1
|
Malheiro RF, Carmo H, Carvalho F, Silva JP. Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol Res 2023; 187:106603. [PMID: 36516885 DOI: 10.1016/j.phrs.2022.106603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria play a critical role in the regulation of several biological processes (e.g., programmed cell death, inflammation, neurotransmission, cell differentiation). In recent years, accumulating findings have evidenced that cannabinoids, a group of endogenous and exogenous (synthetic and plant-derived) psychoactive compounds that bind to cannabinoid receptors, may modulate mitochondrial function and dynamics. As such, mitochondria have gained increasing interest as central mediators in cannabinoids' pharmacological and toxicological signatures. Here, we review the mechanisms underlying the cannabinoids' modulation of mitochondrial activity and dynamics, as well as the potential implications of such mitochondrial processes' disruption on cell homeostasis and disease. Interestingly, cannabinoids may target different mitochondrial processes (e.g., regulation of intracellular calcium levels, bioenergetic metabolism, apoptosis, and mitochondrial dynamics, including mitochondrial fission and fusion, transport, mitophagy, and biogenesis), by modulating multiple and complex signaling pathways. Of note, the outcome may depend on the experimental models used, as well as the chemical structure, concentration, and exposure settings to the cannabinoid, originating equivocal data. Notably, this interaction seems to represent not only an important feature of cannabinoids' toxicological signatures, with potential implications for the onset of distinct pathological conditions (e.g., cancer, neurodegenerative diseases, metabolic syndromes), but also an opportunity to develop novel therapeutic strategies for such pathologies, which is also discussed in this review.
Collapse
Affiliation(s)
- Rui Filipe Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Ghosh K, Zhang GF, Chen H, Chen SR, Pan HL. Cannabinoid CB2 receptors are upregulated via bivalent histone modifications and control primary afferent input to the spinal cord in neuropathic pain. J Biol Chem 2022; 298:101999. [PMID: 35500651 PMCID: PMC9168157 DOI: 10.1016/j.jbc.2022.101999] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Type-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain. In this study, immunoblotting showed that spinal nerve ligation (SNL) induced a delayed and sustained increase in CB2 expression in the DRG and dorsal spinal cord synaptosomes. RNAscope in situ hybridization also showed that SNL substantially increased CB2 mRNA levels, mostly in medium and large DRG neurons. Furthermore, we found that the specific CB2 agonist JWH-133 significantly inhibits the amplitude of dorsal root-evoked glutamatergic excitatory postsynaptic currents in spinal dorsal horn neurons in SNL rats, but not in sham control rats; intrathecal injection of JWH-133 reversed pain hypersensitivity in SNL rats, but had no effect in sham control rats. In addition, chromatin immunoprecipitation-qPCR analysis showed that SNL increased enrichment of two activating histone marks (H3K4me3 and H3K9ac) and diminished occupancy of two repressive histone marks (H3K9me2 and H3K27me3) at the Cnr2 promoter in the DRG. In contrast, SNL had no effect on DNA methylation levels around the Cnr2 promoter. Our findings suggest that peripheral nerve injury promotes CB2 expression in primary sensory neurons via epigenetic bivalent histone modifications and that CB2 activation reduces neuropathic pain by attenuating nociceptive transmission from primary afferent nerves to the spinal cord.
Collapse
Affiliation(s)
- Krishna Ghosh
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Guang-Fen Zhang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
3
|
Alterations in evoked and spontaneous activity of dorsal horn wide dynamic range neurons in pathological pain: a systematic review and analysis. Pain 2019; 160:2199-2209. [DOI: 10.1097/j.pain.0000000000001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Guerrero-Alba R, Barragán-Iglesias P, González-Hernández A, Valdez-Moráles EE, Granados-Soto V, Condés-Lara M, Rodríguez MG, Marichal-Cancino BA. Some Prospective Alternatives for Treating Pain: The Endocannabinoid System and Its Putative Receptors GPR18 and GPR55. Front Pharmacol 2019; 9:1496. [PMID: 30670965 PMCID: PMC6331465 DOI: 10.3389/fphar.2018.01496] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Marijuana extracts (cannabinoids) have been used for several millennia for pain treatment. Regarding the site of action, cannabinoids are highly promiscuous molecules, but only two cannabinoid receptors (CB1 and CB2) have been deeply studied and classified. Thus, therapeutic actions, side effects and pharmacological targets for cannabinoids have been explained based on the pharmacology of cannabinoid CB1/CB2 receptors. However, the accumulation of confusing and sometimes contradictory results suggests the existence of other cannabinoid receptors. Different orphan proteins (e.g., GPR18, GPR55, GPR119, etc.) have been proposed as putative cannabinoid receptors. According to their expression, GPR18 and GPR55 could be involved in sensory transmission and pain integration. Methods: This article reviews select relevant information about the potential role of GPR18 and GPR55 in the pathophysiology of pain. Results: This work summarized novel data supporting that, besides cannabinoid CB1 and CB2 receptors, GPR18 and GPR55 may be useful for pain treatment. Conclusion: There is evidence to support an antinociceptive role for GPR18 and GPR55.
