1
|
Shanbhag R, Zoidl GSO, Nakhuda F, Sabour S, Naumann H, Zoidl C, Bahl A, Tabatabaei N, Zoidl GR. Pannexin-2 deficiency disrupts visual pathways and leads to ocular defects in zebrafish. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167807. [PMID: 40122183 DOI: 10.1016/j.bbadis.2025.167807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Pannexin-2 (Panx2) is a unique ion channel localized to ER-mitochondria contact sites. These specialized microdomains are abundant in neurons and glia and essential for cellular signaling and metabolism. While synaptic interactions are well-studied, the role of intracellular contacts, such as those of ER-mitochondrial junctions, in neuronal function and neurodegeneration remains largely unexplored. To investigate the roles of Panx2 in neuronal communication, we examined its expression pattern in the zebrafish brain and used TALEN technology to generate homozygous Panx2 knockout (Panx2Δ11) zebrafish. Our results demonstrate that panx2 mRNA is present in several brain regions, notably in visual centers such as the optic tectum and the thalamus. In 6 days post fertilization TL (Panx2+/+) larvae, Panx2 expression was observed in the retina and the arborization fields of the optic tract. Transcriptome profiling of Panx2Δ11 larvae by RNA-seq analysis revealed down-regulation of genes involved in visual perception and lens development. Behavioral tests showed that loss of Panx2 leads to an altered ability to interpret visual information, such as changes in ambient illuminations, and respond with the characteristic motor action. Additionally, the knockout larvae displayed significantly impaired optomotor response. Lastly, when we tested the retinal structure of adult zebrafish eyes using optical coherence tomography, Panx2Δ11 fish revealed a longer mean axial length and a negative shift in retinal refractive error (RRE) values. Our findings highlight a distinct, novel function of Panx2 in sensory perception and ocular health, beyond its recognized roles in neurodevelopment and cancer.
Collapse
Affiliation(s)
- Riya Shanbhag
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centre for Integrative and Applied Neuroscience (CIAN), Sherman Health Science Research Centre, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Georg S O Zoidl
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centre for Integrative and Applied Neuroscience (CIAN), Sherman Health Science Research Centre, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Fatema Nakhuda
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centre for Integrative and Applied Neuroscience (CIAN), Sherman Health Science Research Centre, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Shiva Sabour
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada
| | - Heike Naumann
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Post box 687, Universitätsstraße 10, 78464 Konstanz, Germany.
| | - Christiane Zoidl
- Centre for Integrative and Applied Neuroscience (CIAN), Sherman Health Science Research Centre, York University, Toronto, Ontario M3J 1P3, Canada; Department of Psychology, Behavioural Sciences Building, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Armin Bahl
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Post box 687, Universitätsstraße 10, 78464 Konstanz, Germany; Zukunftskolleg, University of Konstanz, Post box 216, 78457 Konstanz, Germany.
| | - Nima Tabatabaei
- Department of Mechanical Engineering, York University, Toronto, Ontario M3J 1P3, Canada.
| | - Georg R Zoidl
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada; Centre for Integrative and Applied Neuroscience (CIAN), Sherman Health Science Research Centre, York University, Toronto, Ontario M3J 1P3, Canada; Department of Psychology, Behavioural Sciences Building, York University, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
2
|
Salgado M, Márquez-Miranda V, Ferrada L, Rojas M, Poblete-Flores G, González-Nilo FD, Ardiles ÁO, Sáez JC. Ca 2+ permeation through C-terminal cleaved, but not full-length human Pannexin1 hemichannels, mediates cell death. Proc Natl Acad Sci U S A 2024; 121:e2405468121. [PMID: 38861601 PMCID: PMC11194574 DOI: 10.1073/pnas.2405468121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
Pannexin1 hemichannels (Panx1 HCs) are found in the membrane of most mammalian cells and communicate the intracellular and extracellular spaces, enabling the passive transfer of ions and small molecules. They are involved in physiological and pathophysiological conditions. During apoptosis, the C-terminal tail of Panx1 is proteolytically cleaved, but the permeability features of hemichannels and their role in cell death remain elusive. To address these topics, HeLa cells transfected with full-length human Panx1 (fl-hPanx1) or C-terminal truncated hPanx1 (Δ371hPanx1) were exposed to alkaline extracellular saline solution, increasing the activity of Panx1 HCs. The Δ371hPanx1 HC was permeable to DAPI and Etd+, but not to propidium iodide, whereas fl-hPanx1 HC was only permeable to DAPI. Furthermore, the cytoplasmic Ca2+ signal increased only in Δ371hPanx1 cells, which was supported by bioinformatics approaches. The influx of Ca2+ through Δ371hPanx1 HCs was necessary to promote cell death up to about 95% of cells, whereas the exposure to alkaline saline solution without Ca2+ failed to induce cell death, and the Ca2+ ionophore A23187 promoted more than 80% cell death even in fl-hPanx1 transfectants. Moreover, cell death was prevented with carbenoxolone or 10Panx1 in Δ371hPanx1 cells, whereas it was undetectable in HeLa Panx1-/- cells. Pretreatment with Ferrostatin-1 and necrostatin-1 did not prevent cell death, suggesting that ferroptosis or necroptosis was not involved. In comparison, zVAD-FMK, a pancaspase inhibitor, reduced death by ~60%, suggesting the involvement of apoptosis. Therefore, alkaline pH increases the activity of Δ371hPanx1HCs, leading to a critical intracellular free-Ca2+ overload that promotes cell death.
