1
|
Hua Y, Habicher J, Carl M, Manuel R, Boije H. Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster. Dev Neurobiol 2025; 85:e22956. [PMID: 39686588 DOI: 10.1002/dneu.22956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Acetylcholine (ACh), a vital neurotransmitter for both the peripheral (PNS) and central nervous systems (CNS), signals through nicotinic ACh receptors (nAChRs) and muscarinic ACh receptors (mAChR). Here, we explore the expression patterns of three nAChR subunits, chrna3, chrnb4, and chrna5, which are located in an evolutionary conserved cluster. This close genomic positioning, in a range of vertebrates, may indicate co-functionality and/or co-expression. Through novel transgenic zebrafish lines, we observe widespread expression within both the PNS and CNS. In the PNS, we observed expression of chrna3tdTomato, chrnb4eGFP, and chrna5tdTomato in the intestinal enteric nervous system; chrna5tdTomato and chrnb4eGFP in sensory ganglia of the lateral line; and chrnb4eGFP in the ear. In the CNS, the expression of chrnb4eGFP and chrna5tdTomato was found in the retina, all three expressed in diverse regions of the brain, where a portion of chrna3tdTomato and chrnb4eGFP cells were found to be inhibitory efferent neurons projecting to the lateral line. Within the spinal cord, we identify distinct populations of chrna3tdTomato-, chrnb4eGFP-, and chrna5tdTomato-expressing neurons within the locomotor network, including dmrt3a-expressing interneurons and mnx1-expressing motor neurons. Notably, three to four primary motor neurons per hemisegment were labeled by both chrna3tdTomato and chrnb4eGFP. Interestingly, we identified an sl-type secondary motor neuron per hemisegement that strongly expressed chrna5tdTomato and co-expressed chrnb4eGFP. These transgenic lines provide insights into the potential roles of nAChRs within the locomotor network and open avenues for exploring their role in nicotine exposure and addiction in a range of tissues throughout the nervous system.
Collapse
Affiliation(s)
- Yuanqi Hua
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Judith Habicher
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Matthias Carl
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Remy Manuel
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Boije
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Ventura Fernandes BH, Junqueira MS, MacRae C, Silveira de Carvalho LR. Standardizing CRISPR-Cas13 knockdown technique to investigate the role of cdh2 gene in pituitary development through growth hormone expression and transcription factors. Front Endocrinol (Lausanne) 2024; 15:1466638. [PMID: 39449741 PMCID: PMC11499105 DOI: 10.3389/fendo.2024.1466638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Congenital hypopituitarism (CH) is characterized by the deficiency of pituitary hormones. Among CH patients, 85% lack a molecular diagnosis. Whole Exome Sequencing (WES) identified a homozygous variant (c.865G>A, p.Val289Ile) in the CDH2 gene, responsible for N-Cadherin production, crucial for cell-cell adhesion. Predicted to be likely pathogenic, the variant was found in a patient deficient in GH, TSH, ACTH, and LH/FSH. Its impact on cell adhesion was confirmed in L1 fibroblast cell lines. Objective Create a cdh2 knockdown in zebrafish for investigating its role in pituitary development through growth hormone and transcription factors expression. Methods Utilized pET28B-RfxCas13d-His plasmid for Cas13 mRNA production via in vitro transcription, guiding Cas13 to cdh2 with three RNAs. Injected the complex into single-cell embryos for analysis up to 96 hpf. Assessed gene expression of cdh2, prop1, pit1, and gh1 using RT-qPCR. Evaluated cdh2 protein expression through the western blot technique. Results Knockdown animals displayed developmental delay. The cdh2 expression decreased by 75% within 24 hours, rebounded by 48 hours, and reached wild-type levels by 96 hpf. gh1 expression decreased at 48h but increased by 96 hpf, aligning with WT. No significant differences in prop1 and pit1 expression were observed. Conclusion Our findings underscore cdh2's role in pituitary development and hormonal regulation, offering insights for developmental biology research.