Collapse
Affiliation(s)
- Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Paulino Barragán-Iglesias
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | - Abimael González-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Eduardo E Valdez-Moráles
- Cátedras CONACYT, Departamento de Cirugía, Centro de Ciencias Biomédicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Mexico City, Mexico
| | - Miguel Condés-Lara
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Martín G Rodríguez
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| | - Bruno A Marichal-Cancino
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
5
|
McGaraughty S, Chu KL, Xu J. Characterization and pharmacological modulation of noci-responsive deep dorsal horn neurons across diverse rat models of pathological pain. J Neurophysiol 2018; 120:1893-1905. [DOI: 10.1152/jn.00325.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This overview compares the activity of wide dynamic range (WDR) and nociceptive specific (NS) neurons located in the deep dorsal horn across different rat models of pathological pain and following modulation by diverse pharmacology. The data were collected by our group under the same experimental conditions over numerous studies to facilitate comparison. Spontaneous firing of WDR neurons was significantly elevated (>3.7 Hz) in models of neuropathic, inflammation, and osteoarthritic pain compared with naive animals (1.9 Hz) but was very low (<0.5 Hz) and remained unchanged in NS neurons. WDR responses to low-intensity mechanical stimulation were elevated in neuropathic and inflammation models. WDR responses to high-intensity stimuli were enhanced in inflammatory (heat) and osteoarthritis (mechanical) models. NS responses to high-intensity stimulation did not change relative to control in any model examined. Several therapeutic agents reduced both evoked and spontaneous firing of WDR neurons (e.g., TRPV1, TRPV3, Nav1.7, Nav1.8, P2X7, P2X3, H3), other targets affected neither evoked nor spontaneous firing of WDR neurons (e.g., H4, TRPM8, KCNQ2/3), and some only modulated evoked (e.g, ASIC1a, Cav3.2) whereas others decreased evoked but affected spontaneous activity only in specific models (e.g., TRPA1, CB2). Spontaneous firing of WDR neurons was not altered by any peripherally restricted compound or by direct administration of compounds to peripheral sites, although the same compounds decreased evoked activity. Compounds acting centrally were effective against this endpoint. The diversity of incoming/modulating inputs to the deep dorsal horn positions this group of neurons as an important intersection within the pain system to validate novel therapeutics. NEW & NOTEWORTHY Data from multiple individual experiments were combined to show firing properties of wide dynamic range and nociceptive specific spinal dorsal horn neurons across varied pathological pain models. This high-powered analysis describes the sensitization following different forms of injury. Effects of diverse pharmacology on these neurons is also summarized from published and unpublished data all recorded under the same conditions to facilitate comparison. This comprehensive overview describes the function and utility of these neurons.
Collapse
Affiliation(s)
| | | | - Jun Xu
- AbbVie Discovery, North Chicago, Illinois
| |
Collapse
|
6
|
Abstract
Cannabinoid receptor type-2 (CB2, CB2 receptor or CB2-R) mediates analgesia via two mechanisms. CB2 receptors contained in peripheral immune tissue mediate analgesia by altering cytokine profiles, and thus have little adverse effects on central nervous systems (CNSs). CB2 is also expressed in the neurons and glial cells of the CNS. This neuronal expression may also contribute to pain attenuation. The CB2 receptor has been proposed as a potential target in treating chronic pain of several etiologies.
Collapse
Affiliation(s)
- Yuchao Shang
- a Department of Anesthesiology, West China Second Hospital , Sichuan University , Chengdu , China
| | - Yuying Tang
- a Department of Anesthesiology, West China Second Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
7
|
Aghazadeh Tabrizi M, Baraldi PG, Borea PA, Varani K. Medicinal Chemistry, Pharmacology, and Potential Therapeutic Benefits of Cannabinoid CB2 Receptor Agonists. Chem Rev 2016; 116:519-60. [PMID: 26741146 DOI: 10.1021/acs.chemrev.5b00411] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Pier Andrea Borea
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| | - Katia Varani
- Department of Chemical and Pharmaceutical Sciences and ‡Department of Medical Science, Pharmacology Section, University of Ferrara , Ferrara 44121, Italy
| |
Collapse
|
8
|
Debruyne D, Le Boisselier R. Emerging drugs of abuse: current perspectives on synthetic cannabinoids. Subst Abuse Rehabil 2015; 6:113-29. [PMID: 26543389 PMCID: PMC4622447 DOI: 10.2147/sar.s73586] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
New psychoactive drugs that have appeared over the last decade are typically dominated by cathinones and synthetic cannabinoids (SCs). SCs have been emerging as recreational drugs because they mimic the euphoria effect of cannabis while still being legal. Sprayed on natural herb mixtures, SCs have been primarily sold as "herbal smoking blends" or "herbal incense" under brand names like "Spice" or "K2". Currently, SCs pure compounds are available from websites for the combination with herbal materials or for the use in e-cigarettes. For the past 5 years, an ever increasing number of compounds, representative of different chemical classes, have been promoted and now represent a large assortment of new popular drugs of abuse, which are difficult to properly identify. Their legal status varies by country with many government institutions currently pushing for their control. The in vitro binding to CB1/CB2 receptors is usually well-known and considerable differences have been found in the CB1 versus CB2 selectivity and potency within the different SCs, with several structure-activity relations being evident. Desired effects by CB1 agonist users are relaxation/recreative, however, cardiovascular, gastrointestinal, or psychiatric/neurological side effects are commonly reported. At present there is no specific antidote existing if an overdose of designer drugs was to occur, and no curative treatment has been approved by health authorities. Management of acute toxic effects is mainly symptomatic and extrapolated from experience with cannabis.
Collapse
Affiliation(s)
- Danièle Debruyne
- Centre for Evaluation and Information on Pharmacodependence - Addictovigilance (CEIP-A), University Hospital Centre Côte de Nacre, Caen, France ; Toxicology and Pharmacology Laboratory, Department of Pharmacology, University Hospital Centre Côte de Nacre, Caen, France
| | - Reynald Le Boisselier
- Centre for Evaluation and Information on Pharmacodependence - Addictovigilance (CEIP-A), University Hospital Centre Côte de Nacre, Caen, France
| |
Collapse
|
9
|
Galdino G, Romero T, Pinho da Silva JF, Aguiar D, de Paula AM, Cruz J, Parrella C, Piscitelli F, Duarte I, Di Marzo V, Perez A. Acute resistance exercise induces antinociception by activation of the endocannabinoid system in rats. Anesth Analg 2014; 119:702-715. [PMID: 24977916 DOI: 10.1213/ane.0000000000000340] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. METHODS Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RESULTS RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. CONCLUSIONS The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.