Collapse
Affiliation(s)
- Magdiel Salgado
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Luciano Ferrada
- Centro de Microscopía Avanzada-Biobío, Universidad de Concepción, Concepción4070386, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Gonzalo Poblete-Flores
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Fernando D. González-Nilo
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago8370146, Chile
| | - Álvaro O. Ardiles
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
- Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso2341386, Chile
| | - Juan C. Sáez
- Instituto de Neurociencias, Centro Interdisciplinario de Neurociencias, Universidad de Valparaíso, Valparaíso2381850, Chile
| |
Collapse
|
3
|
Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022; 11:2245. [PMID: 35883688 PMCID: PMC9323506 DOI: 10.3390/cells11142245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population.
Collapse
Affiliation(s)
| | - Eugenin Eliseo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| |
Collapse
|
4
|
Whyte-Fagundes P, Taskina D, Safarian N, Zoidl C, Carlen PL, Donaldson LW, Zoidl GR. Panx1 channels promote both anti- and pro-seizure-like activities in the zebrafish via p2rx7 receptors and ATP signaling. Commun Biol 2022; 5:472. [PMID: 35585187 PMCID: PMC9117279 DOI: 10.1038/s42003-022-03356-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
The molecular mechanisms of excitation/inhibition imbalances promoting seizure generation in epilepsy patients are not fully understood. Evidence suggests that Pannexin1 (Panx1), an ATP release channel, modulates the excitability of the brain. In this report, we performed electrophysiological, behavioral, and molecular phenotyping experiments on zebrafish larvae bearing genetic or pharmacological knockouts of Panx1a and Panx1b channels, each homologous to human PANX1. When Panx1a function is lost, or both channels are under pharmacological blockade, seizures with ictal-like events and seizure-like locomotion are reduced in the presence of pentylenetetrazol. Transcriptome profiling by RNA-seq demonstrates a spectrum of distinct metabolic and cell signaling states which correlate with the loss of Panx1a. Furthermore, the pro- and anticonvulsant activities of both Panx1 channels affect ATP release and involve the purinergic receptor P2rx7. Our findings suggest a subfunctionalization of Panx1 enabling dual roles in seizures, providing a unique and comprehensive perspective to understanding seizure mechanisms in the context of this channel.
Collapse
Affiliation(s)
- Paige Whyte-Fagundes
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| | - Daria Taskina
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Nickie Safarian
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada
| | - Peter L Carlen
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada
- Department of Medicine, Physiology and BME, University of Toronto, 399 Bathurst St., 5w442, Toronto, ON, M5T 2S8, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, M3J1P3, Canada.
- Center of Vision Research (CVR), York University, Toronto, ON, M3J1P3, Canada.