Collapse
Affiliation(s)
- Bianca Helena Ventura Fernandes
- Laboratory of Hormones and Molecular Genetics (LIM/42), Developmental Endocrinology Unit, Discipline of Endocrinology and Metabolism, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Zebrafish Facility, Technical Support Directorate for Teaching and Research, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Mara S. Junqueira
- Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Calum MacRae
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Luciani R. Silveira de Carvalho
- Laboratory of Hormones and Molecular Genetics (LIM/42), Developmental Endocrinology Unit, Discipline of Endocrinology and Metabolism, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Zebrafish Facility, Technical Support Directorate for Teaching and Research, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Isabella AJ, Moens CB. Development and regeneration of the vagus nerve. Semin Cell Dev Biol 2024; 156:219-227. [PMID: 37537116 PMCID: PMC10830892 DOI: 10.1016/j.semcdb.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
The vagus nerve, with its myriad constituent axon branches and innervation targets, has long been a model of anatomical complexity in the nervous system. The branched architecture of the vagus nerve is now appreciated to be highly organized around the topographic and/or molecular identities of the neurons that innervate each target tissue. However, we are only just beginning to understand the developmental mechanisms by which heterogeneous vagus neuron identity is specified, patterned, and used to guide the axons of particular neurons to particular targets. Here, we summarize our current understanding of the complex topographic and molecular organization of the vagus nerve, the developmental basis of neuron specification and patterned axon guidance that supports this organization, and the regenerative mechanisms that promote, or inhibit, the restoration of vagus nerve organization after nerve damage. Finally, we highlight key unanswered questions in these areas and discuss potential strategies to address these questions.
Collapse
Affiliation(s)
- Adam J Isabella
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Lee S, Rudd S, Gratten J, Visscher PM, Prins JB, Dawson PA. Gene networks associated with non-syndromic intellectual disability. J Neurogenet 2017; 32:6-14. [PMID: 29199528 DOI: 10.1080/01677063.2017.1404058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-syndromic intellectual disability (NS-ID) is a genetically heterogeneous disorder, with more than 200 candidate genes to date. Despite the increasing number of novel mutations detected, a relatively low number of recurrently mutated genes have been identified, highlighting the complex genetic architecture of the disorder. A systematic search of PubMed and Medline identified 245 genes harbouring non-synonymous variants, insertions or deletions, which were identified as candidate NS-ID genes from case reports or from linkage or pedigree analyses. From this list, 33 genes are common to syndromic intellectual disability (S-ID) and 58 genes are common to certain neurological and neuropsychiatric disorders that often include intellectual disability as a clinical feature. We examined the evolutionary constraint and brain expression of these gene sets, and we performed gene network and protein-protein interaction analyses using GeneGO MetaCoreTM and DAPPLE, respectively. The 245 NS-ID candidate genes were over-represented in axon guidance, synaptogenesis, cell adhesion and neurotransmission pathways, all of which are key neurodevelopmental processes for the establishment of mature neuronal circuitry in the brain. These 245 genes exhibit significantly elevated expression in human brain and are evolutionarily constrained, consistent with expectations for a brain disorder such as NS-ID that is associated with reduced fecundity. In addition, we report enrichment of dopaminergic and glutamatergic pathways for those candidate NS-ID genes that are common to S-ID and/or neurological and neuropsychiatric disorders that exhibit intellectual disability. Collectively, this study provides an overview and analysis of gene networks associated with NS-ID and suggests modulation of neurotransmission, particularly dopaminergic and glutamatergic systems as key contributors to synaptic dysfunction in NS-ID.
Collapse
Affiliation(s)
- Soohyun Lee
- a Mater Research Institute, The University of Queensland , Woolloongabba , Australia
| | - Stephen Rudd
- b QFAB Bioinformatics, Queensland Bioscience Precinct, The University of Queensland , Brisbane , Australia
| | - Jacob Gratten
- c Queensland Brain Institute, The University of Queensland , Brisbane , Australia
| | - Peter M Visscher
- c Queensland Brain Institute, The University of Queensland , Brisbane , Australia
| | - Johannes B Prins
- a Mater Research Institute, The University of Queensland , Woolloongabba , Australia
| | - Paul A Dawson
- a Mater Research Institute, The University of Queensland , Woolloongabba , Australia
| |
Collapse
|
5
|
Giger FA, David NB. Endodermal germ-layer formation through active actin-driven migration triggered by N-cadherin. Proc Natl Acad Sci U S A 2017; 114:10143-10148. [PMID: 28874564 PMCID: PMC5617292 DOI: 10.1073/pnas.1708116114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Germ-layer formation during gastrulation is both a fundamental step of development and a paradigm for tissue formation and remodeling. However, the cellular and molecular basis of germ-layer segregation is poorly understood, mostly because of the lack of direct in vivo observations. We used mosaic zebrafish embryos to investigate the formation of the endoderm. High-resolution live imaging and functional analyses revealed that endodermal cells reach their characteristic innermost position through an active, oriented, and actin-based migration dependent on Rac1, which contrasts with the previously proposed differential adhesion cell sorting. Rather than being attracted to their destination, the yolk syncytial layer, cells appear to migrate away from their neighbors. This migration depends on N-cadherin that, when imposed in ectodermal cells, is sufficient to trigger their internalization without affecting their fate. Overall, these results lead to a model of germ-layer formation in which, upon N-cadherin expression, endodermal cells actively migrate away from their epiblastic neighbors to reach their internal position, revealing cell-contact avoidance as an unexplored mechanism driving germ-layer formation.