Collapse
Affiliation(s)
- Giovane Galdino
- From the Department of Pharmacology, Department of Physiology, Institute of Biological Sciences, Department of Physics, and Department of Biochemistry, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; and Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chu KL, Xu J, Frost J, Li L, Gomez E, Dart MJ, Jarvis MF, Meyer MD, McGaraughty S. A selective α2 B adrenoceptor agonist (A-1262543) and duloxetine modulate nociceptive neurones in the medial prefrontal cortex, but not in the spinal cord of neuropathic rats. Eur J Pain 2014; 19:649-60. [PMID: 25154730 DOI: 10.1002/ejp.586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND The noradrenergic system contributes to pain modulation, but the roles of its specific adrenoceptors are still being defined. We have identified a novel, potent (rat EC50 = 4.3 nM) and selective α2B receptor agonist, A-1262543, to further explore this adrenoceptor subtype's contribution to pathological nociception. METHODS Systemic administration of A-1262543 (1-10 mg/kg, intraperitoneal) dose-dependently attenuated mechanical allodynia in animals with a spinal nerve ligation injury. To further explore its mechanism of action, the activity of nociceptive neurones in the spinal cord and medial prefrontal cortex (mPFC) were examined after injection of 3 mg/kg of A-1262543 (intravenous, i.v.). These effects were compared with duloxetine (3 mg/kg, i.v.), a dual noradrenaline (NA) and serotonin (5-HT) reuptake inhibitor. RESULTS Systemic administration of A-1262543 or duloxetine did not alter the spontaneous or evoked firing of spinal wide dynamic range and nociceptive-specific neurones in the neuropathic rats, indicating that neither compound engaged spinal, peripheral or descending pathways. In contrast to the lack of effect on spinal neurones, both A-1262543 and duloxetine reduced the evoked and spontaneous firing of 'pain-responsive' (PR) neurones in the mPFC. Duloxetine, but not A-1262543, also inhibited the firing of pain non-responsive (nPR) neurones in the mPFC probably reflecting duloxetine's contribution to modulating non-pain endpoints. CONCLUSIONS These data highlight that activation of the α2B adrenoceptor as well as inhibiting NA and 5-HT reuptake can result in modulating the ascending nociceptive system, and in particular, dampening the firing of PR neurones in the mPFC.
Collapse
Affiliation(s)
- K L Chu
- Neuroscience Research, AbbVie, North Chicago, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mechanistic insights into the analgesic efficacy of A-1264087, a novel neuronal Ca(2+) channel blocker that reduces nociception in rat preclinical pain models. THE JOURNAL OF PAIN 2013; 15:387.e1-14. [PMID: 24374196 DOI: 10.1016/j.jpain.2013.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 11/05/2013] [Accepted: 12/02/2013] [Indexed: 01/06/2023]
Abstract
UNLABELLED Voltage-gated Ca(2+) channels play an important role in nociceptive transmission. There is significant evidence supporting a role for N-, T- and P/Q-type Ca(2+) channels in chronic pain. Here, we report that A-1264087, a structurally novel state-dependent blocker, inhibits each of these human Ca(2+) channels with similar potency (IC50 = 1-2 μM). A-1264087 was also shown to inhibit the release of the pronociceptive calcitonin gene-related peptide from rat dorsal root ganglion neurons. Oral administration of A-1264087 produces robust antinociceptive efficacy in monoiodoacetate-induced osteoarthritic, complete Freund adjuvant-induced inflammatory, and chronic constrictive injury of sciatic nerve-induced, neuropathic pain models with ED50 values of 3.0, 5.7, and 7.8 mg/kg (95% confidence interval = 2.2-3.5, 3.7-10, and 5.5-12.8 mg/kg), respectively. Further analysis revealed that A-1264087 also suppressed nociceptive-induced p38 and extracellular signal-regulated kinase 1/2 phosphorylation, which are biochemical markers of engagement of pain circuitry in chronic pain states. Additionally, A-1264087 inhibited both spontaneous and evoked neuronal activity in the spinal cord dorsal horn in complete Freund adjuvant-inflamed rats, providing a neurophysiological basis for the observed antihyperalgesia. A-1264087 produced no alteration of body temperature or motor coordination and no learning impairment at therapeutic plasma concentrations. PERSPECTIVE The present results demonstrate that the neuronal Ca(2+) channel blocker A-1264087 exhibits broad-spectrum efficacy through engagement of nociceptive signaling pathways in preclinical pain models in the absence of effects on psychomotor and cognitive function.
Collapse
|
12
|
Xu J, Chu KL, Zhu CZ, Niforatos W, Swensen A, Searle X, Lee L, Jarvis MF, McGaraughty S. A mixed Ca2+ channel blocker, A-1264087, utilizes peripheral and spinal mechanisms to inhibit spinal nociceptive transmission in a rat model of neuropathic pain. J Neurophysiol 2013; 111:394-404. [PMID: 24155005 DOI: 10.1152/jn.00463.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-, T- and P/Q-type voltage-gated Ca(2+) channels are critical for regulating neurotransmitter release and cellular excitability and have been implicated in mediating pathological nociception. A-1264087 is a novel state-dependent blocker of N-, T- and P/Q-type channels. In the present studies, A-1264087 blocked (IC50 = 1.6 μM) rat dorsal root ganglia N-type Ca(2+) in a state-dependent fashion. A-1264087 (1, 3 and 10 mg/kg po) dose-dependently reduced mechanical allodynia in rats with a spinal nerve ligation (SNL) injury. A-1264087 (4 mg/kg iv) inhibited both spontaneous and mechanically evoked activity of spinal wide dynamic range (WDR) neurons in SNL rats but had no effect in uninjured rats. The inhibitory effect on WDR neurons remained in spinally transected SNL rats. Injection of A-1264087 (10 nmol/0.5 μl) into the spinal cord reduced both spontaneous and evoked WDR activity in SNL rats. Application of A-1264087 (300 nmol/20 μl) into the receptive field on the hindpaw attenuated evoked but not spontaneous firing of WDR neurons. Using electrical stimulation, A-1264087 (4 mg/kg iv) inhibited Aδ- and C-fiber evoked responses and after-discharge of WDR neurons in SNL rats. These effects by A-1264087 were not present in uninjured rats. A-1264087 moderately attenuated WDR neuron windup in both uninjured and SNL rats. In summary, these results indicate that A-1264087 selectively inhibited spinal nociceptive transmission in sensitized states through both peripheral and central mechanisms.