- Krembil Research Institute, University Health Network, 60 Leonard Ave, Toronto, ON, M5T 1M8, Canada.
| |
Collapse
|
5
|
Cai X, Gao C, Cao M, Su B, Liu X, Wang B, Li C. Genome-wide characterization of gap junction (connexins and pannexins) genes in turbot (Scophthalmus maximus L.): evolution and immune response following Vibrio anguillarum infection. Gene 2022; 809:146032. [PMID: 34673208 DOI: 10.1016/j.gene.2021.146032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 01/26/2023]
Abstract
Gap junction (GJ), a special intercellular junction between different cell types, directly connects the cytoplasm of adjacent cells, allows various molecules, ions and electrical impulses to pass through the intercellular regulatory gate, and plays vital roles in response to bacterial infection. Up to date, the information about the GJ in turbot (Scophthalmus maximus L.) is still limited. In current study, 43 gap junction genes were identified in turbot, phylogeny analysis suggested that gap junctions from turbot and other species were clustered into six groups, GJA, GJB, GJC, GJD, GJE and PANX, and turbot GJs together with respective GJs from Japanese flounder, half-smooth tongue sole and large yellow croaker, sharing same ancestors. In addition, these 43 GJ genes distributed in different chromosomes unevenly. According to gene structure and domain analysis, these genes (in GJA-GJE group) were highly conserved in that most of them contain the transmembrane area, connexin domain (CNX) and cysteine-rich domain (connexin CCC), while PANXs contain Pfam Innexin. Although only one tandem duplication was identified in turbot gap junction gene, 235 pairs of segmental duplications were identified in the turbot genome. To further investigate their evolutionary relationships, Ka/Ks was calculated, and results showed that most ratios were lower than 1, indicating they had undergone negative selection. Finally, expression analysis showed that gap junction genes were widely distributed in turbot tissues and significantly regulated after Vibrio anguillarum infection. Taken together, our research could provide valuable information for further exploration of the function of gap junction genes in teleost.
Collapse
Affiliation(s)
- Xin Cai
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chengbin Gao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Min Cao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| | - Xiaoli Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Welzel G, Schuster S. Connexins evolved after early chordates lost innexin diversity. eLife 2022; 11:74422. [PMID: 35042580 PMCID: PMC8769644 DOI: 10.7554/elife.74422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 11/26/2022] Open
Abstract
Gap junction channels are formed by two unrelated protein families. Non-chordates use the primordial innexins, while chordates use connexins that superseded the gap junction function of innexins. Chordates retained innexin-homologs, but N-glycosylation prevents them from forming gap junctions. It is puzzling why chordates seem to exclusively use the new gap junction protein and why no chordates should exist that use non-glycosylated innexins to form gap junctions. Here, we identified glycosylation sites of 2388 innexins from 174 non-chordate and 276 chordate species. Among all chordates, we found not a single innexin without glycosylation sites. Surprisingly, the glycosylation motif is also widespread among non-chordate innexins indicating that glycosylated innexins are not a novelty of chordates. In addition, we discovered a loss of innexin diversity during early chordate evolution. Most importantly, lancelets, which lack connexins, exclusively possess only one highly conserved innexin with one glycosylation site. A bottleneck effect might thus explain why connexins have become the only protein used to form chordate gap junctions.
Collapse
Affiliation(s)
- Georg Welzel
- Department of Animal Physiology, University of Bayreuth
| | | |
Collapse
|
7
|
Safarian N, Houshangi-Tabrizi S, Zoidl C, Zoidl GR. Panx1b Modulates the Luminance Response and Direction of Locomotion in the Zebrafish. Int J Mol Sci 2021; 22:ijms222111750. [PMID: 34769181 PMCID: PMC8584175 DOI: 10.3390/ijms222111750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/29/2022] Open
Abstract
Pannexin1 (Panx1) can form ATP-permeable channels that play roles in the physiology of the visual system. In the zebrafish two ohnologs of Panx1, Panx1a and Panx1b, have unique and shared channel properties and tissue expression patterns. Panx1a channels are located in horizontal cells of the outer retina and modulate light decrement detection through an ATP/pH-dependent mechanisms and adenosine/dopamine signaling. Here, we decipher how the strategic localization of Panx1b channels in the inner retina and ganglion cell layer modulates visually evoked motor behavior. We describe a panx1b knockout model generated by TALEN technology. The RNA-seq analysis of 6 days post-fertilization larvae is confirmed by real-time PCR and paired with testing of locomotion behaviors by visual motor and optomotor response tests. We show that the loss of Panx1b channels disrupts the retinal response to an abrupt loss of illumination and it decreases the larval ability to follow leftward direction of locomotion in low light conditions. We concluded that the loss of Panx1b channels compromises the final output of luminance as well as motion detection. The Panx1b protein also emerges as a modulator of the circadian clock system. The disruption of the circadian clock system in mutants suggests that Panx1b could participate in non-image forming processes in the inner retina.