Collapse
Affiliation(s)
- Florence A Giger
- CNRS UMR8197, F-75005 Paris, France
- INSERM U1024, F-75005 Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, F-75005 Paris, France
| | - Nicolas B David
- CNRS UMR8197, F-75005 Paris, France;
- INSERM U1024, F-75005 Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, F-75005 Paris, France
- Laboratory for Optics and Biosciences, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
6
|
Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish. PLoS One 2016; 11:e0148726. [PMID: 26863206 PMCID: PMC4749159 DOI: 10.1371/journal.pone.0148726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia) zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes) were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes) occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure), with a small number of genes showing changes limited to only the 2 hr (55 genes) or 5 hr (71 genes) time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in sensory circuits.
Collapse
|
7
|
Missaire M, Hindges R. The role of cell adhesion molecules in visual circuit formation: from neurite outgrowth to maps and synaptic specificity. Dev Neurobiol 2015; 75:569-83. [PMID: 25649254 PMCID: PMC4855686 DOI: 10.1002/dneu.22267] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/08/2022]
Abstract
The formation of visual circuitry is a multistep process that involves cell–cell interactions based on a range of molecular mechanisms. The correct implementation of individual events, including axon outgrowth and guidance, the formation of the topographic map, or the synaptic targeting of specific cellular subtypes, are prerequisites for a fully functional visual system that is able to appropriately process the information captured by the eyes. Cell adhesion molecules (CAMs) with their adhesive properties and their high functional diversity have been identified as key actors in several of these fundamental processes. Because of their growth‐promoting properties, CAMs play an important role in neuritogenesis. Furthermore, they are necessary to control additional neurite development, regulating dendritic spacing and axon pathfinding. Finally, trans‐synaptic interactions of CAMs ensure cell type‐specific connectivity as a basis for the establishment of circuits processing distinct visual features. Recent discoveries implicating CAMs in novel mechanisms have led to a better general understanding of neural circuit formation, but also revealed an increasing complexity of their function. This review aims at describing the different levels of action for CAMs to shape neural connectivity, with a special focus on the visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 569–583, 2015
Collapse
Affiliation(s)
- Mégane Missaire
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| |
Collapse
|
8
|
Breau MA, Schneider-Maunoury S. Cranial placodes: models for exploring the multi-facets of cell adhesion in epithelial rearrangement, collective migration and neuronal movements. Dev Biol 2014; 401:25-36. [PMID: 25541234 DOI: 10.1016/j.ydbio.2014.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 01/16/2023]
Abstract
Key to morphogenesis is the orchestration of cell movements in the embryo, which requires fine-tuned adhesive interactions between cells and their close environment. The neural crest paradigm has provided important insights into how adhesion dynamics control epithelium-to-mesenchyme transition and mesenchymal cell migration. Much less is known about cranial placodes, patches of ectodermal cells that generate essential parts of vertebrate sensory organs and ganglia. In this review, we summarise the known functions of adhesion molecules in cranial placode morphogenesis, and discuss potential novel implications of adhesive interactions in this crucial developmental process. The great repertoire of placodal cell behaviours offers new avenues for exploring the multiple roles of adhesion complexes in epithelial remodelling, collective migration and neuronal movements.