Collapse
Affiliation(s)
- Jun Xu
- Neuroscience Research, AbbVie, North Chicago, Illinos
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McGaraughty S, Chu KL, Cowart MD, Brioni JD. Antagonism of supraspinal histamine H3 receptors modulates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther 2012; 343:13-20. [PMID: 22729221 DOI: 10.1124/jpet.112.194761] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
There is growing evidence supporting a role for histamine H(3) receptors in the modulation of pathological pain. To further our understanding of this modulation, we examined the effects of a selective H(3) receptor antagonist, 6-((3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy)-N-methyl-3-pyridinecarboxamide (GSK189254), on spinal neuronal activity in neuropathic (L5 and L6 ligations) and sham rats. Systemic administration of GSK189254 (0.03-1 mg/kg i.v.) dose-dependently decreased both evoked (10-g von Frey hair for 15 s) and spontaneous firing of wide dynamic range (WDR) neurons in neuropathic, but not sham-operated, animals. The effects on spontaneous firing suggest that H(3) receptors may have a role in central sensitization and/or modulating non-evoked pain. Transection of the spinal cord (T9-T10) completely eliminated the effects (both evoked and spontaneous) of systemic GSK189254 (1 mg/kg, i.v.) on WDR neuronal firing in neuropathic rats, indicating that the descending modulatory system has an important role in the H(3)-related dampening of spinal neuronal activity. Subsequently, lesions of the locus coeruleus, or direct GSK189254 (3 and 10 nmol/0.5 μl) injections into this site, demonstrate that the locus coeruleus is a key component of the H(3) descending modulatory pathway. In summary, blockade of H(3) receptors reduces spontaneous firing as well as the responses of spinal nociceptive neurons to mechanical stimulation. This effect is in large part mediated via supraspinal sites, including the locus coeruleus, that send descending projections to modulate spinal neuronal activity.
Collapse
Affiliation(s)
- Steve McGaraughty
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6118, USA.
| | | | | | | |
Collapse
|
14
|
Riether D. Selective cannabinoid receptor 2 modulators: a patent review 2009--present. Expert Opin Ther Pat 2012; 22:495-510. [PMID: 22537079 DOI: 10.1517/13543776.2012.682570] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The activation of the cannabinoid receptor 2 (CB2) affects a myriad of immune responses from inflammation to neuroprotection, demonstrates analgesic effects and suppresses responses in many animal models of pain. Questions around the involvement of CB1 activation in these effects remain, but efforts have been directed toward the discovery of highly selective CB2 modulators lacking the psychotropic effects of cannabinoids, which are mediated by the CB1 receptor. AREAS COVERED This review covers the patent literature which was published since April 2009 on CB2 selective modulators. It provides a general summary of the CB2 biology supporting the interest in CB2 as a drug target, new potential therapeutic indications and the development status of selective CB2 agonists. EXPERT OPINION There is a continuous interest in the CB2 receptor as a drug target. Many highly selective compounds of various chemotypes have been identified and their analgesic effects in animal models further support the potential of this mechanism in pain therapy. Several companies have initiated clinical trials. While some of these have been terminated for various reasons, one can anticipate the emergence of new drugs from CB2 modulation once a better understanding around the cannabinoid receptors is gained.
Collapse
Affiliation(s)
- Doris Riether
- Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, D-88397 Biberach an der Riss, Germany.
| |
Collapse
|
15
|
Xu J, Chu KL, Brederson JD, Jarvis MF, McGaraughty S. Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats. J Neurosci Res 2012; 90:1597-606. [PMID: 22422599 DOI: 10.1002/jnr.23042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/04/2012] [Accepted: 01/15/2012] [Indexed: 11/11/2022]
Abstract
P2X3 and P2X2/3 receptors are selectively expressed on primary afferent nociceptors and have been implicated in modulating nociception in different models of pathological pain, including inflammatory pain. In an effort to delineate further the role of P2X3 receptors (homomeric and heteromeric) in the modulation of nociceptive transmission after a chronic inflammation injury, A-317491, a potent and selective P2X3-P2X2/3 antagonist, was administered to CFA-inflamed rats in order to examine its effects on responses of spinal dorsal horn neurons to mechanical and thermal stimulation. Systemic injection of A-317491 (30 μmol/kg, i.v.) reduced the responses of wide-dynamic-range (WDR) and nociceptive specific (NS) neurons to both high-intensity mechanical (pinch) and heat (49°C) stimulation. A-317491 also decreased low-intensity (10 g von Frey hair) mechanically evoked activity of WDR neurons but did not alter WDR neuronal responses to cold stimulation (5°C). Spontaneous firing of WDR neurons in CFA-inflamed rats was also significantly attenuated by A-317491 injection. By using immunohistochemistry, P2X3 receptors were demonstrated to be enhanced in lamina II of the spinal dorsal horn after inflammation. In summary, blockade of P2X3 and P2X2/3 receptors dampens mechanical- and heat-related signaling, as well as nonevoked activity of key classes of spinal nociceptive neurons in inflamed animals. These data suggest that P2X3 and/or P2X2/3 receptors have a broad contribution to somatosensory/nociceptive transmission in rats with a chronic inflammatory injury and are consistent with previous behavioral data demonstrating antiallodynic and antihyperalgesic effects of receptor antagonists.
Collapse
Affiliation(s)
- Jun Xu
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064-6118, USA
| | | | | | | | | |
Collapse
|
16
|
Discovery of S-777469: an orally available CB2 agonist as an antipruritic agent. Bioorg Med Chem Lett 2012; 22:2803-6. [PMID: 22444677 DOI: 10.1016/j.bmcl.2012.02.072] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 01/28/2023]
Abstract
The discovery of novel CB2 ligands based on the 3-carbamoyl-2-pyridone derivatives by adjusting the size of side chain at 1-, 5- and 6-position is reported. The structure-activity relationship around this template lead to the identification of S-777469 as a selective CB2 receptor agonist, which exhibited the significant inhibition of scratching induced by Compound 48/80 at 1.0 mg/kg po and 10 mg/kg po (55% and 61%, respectively).