Collapse
Affiliation(s)
- Nickie Safarian
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
- Center of Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Sarah Houshangi-Tabrizi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
| | - Christiane Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
- Center of Vision Research, York University, Toronto, ON M3J 1P3, Canada
| | - Georg R. Zoidl
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; (N.S.); (S.H.-T.); (C.Z.)
- Center of Vision Research, York University, Toronto, ON M3J 1P3, Canada
- Correspondence:
| |
Collapse
|
8
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
9
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
10
|
Visuomotor deficiency in panx1a knockout zebrafish is linked to dopaminergic signaling. Sci Rep 2020; 10:9538. [PMID: 32533080 PMCID: PMC7293225 DOI: 10.1038/s41598-020-66378-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Pannexin 1 (Panx1) forms ATP-permeable membrane channels that play roles in the nervous system. The analysis of roles in both standard and pathological conditions benefits from a model organism with rapid development and early onset of behaviors. Such a model was developed by ablating the zebrafish panx1a gene using TALEN technology. Here, RNA-seq analysis of 6 days post fertilization larvae were confirmed by Real-Time PCR and paired with testing visual-motor behavior and in vivo electrophysiology. Results demonstrated that loss of panx1a specifically affected the expression of gene classes representing the development of the visual system and visual processing. Abnormal swimming behavior in the dark and the expression regulation of pre-and postsynaptic biomarkers suggested changes in dopaminergic signaling. Indeed, altered visuomotor behavior in the absence of functional Panx1a was evoked through D1/D2-like receptor agonist treatment and rescued with the D2-like receptor antagonist Haloperidol. Local field potentials recorded from superficial areas of the optic tectum receiving input from the retina confirmed abnormal responses to visual stimuli, which resembled treatments with a dopamine receptor agonist or pharmacological blocking of Panx1a. We conclude that Panx1a functions are relevant at a time point when neuronal networks supporting visual-motor functions undergo modifications preparing for complex behaviors of freely swimming fish.
Collapse
|
11
|
Role of an Aromatic-Aromatic Interaction in the Assembly and Trafficking of the Zebrafish Panx1a Membrane Channel. Biomolecules 2020; 10:biom10020272. [PMID: 32053881 PMCID: PMC7072349 DOI: 10.3390/biom10020272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/05/2020] [Indexed: 12/28/2022] Open
Abstract
Pannexin 1 (Panx1) is a ubiquitously expressed hexameric integral membrane protein known to function as an adenosine triphosphate (ATP) release channel. Panx1 proteins exist in unglycosylated core form (Gly0). They undergo critical post-translational modifications forming the high mannose glycosylation state (Gly1) in the endoplasmic reticulum (ER) and the complex glycosylation state (Gly2) in the Golgi apparatus. The regulation of transition from the ER to the cell membrane is not fully understood. Using site-specific mutagenesis, dye uptake assays, and interaction testing, we identified two conserved aromatic residues, Trp123 and Tyr205, in the transmembrane domains 2 and 3 of the zebrafish panx1a protein. Results suggest that both residues primarily govern the assembly of panx1a subunits into channels, with mutant proteins failing to interact. The results provide insight into a mechanism enabling regulation of Panx1 oligomerization, glycosylation, and trafficking.
Collapse
|
12
|
Pannexin 1 Regulates Network Ensembles and Dendritic Spine Development in Cortical Neurons. eNeuro 2019; 6:ENEURO.0503-18.2019. [PMID: 31118206 PMCID: PMC6557035 DOI: 10.1523/eneuro.0503-18.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
Abstract
Dendritic spines are the postsynaptic targets of excitatory synaptic inputs that undergo extensive proliferation and maturation during the first postnatal month in mice. However, our understanding of the molecular mechanisms that regulate spines during this critical period is limited. Previous work has shown that pannexin 1 (Panx1) regulates neurite growth and synaptic plasticity. We therefore investigated the impact of global Panx1 KO on spontaneous cortical neuron activity using Ca2+ imaging and in silico network analysis. Panx1 KO increased both the number and size of spontaneous co-active cortical neuron network ensembles. To understand the basis for these findings, we investigated Panx1 expression in postnatal synaptosome preparations from early postnatal mouse cortex. Between 2 and 4 postnatal weeks, we observed a precipitous drop in cortical synaptosome protein levels of Panx1, suggesting it regulates synapse proliferation and/or maturation. At the same time points, we observed significant enrichment of the excitatory postsynaptic density proteins PSD-95, GluA1, and GluN2a in cortical synaptosomes from global Panx1 knock-out mice. Ex vivo analysis of pyramidal neuron structure in somatosensory cortex revealed a consistent increase in dendritic spine densities in both male and female Panx1 KO mice. Similar findings were observed in an excitatory neuron-specific Panx1 KO line (Emx1-Cre driven; Panx1 cKOE) and in primary Panx1 KO cortical neurons cultured in vitro. Altogether, our study suggests that Panx1 negatively regulates cortical dendritic spine development.