Collapse
Affiliation(s)
- Marie Anne Breau
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-UMR7622, F-75005 Paris, France; CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, F-75005 Paris, France; INSERM, U1156, F-75005 Paris, France.
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, UPMC Univ Paris 06, IBPS-UMR7622, F-75005 Paris, France; CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS) - Laboratoire de Biologie du Développement, F-75005 Paris, France; INSERM, U1156, F-75005 Paris, France
| |
Collapse
|
9
|
Pope HM, Voigt MM. Peripheral glia have a pivotal role in the initial response to axon degeneration of peripheral sensory neurons in zebrafish. PLoS One 2014; 9:e103283. [PMID: 25058656 PMCID: PMC4109997 DOI: 10.1371/journal.pone.0103283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023] Open
Abstract
Axon degeneration is a feature of many peripheral neuropathies. Understanding the organismal response to this degeneration may aid in identifying new therapeutic targets for treatment. Using a transgenic zebrafish line expressing a bacterial nitroreductase (Ntr)/mCherry fusion protein in the peripheral sensory neurons of the V, VII, IX, and X cranial nerves, we were able to induce and visualize the pathology of axon degeneration in vivo. Exposure of 4 days post fertilization Ntr larvae to the prodrug metronidazole (Met), which Ntr metabolizes into cytotoxic metabolites, resulted in dose-dependent cell death and axon degeneration. This was limited to the Ntr-expressing sensory neurons, as neighboring glia and motor axons were unaffected. Cell death was rapid, becoming apparent 3-4 hours after Met treatment, and was followed by phagocytosis of soma and axon debris by cells within the nerves and ganglia beginning at 4-5 hours of exposure. Although neutrophils appear to be activated in response to the degenerating neurons, they did not accumulate at the sites of degeneration. In contrast, macrophages were found to be attracted to the sites of the degenerating axons, where they phagocytosed debris. We demonstrated that peripheral glia are critical for both the phagocytosis and inflammatory response to degenerating neurons: mutants that lack all peripheral glia (foxD3-/-; Ntr) exhibit a much reduced reaction to axonal degeneration, resulting in a dramatic decrease in the clearance of debris, and impaired macrophage recruitment. Overall, these results show that this zebrafish model of peripheral sensory axon degeneration exhibits many aspects common to peripheral neuropathies and that peripheral glia play an important role in the initial response to this process.
Collapse
Affiliation(s)
- Holly M. Pope
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Mark M. Voigt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
Garaffo G, Provero P, Molineris I, Pinciroli P, Peano C, Battaglia C, Tomaiuolo D, Etzion T, Gothilf Y, Santoro M, Merlo GR. Profiling, Bioinformatic, and Functional Data on the Developing Olfactory/GnRH System Reveal Cellular and Molecular Pathways Essential for This Process and Potentially Relevant for the Kallmann Syndrome. Front Endocrinol (Lausanne) 2013; 4:203. [PMID: 24427155 PMCID: PMC3876029 DOI: 10.3389/fendo.2013.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 11/28/2022] Open
Abstract
During embryonic development, immature neurons in the olfactory epithelium (OE) extend axons through the nasal mesenchyme, to contact projection neurons in the olfactory bulb. Axon navigation is accompanied by migration of the GnRH+ neurons, which enter the anterior forebrain and home in the septo-hypothalamic area. This process can be interrupted at various points and lead to the onset of the Kallmann syndrome (KS), a disorder characterized by anosmia and central hypogonadotropic hypogonadism. Several genes has been identified in human and mice that cause KS or a KS-like phenotype. In mice a set of transcription factors appears to be required for olfactory connectivity and GnRH neuron migration; thus we explored the transcriptional network underlying this developmental process by profiling the OE and the adjacent mesenchyme at three embryonic ages. We also profiled the OE from embryos null for Dlx5, a homeogene that causes a KS-like phenotype when deleted. We identified 20 interesting genes belonging to the following categories: (1) transmembrane adhesion/receptor, (2) axon-glia interaction, (3) scaffold/adapter for signaling, (4) synaptic proteins. We tested some of them in zebrafish embryos: the depletion of five (of six) Dlx5 targets affected axonal extension and targeting, while three (of three) affected GnRH neuron position and neurite organization. Thus, we confirmed the importance of cell-cell and cell-matrix interactions and identified new molecules needed for olfactory connection and GnRH neuron migration. Using available and newly generated data, we predicted/prioritized putative KS-disease genes, by building conserved co-expression networks with all known disease genes in human and mouse. The results show the overall validity of approaches based on high-throughput data and predictive bioinformatics to identify genes potentially relevant for the molecular pathogenesis of KS. A number of candidate will be discussed, that should be tested in future mutation screens.