Collapse
|
17
|
Escobar W, Ramirez K, Avila C, Limongi R, Vanegas H, Vazquez E. Metamizol, a non-opioid analgesic, acts via endocannabinoids in the PAG-RVM axis during inflammation in rats. Eur J Pain 2011; 16:676-89. [PMID: 22337336 DOI: 10.1002/j.1532-2149.2011.00057.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 12/18/2022]
Abstract
The most commonly used drugs against pain act by inhibiting the cyclooxygenases (COXs). Metamizol (dipyrone) inhibits the COXs and is widely used in Europe and Latin America as a non-opioid analgesic. One target of metamizol and other non-opioid analgesics is the periaqueductal grey matter (PAG), where they trigger descending inhibition of spinal nociceptive transmission. Also, cannabinoids exert an analgesic action at several structures in the peripheral and central nervous system, including the PAG. The present study investigates whether the antinociceptive action of metamizol in the lateral-ventrolateral (LVL) PAG during inflammation is related to endocannabinoids. In anaesthetized rats, unitary action potentials were recorded from spinal nociceptive neurons with receptive fields in the ipsilateral hind paw. Inflammation of the paw induced neuronal hyperexcitability, which was attenuated by intra-LVL-PAG microinjection of metamizol either at the beginning of inflammation or when hyperexcitability was fully established. In both cases, the antinociceptive effect of metamizol was reduced by a microinjection of AM251, an antagonist at the CB1 cannabinoid receptor, either into the LVL-PAG or into the rostral ventromedial medulla (RVM). The RVM is a downstream structure that funnels PAG-derived descending inhibition into the spinal cord. These results show that endocannabinoids and their CB1 receptor (1) contribute at the LVL-PAG to the antinociceptive effects of metamizol, and possibly other non-opioid analgesics; and (2) participate in the PAG-derived activation of RVM descending antinociceptive influences.
Collapse
Affiliation(s)
- W Escobar
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
18
|
Sagar DR, Staniaszek LE, Okine BN, Woodhams S, Norris LM, Pearson RG, Garle MJ, Alexander SPH, Bennett AJ, Barrett DA, Kendall DA, Scammell BE, Chapman V. Tonic modulation of spinal hyperexcitability by the endocannabinoid receptor system in a rat model of osteoarthritis pain. ACTA ACUST UNITED AC 2011; 62:3666-76. [PMID: 20722027 PMCID: PMC3132591 DOI: 10.1002/art.27698] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective To investigate the impact of an experimental model of osteoarthritis (OA) on spinal nociceptive processing and the role of the inhibitory endocannabinoid system in regulating sensory processing at the spinal level. Methods Experimental OA was induced in rats by intraarticular injection of sodium mono-iodoacetate (MIA), and the development of pain behavior was assessed. Extracellular single-unit recordings of wide dynamic range (WDR) neurons in the dorsal horn were obtained in MIA-treated rats and saline-treated rats. The levels of endocannabinoids and the protein and messenger RNA levels of the main synthetic enzymes for the endocannabinoids (N-acyl phosphatidylethanolamine phospholipase D [NAPE-PLD] and diacylglycerol lipase α [DAGLα]) in the spinal cord were measured. Results Low-weight (10 gm) mechanically evoked responses of WDR neurons were significantly (P < 0.05) facilitated 28 days after MIA injection compared with the responses in saline-treated rats, and spinal cord levels of anandamide and 2-arachidonoyl glycerol (2-AG) were increased in MIA-treated rats. Protein levels of NAPE-PLD and DAGLα, which synthesize anandamide and 2-AG, respectively, were elevated in the spinal cords of MIA-treated rats. The functional role of endocannabinoids in the spinal cords of MIA-treated rats was increased via activation of cannabinoid 1 (CB1) and CB2 receptors, and blockade of the catabolism of anandamide had significantly greater inhibitory effects in MIA-treated rats compared with control rats. Conclusion Our findings provide new evidence for altered spinal nociceptive processing indicative of central sensitization and for adaptive changes in the spinal cord endocannabinoid system in an experimental model of OA. The novel control of spinal cord neuronal responses by spinal cord CB2 receptors suggests that this receptor system may be an important target for the modulation of pain in OA.
Collapse
Affiliation(s)
- Devi Rani Sagar
- University of Nottingham and Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Saari R, Törmä JC, Nevalainen T. Microwave-assisted synthesis of quinoline, isoquinoline, quinoxaline and quinazoline derivatives as CB2 receptor agonists. Bioorg Med Chem 2010; 19:939-50. [PMID: 21215643 DOI: 10.1016/j.bmc.2010.11.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 12/16/2022]
Abstract
Quinoline, isoquinoline, quinoxaline, and quinazoline derivatives were synthesized using microwave-assisted synthesis and their CB1/CB2 receptor activities were determined using the [³⁵S]GTPγS binding assay. Most of the prepared quinoline, isoquinoline, and quinoxalinyl phenyl amines showed low-potency partial CB2 receptor agonists activity. The most potent CB2 ligand was the 4-morpholinylmethanone derivative (compound 40e) (-log EC₅₀ = 7.8; E(max) = 75%). The isoquinolin-1-yl(3-trifluoromethyl-phenyl)amine (compound 26c) was a high efficacy CB2 agonist (-log EC₅₀ = 5.8; E(max) = 128%). No significant CB1 receptor activation or inactivation was shown in these studies, except 40e, which showed weak CB1 agonist activity (CB1 -log EC₅₀ = 5.0). These ligands serve as novel templates for the development of selective CB2 receptor agonist.
