere, Finland
| | - Caroline S Hill
- the Cancer Research UK London Research Institute, WC2A 3PX London, United Kingdom, and
| | - Veli-Matti Kähäri
- Medicity Research Laboratories, Turku University, FI-20520 Turku, Finland; the Department of Dermatology, University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Panu M Jaakkola
- From the Turku Centre for Biotechnology, Turku University and Åbo Akademi University, FI-20520 Turku, Finland; the Department of Oncology and Radiotherapy, Turku University Hospital, FI-20520 Turku, Finland.
| |
Collapse
|
11
|
Wu CY, Kaur C, Sivakumar V, Lu J, Ling EA. Kv1.1 expression in microglia regulates production and release of proinflammatory cytokines, endothelins and nitric oxide. Neuroscience 2009; 158:1500-8. [DOI: 10.1016/j.neuroscience.2008.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 01/14/2023]
|