Collapse
Affiliation(s)
- Giulia Garaffo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Ivan Molineris
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Patrizia Pinciroli
- Department of Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Milano, Italy
| | - Clelia Peano
- Institute of Biomedical Technology, National Research Council, ITB-CNR, Segrate, Italy
| | - Cristina Battaglia
- Department of Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Milano, Italy
- Institute of Biomedical Technology, National Research Council, ITB-CNR, Segrate, Italy
| | - Daniela Tomaiuolo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Talya Etzion
- The George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv, Israel
| | - Yoav Gothilf
- The George S. Wise Faculty of Life Sciences, Department of Neurobiology, Tel-Aviv University, Tel-Aviv, Israel
| | - Massimo Santoro
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
- *Correspondence: Giorgio R. Merlo, Department of Molecular Biotechnology and Health Science, University of Torino, Via Nizza 52, Torino 10126, Italy e-mail:
| |
Collapse
|
11
|
Morphology of the facial motor nuclei in a rat model of autism during early development. Int J Dev Neurosci 2012; 31:138-44. [PMID: 23253376 DOI: 10.1016/j.ijdevneu.2012.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/22/2012] [Accepted: 12/08/2012] [Indexed: 11/22/2022] Open
Abstract
The development of facial nuclei in animal models of disease is poorly understood, but autism is sometimes associated with facial palsy. In the present study, to investigate migration of facial neurons and initial facial nucleus formation in an animal model of autism, rat embryos were treated with valproic acid (VPA) in utero at embryonic day (E) 9.5 and their facial nuclei were analyzed by in situ hybridization at E13.5, E14.5 and E15.5. Signals for Tbx20, which is expressed in early motor neurons, appeared near the floor plate at the level of the vestibular ganglion and extended caudolaterally, where they became ovoid in shape. This pattern of development was similar between control and VPA-exposed embryos. However, measurements of the migratory pathway and the size of the facial nuclei revealed that exposure to VPA hindered the caudal migration of neurons to the facial nuclei. Signals for cadherin 8, which is expressed in mature facial nuclei, revealed that exposure to VPA caused a significant reduction in the size of the facial nuclei. Our findings provide the first quantitative description of tangential migration and nucleus formation in the developing hindbrain in a rat model of autism.
Collapse
|
12
|
Enriched pathways for major depressive disorder identified from a genome-wide association study. Int J Neuropsychopharmacol 2012; 15:1401-11. [PMID: 22243633 DOI: 10.1017/s1461145711001891] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.
Collapse
|
13
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
14
|
Huettl RE, Huber AB. Cranial nerve fasciculation and Schwann cell migration are impaired after loss of Npn-1. Dev Biol 2011; 359:230-41. [PMID: 21925156 DOI: 10.1016/j.ydbio.2011.08.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/12/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Interaction of the axon guidance receptor Neuropilin-1 (Npn-1) with its repulsive ligand Semaphorin 3A (Sema3A) is crucial for guidance decisions, fasciculation, timing of growth and axon-axon interactions of sensory and motor projections in the embryonic limb. At cranial levels, Npn-1 is expressed in motor neurons and sensory ganglia and loss of Sema3A-Npn-1 signaling leads to defasciculation of the superficial projections to the head and neck. The molecular mechanisms that govern the initial fasciculation and growth of the purely motor projections of the hypoglossal and abducens nerves in general, and the role of Npn-1 during these events in particular are, however, not well understood. We show here that selective removal of Npn-1 from somatic motor neurons impairs initial fasciculation and assembly of hypoglossal rootlets and leads to reduced numbers of abducens and hypoglossal fibers. Ablation of Npn-1 specifically from cranial neural crest and placodally derived sensory tissues recapitulates the distal defasciculation of mixed sensory-motor nerves of trigeminal, facial, glossopharyngeal and vagal projections, which was observed in Npn-1(-/-) and Npn-1(Sema-) mutants. Surprisingly, the assembly and fasciculation of the purely motor hypoglossal nerve are also impaired and the number of Schwann cells migrating along the defasciculated axonal projections is reduced. These findings are corroborated by partial genetic elimination of cranial neural crest and embryonic placodes, where loss of Schwann cell precursors leads to aberrant growth patterns of the hypoglossal nerve. Interestingly, rostral turning of hypoglossal axons is not perturbed in any of the investigated genotypes. Thus, initial hypoglossal nerve assembly and fasciculation, but not later guidance decisions depend on Npn-1 expression and axon-Schwann cell interactions.