Collapse
Affiliation(s)
- Raimo Saari
- University of Eastern Finland, Kuopio, Finland
| | | | | |
Collapse
|
20
|
TRPV1-related modulation of spinal neuronal activity and behavior in a rat model of osteoarthritic pain. Brain Res 2010; 1369:158-66. [PMID: 21047496 DOI: 10.1016/j.brainres.2010.10.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 12/16/2022]
Abstract
The TRPV1 receptor functions as a molecular integrator, and blockade of this receptor modulates enhanced somatosensitivity across several animal models of pathological pain, including models of osteoarthritic (OA) pain. In order to further characterize the contributions of TRPV1 to OA-related pain, we investigated the systemic effects of a selective TRPV1 receptor antagonist, A-889425, on grip force behavior, and on the evoked and spontaneous firing of spinal wide dynamic range (WDR) and nociceptive specific (NS) neurons in the monoiodoacetate (MIA) model of OA. Administration of A-889425 (10-300 μmol/kg, p.o.) alleviated grip force impairment in OA rats 3 weeks after the MIA injection. Also at 3 weeks post-MIA injection, the responses of WDR and NS neurons to 300 g von Frey hair stimulation of the knee joint were significantly reduced by A-889425 administration (10 and 30 μmol/kg, i.v.) in OA, but not sham-OA rats. Spontaneous firing of WDR neurons was elevated in the OA rats compared to sham-OA rats and may reflect ongoing discomfort in the OA animal. In addition to an effect on mechanotransmission, systemic administration of A-889425 reduced the elevated spontaneous firing of WDR neurons in OA rats but did not alter spontaneous firing in sham rats. The present data demonstrate that blockade of TRPV1 receptors modulates the firing of two important classes of spinal nociceptive neurons in a rat model of OA. The effect of A-889425 on neuronal responses to intense mechanical stimulation of the knee and on the spontaneous firing of WDR neurons adds to the growing appreciation for the role of TRPV1 receptors in pathological mechanotransmission and possibly non-evoked discomfort, respectively.
Collapse
|
21
|
Effect of rimonabant, the cannabinoid CB1 receptor antagonist, on peripheral nerve in streptozotocin-induced diabetic rat. Eur J Pharmacol 2010; 637:70-6. [PMID: 20406631 DOI: 10.1016/j.ejphar.2010.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/09/2010] [Accepted: 04/01/2010] [Indexed: 10/19/2022]
Abstract
The aim of this study is to investigate the effect of rimonabant, which has antiatherosclerotic and antiinflammatory properties, on peripheral neuropathy in a diabetic rat. Diabetic rat models were induced by treatment with streptozotocin and then either normal or diabetic rats were treated with an oral dose of 10mg/kg/day rimonabant or placebo for 24 weeks. We quantified the densities of intraepidermal (PGP9.5+) nerve fiber and total skin (RECA-1+) capillary length. We also measured the current perception threshold, as defined by the intensity of sine-wave stimulus, skin blood flow after treadmill running and TNF-alpha level in spinal cord tissue or plasma. After 24 weeks, rimonabant reduced the body weight and food intake in both diabetic and normal rats, but it had no effect on blood sugar levels. In addition, rimonabant treatment significantly improved the decreased intraepidermal nerve fiber density (5.53+/-0.12 vs. 4.36+/-0.27/mm, P<0.05) and alleviated the increased current perception threshold in rimonabant-treated versus control diabetic rats. These responses were closely associated with the attenuation of skin capillary loss (1.98+/-0.07 vs. 1.67+/-0.10 mm/mm(2), P<0.05), increase in skin blood flow (14.93+/-1.08 vs. 12.07+/-0.87 TPU, P<0.05) and reduction in TNF-alpha level in tissue (70.10+/-4.99 vs. 91.18+/-3.34 pg/mg, P<0.05) in rimonabant-treated diabetic rats compared with placebo. These findings suggest that rimonabant can be beneficial for treatment of diabetic peripheral neuropathy, possibly due to its potential role in micro- and macrovessel protection and its anti-inflammatory properties.
Collapse
|
22
|
Sagar DR, Jhaveri MD, Richardson D, Gray RA, de Lago E, Fernández-Ruiz J, Barrett DA, Kendall DA, Chapman V. Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain. Eur J Neurosci 2010; 31:1414-22. [PMID: 20384778 DOI: 10.1111/j.1460-9568.2010.07162.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Models of neuropathic pain are associated with elevated spinal levels of endocannabinoids (ECs) and altered expression of cannabinoid receptors on primary sensory afferents and post-synaptic cells in the spinal cord. We investigated the impact of these changes on the spinal processing of sensory inputs in a model of neuropathic pain. Extracellular single-unit recordings of spinal neurones were made in anaesthetized neuropathic and sham-operated rats. The effects of spinal administration of the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) and the cannabinoid receptor type 2 (CB(2)) receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicycloheptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) on mechanically-evoked responses of spinal neurones were determined. The effects of spinal administration of (5Z,8Z11Z,14Z)-N-(3-furanylmethyl)-5,8,11,14-eicosatetraenamide (UCM707), which binds to CB(2) receptors and alters transport of ECs, on evoked responses of spinal neurones and spinal levels of ECs were also determined. The cannabinoid CB(1) receptor antagonist AM251, but not the CB(2) receptor antagonist, significantly facilitated 10-g-evoked responses of spinal neurones in neuropathic, but not sham-operated, rats. Spinal administration of UCM707 did not alter spinal levels of ECs but did significantly inhibit mechanically-evoked responses of neurones in neuropathic, but not sham-operated, rats. Pharmacological studies indicated that the selective inhibitory effects of spinal UCM707 in neuropathic rats were mediated by activation of spinal CB(2) receptors, as well as a contribution from transient receptor potential vanilloid 1 (TRPV1) channels. This work demonstrates that changes in the EC receptor system in the spinal cord of neuropathic rats influence the processing of sensory inputs, in particular low-weight inputs that drive allodynia, and indicates novel effects of drugs acting via multiple elements of this receptor system.
Collapse
Affiliation(s)
- Devi Rani Sagar
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boyce-Rustay JM, Simler GH, McGaraughty S, Chu KL, Wensink EJ, Vasudevan A, Honore P. Characterization of Fasudil in preclinical models of pain. THE JOURNAL OF PAIN 2010; 11:941-9. [PMID: 20338818 DOI: 10.1016/j.jpain.2009.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 12/09/2009] [Accepted: 12/29/2009] [Indexed: 11/30/2022]
Abstract
UNLABELLED Activation of Rho kinase (ROCK) has been shown to play a role in neuronal regeneration and development of posttraumatic neuropathic pain. The ROCK inhibitor Fasudil, used clinically for the treatment of vasospasm, was used to investigate the analgesic profile of a ROCK inhibitor. Fasudil was evaluated in different preclinical models of neuropathic, osteoarthritic (OA), and inflammatory pain as well as capsaicin-induced acute pain and secondary mechanical hypersensitivity. In addition, Fasudil was tested in in vivo electrophysiology to determine the mechanism by which Fasudil produces analgesia. Fasudil at the highest dose tested (30 mg/kg) significantly attenuated mechanical allodynia in spinal-nerve ligation (SNL; 77%), chronic constriction injury (CCI; 53%), capsaicin-induced secondary mechanical hypersensitivity (63%), sodium iodoacetate-induced OA pain (88%), and capsaicin-induced acute flinching behaviors (56%). However, Fasudil (at 30 mg/kg) failed to attenuate or had only modest effects on inflammatory thermal hyperalgesia following carrageenan injection and mechanical allodynia following Complete Freund's Adjuvant (CFA) injection. Fasudil produced ED(50) of 10.8 mg/kg in the SNL, and 5.7 mg/kg in the OA pain models. The ED(50) and 95% CI could not be obtained in the other models. Furthermore, administration of Fasudil (10 mg/kg, iv) significantly reduced both spontaneous and evoked firing of wide dynamic range (WDR) neurons in SNL, but not sham rats. Finally, Fasudil significantly decreased exploratory behaviors at 30 mg/kg. These results suggest that the acute administration of a ROCK inhibitor produces efficacy in both neuropathic and nociceptive pain states at doses devoid of locomotor side effects, with specific effects on WDR neurons. PERSPECTIVE In this article, the potential analgesic effects of Fasudil in a range of preclinical pain models were assessed. Fasudil was shown to have efficacy in neuropathic and nociceptive pain models. These findings may help identify new therapeutic treatments for pain in the clinic.
Collapse
|
24
|
McGaraughty S, Chu KL, Perner RJ, Didomenico S, Kort ME, Kym PR. TRPA1 modulation of spontaneous and mechanically evoked firing of spinal neurons in uninjured, osteoarthritic, and inflamed rats. Mol Pain 2010; 6:14. [PMID: 20205719 PMCID: PMC2841076 DOI: 10.1186/1744-8069-6-14] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background There is growing evidence supporting a role for TRPA1 receptors in the neurotransmission of peripheral mechanical stimulation. In order to enhance understanding of TRPA1 contributions to mechanotransmission, we examined the effects a selective TRPA1 receptor antagonist, A-967079, on spinal neuronal activity following peripheral mechanical stimulation in uninjured, CFA-inflamed, and osteoarthritc (OA) rats. Results Systemic injection of A-967079 (30 μmol/kg, i.v.) decreased the responses of wide dynamic range (WDR), and nociceptive specific (NS) neurons following noxious pinch stimulation of the ipsilateral hind paw in uninjured and CFA-inflamed rats. Similarly, A-967079 reduced the responses of WDR neurons to high-intensity mechanical stimulation (300 g von Frey hair) of the knee joint in both OA and OA-sham rats. WDR neuronal responses to low-intensity mechanical stimulation (10 g von Frey hair) were also reduced by A-967079 administration to CFA-inflamed rats, but no effect was observed in uninjured rats. Additionally, the spontaneous activity of WDR neurons was decreased after A-967079 injection in CFA-inflamed rats but was unaltered in uninjured, OA, and OA-sham animals. Conclusions Blockade of TRPA1 receptors disrupts transmission of high-intensity mechanical stimulation to the spinal cord in both uninjured and injured rats indicating that TRPA1 receptors have an important role in noxious mechanosensation in both normal and pathological conditions. TRPA1 receptors also contribute to the transmission of low-intensity mechanical stimulation, and to the modulation of spontaneous WDR firing, but only after an inflammatory injury.
Collapse
Affiliation(s)
- Steve McGaraughty
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Diaz P, Phatak SS, Xu J, Fronczek FR, Astruc-Diaz F, Thompson CM, Cavasotto CN, Naguib M. 2,3-Dihydro-1-benzofuran derivatives as a series of potent selective cannabinoid receptor 2 agonists: design, synthesis, and binding mode prediction through ligand-steered modeling. ChemMedChem 2009; 4:1615-29. [PMID: 19637157 PMCID: PMC3262993 DOI: 10.1002/cmdc.200900226] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Indexed: 11/09/2022]
Abstract
We recently discovered and reported a series of N-alkyl-isatin acylhydrazone derivatives that are potent cannabinoid receptor 2 (CB(2)) agonists. In an effort to improve the druglike properties of these compounds and to better understand and improve the treatment of neuropathic pain, we designed and synthesized a new series of 2,3-dihydro-1-benzofuran derivatives bearing an asymmetric carbon atom that behave as potent selective CB(2) agonists. We used a multidisciplinary medicinal chemistry approach with binding mode prediction through ligand-steered modeling. Enantiomer separation and configuration assignment were carried out for the racemic mixture for the most selective compound, MDA7 (compound 18). It appeared that the S enantiomer, compound MDA104 (compound 33), was the active enantiomer. Compounds MDA42 (compound 19) and MDA39 (compound 30) were the most potent at CB(2). MDA42 was tested in a model of neuropathic pain and exhibited activity in the same range as that of MDA7. Preliminary ADMET studies for MDA7 were performed and did not reveal any problems.