Collapse
Affiliation(s)
- Rosa-Eva Huettl
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg
| | | |
Collapse
|
15
|
Cox JA, Lamora A, Johnson SL, Voigt MM. Diverse mechanisms for assembly of branchiomeric nerves. Dev Biol 2011; 357:305-17. [PMID: 21777575 DOI: 10.1016/j.ydbio.2011.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
Abstract
The formation of branchiomeric nerves (cranial nerves V, VII, IX and X) from their sensory, motor and glial components is poorly understood. The current model for cranial nerve formation is based on the Vth nerve, in which sensory afferents are formed first and must enter the hindbrain in order for the motor efferents to exit. Using transgenic zebrafish lines to discriminate between motor neurons, sensory neurons and peripheral glia, we show that this model does not apply to the remaining three branchiomeric nerves. For these nerves, the motor efferents form prior to the sensory afferents, and their pathfinding show no dependence on sensory axons, as ablation of cranial sensory neurons by ngn1 knockdown had no effect. In contrast, the sensory limbs of the IXth and Xth nerves (but not the Vth or VIIth) were misrouted in gli1 mutants, which lack hindbrain bmn, suggesting that the motor efferents are crucial for appropriate sensory axon projection in some branchiomeric nerves. For all four nerves, peripheral glia were the intermediate component added and had a critical role in nerve integrity but not in axon guidance, as foxd3 null mutants lacking peripheral glia exhibited defasciculation of gVII, gIX, and gX axons. The bmn efferents were unaffected in these mutants. These data demonstrate that multiple mechanisms underlie formation of the four branchiomeric nerves. For the Vth, sensory axons initiate nerve formation, for the VIIth the sensory and motor limbs are independent, and for the IXth/Xth the motor axons initiate formation. In all cases the glia are patterned by the initiating set of axons and are needed to maintain axon fasciculation. These results reveal that coordinated interactions between the three neural cell types in branchiomeric nerves differ according to their axial position.
Collapse
Affiliation(s)
- Jane A Cox
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
16
|
Liu Q, Dalman MR, Sarmah S, Chen S, Chen Y, Hurlbut AK, Spencer MA, Pancoe L, Marrs JA. Cell adhesion molecule cadherin-6 function in zebrafish cranial and lateral line ganglia development. Dev Dyn 2011; 240:1716-26. [PMID: 21584906 DOI: 10.1002/dvdy.22665] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2011] [Indexed: 11/10/2022] Open
Abstract
Cadherins regulate the vertebrate nervous system development. We previously showed that cadherin-6 message (cdh6) was strongly expressed in the majority of the embryonic zebrafish cranial and lateral line ganglia during their development. Here, we present evidence that cdh6 has specific functions during cranial and lateral line ganglia and nerve development. We analyzed the consequences of cdh6 loss-of-function on cranial ganglion and nerve differentiation in zebrafish embryos. Embryos injected with zebrafish cdh6 specific antisense morpholino oligonucleotides (MOs, which suppress gene expression during development; cdh6 morphant embryos) displayed a specific phenotype, including (i) altered shape and reduced development of a subset of the cranial and lateral line ganglia (e.g., the statoacoustic ganglion and vagal ganglion) and (ii) cranial nerves were abnormally formed. These data illustrate an important role for cdh6 in the formation of cranial ganglia and their nerves.
Collapse
Affiliation(s)
- Q Liu
- Department of Biology, Integrated Bioscience Program, University of Akron, Akron, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
A novel locus on proximal chromosome 18 associated with agenesis of the corpus callosum in mice. Mamm Genome 2010; 21:525-33. [DOI: 10.1007/s00335-010-9292-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/28/2010] [Indexed: 12/11/2022]
|
18
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|