Collapse
Affiliation(s)
- Philippe Diaz
- Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT 59812 (USA)
| | - Sharangdhar S. Phatak
- School of Health Information Sciences, The University of Texas Health Science Center at Houston 7000 Fannin, Suite 860B, Houston, TX 77030 (USA)
| | - Jijun Xu
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (USA), Fax: (+1) 713-792-7591
| | - Frank R. Fronczek
- Chemistry Department, Louisiana State University, Baton Rouge, LA 70803-1800 (USA)
| | - Fanny Astruc-Diaz
- Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT 59812 (USA)
| | - Charles M. Thompson
- Core Laboratory for Neuromolecular Production, Department of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT 59812 (USA)
| | - Claudio N. Cavasotto
- School of Health Information Sciences, The University of Texas Health Science Center at Houston 7000 Fannin, Suite 860B, Houston, TX 77030 (USA)
| | - Mohamed Naguib
- Department of Anesthesiology and Pain Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030 (USA), Fax: (+1) 713-792-7591
| |
Collapse
|
26
|
Rahn EJ, Hohmann AG. Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside. Neurotherapeutics 2009; 6:713-37. [PMID: 19789075 PMCID: PMC2755639 DOI: 10.1016/j.nurt.2009.08.002] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is a debilitating form of chronic pain resulting from nerve injury, disease states, or toxic insults. Neuropathic pain is often refractory to conventional pharmacotherapies, necessitating validation of novel analgesics. Cannabinoids, drugs that share the same target as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the psychoactive ingredient in cannabis, have the potential to address this unmet need. Here, we review studies evaluating cannabinoids for neuropathic pain management in the clinical and preclinical literature. Neuropathic pain associated with nerve injury, diabetes, chemotherapeutic treatment, human immunodeficiency virus, multiple sclerosis, and herpes zoster infection is considered. In animals, cannabinoids attenuate neuropathic nociception produced by traumatic nerve injury, disease, and toxic insults. Effects of mixed cannabinoid CB(1)/CB(2) agonists, CB(2) selective agonists, and modulators of the endocannabinoid system (i.e., inhibitors of transport or degradation) are compared. Effects of genetic disruption of cannabinoid receptors or enzymes controlling endocannabinoid degradation on neuropathic nociception are described. Specific forms of allodynia and hyperalgesia modulated by cannabinoids are also considered. In humans, effects of smoked marijuana, synthetic Delta(9)-THC analogs (e.g., Marinol, Cesamet) and medicinal cannabis preparations containing both Delta(9)-THC and cannabidiol (e.g., Sativex, Cannador) in neuropathic pain states are reviewed. Clinical studies largely affirm that neuropathic pain patients derive benefits from cannabinoid treatment. Subjective (i.e., rating scales) and objective (i.e., stimulus-evoked) measures of pain and quality of life are considered. Finally, limitations of cannabinoid pharmacotherapies are discussed together with directions for future research.
Collapse
Affiliation(s)
- Elizabeth J. Rahn
- grid.213876.9000000041936738XNeuroscience and Behavior Program, Department of Psychology, University of Georgia, 30602-3013 Athens, GA
| | - Andrea G. Hohmann
- grid.213876.9000000041936738XNeuroscience and Behavior Program, Department of Psychology, University of Georgia, 30602-3013 Athens, GA
| |
Collapse
|
27
|
Yao BB, Hsieh G, Daza AV, Fan Y, Grayson GK, Garrison TR, El Kouhen O, Hooker BA, Pai M, Wensink EJ, Salyers AK, Chandran P, Zhu CZ, Zhong C, Ryther K, Gallagher ME, Chin CL, Tovcimak AE, Hradil VP, Fox GB, Dart MJ, Honore P, Meyer MD. Characterization of a cannabinoid CB2 receptor-selective agonist, A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], using in vitro pharmacological assays, in vivo pain models, and pharmacological magnetic resonance imaging. J Pharmacol Exp Ther 2009; 328:141-51. [PMID: 18931146 DOI: 10.1124/jpet.108.145011] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Studies demonstrating the antihyperalgesic and antiallodynic effects of cannabinoid CB(2) receptor activation have been largely derived from the use of receptor-selective ligands. Here, we report the identification of A-836339 [2,2,3,3-tetramethyl-cyclopropanecarboxylic acid [3-(2-methoxy-ethyl)-4,5-dimethyl-3H-thiazol-(2Z)-ylidene]-amide], a potent and selective CB(2) agonist as characterized in in vitro pharmacological assays and in in vivo models of pain and central nervous system (CNS) behavior models. In radioligand binding assays, A-836339 displays high affinities at CB(2) receptors and selectivity over CB(1) receptors in both human and rat. Likewise, A-836339 exhibits high potencies at CB(2) and selectivity over CB(1) receptors in recombinant fluorescence imaging plate reader and cyclase functional assays. In addition A-836339 exhibits a profile devoid of significant affinity at other G-protein-coupled receptors and ion channels. A-836339 was characterized extensively in various animal pain models. In the complete Freund's adjuvant model of inflammatory pain, A-836339 exhibits a potent CB(2) receptor-mediated antihyperalgesic effect that is independent of CB(1) or mu-opioid receptors. A-836339 has also demonstrated efficacies in the chronic constrain injury (CCI) model of neuropathic pain, skin incision, and capsaicin-induced secondary mechanical hyperalgesia models. Furthermore, no tolerance was developed in the CCI model after subchronic treatment with A-836339 for 5 days. In assessing CNS effects, A-836339 exhibited a CB(1) receptor-mediated decrease of spontaneous locomotor activities at a higher dose, a finding consistent with the CNS activation pattern observed by pharmacological magnetic resonance imaging. These data demonstrate that A-836339 is a useful tool for use of studying CB(2) receptor pharmacology and for investigation of the role of CB(2) receptor modulation for treatment of pain in preclinical animal models.
Collapse
Affiliation(s)
- Betty B Yao
- Neurological Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, R47W, AP9A, 100 Abbott Park Road, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|