Collapse
|
13
|
Chapot CA, Euler T, Schubert T. How do horizontal cells 'talk' to cone photoreceptors? Different levels of complexity at the cone-horizontal cell synapse. J Physiol 2017; 595:5495-5506. [PMID: 28378516 DOI: 10.1113/jp274177] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022] Open
Abstract
The first synapse of the retina plays a fundamental role in the visual system. Due to its importance, it is critical that it encodes information from the outside world with the greatest accuracy and precision possible. Cone photoreceptor axon terminals contain many individual synaptic sites, each represented by a presynaptic structure called a 'ribbon'. These synapses are both highly sophisticated and conserved. Each ribbon relays the light signal to one ON cone bipolar cell and several OFF cone bipolar cells, while two dendritic processes from a GABAergic interneuron, the horizontal cell, modulate the cone output via parallel feedback mechanisms. The presence of these three partners within a single synapse has raised numerous questions, and its anatomical and functional complexity is still only partially understood. However, the understanding of this synapse has recently evolved, as a consequence of progress in understanding dendritic signal processing and its role in facilitating global versus local signalling. Indeed, for the downstream retinal network, dendritic processing in horizontal cells may be essential, as they must support important functional operations such as contrast enhancement, which requires spatial averaging of the photoreceptor array, while at the same time preserving accurate spatial information. Here, we review recent progress made towards a better understanding of the cone synapse, with an emphasis on horizontal cell function, and discuss why such complexity might be necessary for early visual processing.
Collapse
Affiliation(s)
- Camille A Chapot
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Graduate Training Centre of Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, 72076, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
14
|
Boyce AKJ, Epp AL, Nagarajan A, Swayne LA. Transcriptional and post-translational regulation of pannexins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:72-82. [PMID: 28279657 DOI: 10.1016/j.bbamem.2017.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Pannexins are a 3-membered family of proteins that form large pore ion and metabolite channels in vertebrates. The impact of pannexins on vertebrate biology is intricately tied to where and when they are expressed, and how they are modified, once produced. The purpose of this review is therefore to outline our current understanding of transcriptional and post-translational regulation of pannexins. First, we briefly summarize their discovery and characteristics. Next, we describe several aspects of transcriptional regulation, including cell and tissue-specific expression, dynamic expression over development and disease, as well as new insights into the underlying molecular machinery involved. Following this, we delve into the role of post-translational modifications in the regulation of trafficking and channel properties, highlighting important work on glycosylation, phosphorylation, S-nitrosylation and proteolytic cleavage. Embedded throughout, we also highlight important knowledge gaps and avenues of future research. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Andrew K J Boyce
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Anna L Epp
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Archana Nagarajan
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences and Island Medical Program, University of Victoria, Victoria V8P 5C2, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
15
|
Country MW, Jonz MG. Calcium dynamics and regulation in horizontal cells of the vertebrate retina: lessons from teleosts. J Neurophysiol 2017; 117:523-536. [PMID: 27832601 PMCID: PMC5288477 DOI: 10.1152/jn.00585.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/02/2016] [Indexed: 01/20/2023] Open
Abstract
Horizontal cells (HCs) are inhibitory interneurons of the vertebrate retina. Unlike typical neurons, HCs are chronically depolarized in the dark, leading to a constant influx of Ca2+ Therefore, mechanisms of Ca2+ homeostasis in HCs must differ from neurons elsewhere in the central nervous system, which undergo excitotoxicity when they are chronically depolarized or stressed with Ca2+ HCs are especially well characterized in teleost fish and have been used to unlock mysteries of the vertebrate retina for over one century. More recently, mammalian models of the retina have been increasingly informative for HC physiology. We draw from both teleost and mammalian models in this review, using a comparative approach to examine what is known about Ca2+ pathways in vertebrate HCs. We begin with a survey of Ca2+-permeable ion channels, exchangers, and pumps and summarize Ca2+ influx and efflux pathways, buffering, and intracellular stores. This includes evidence for Ca2+-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptors and for voltage-gated Ca2+ channels. Special attention is given to interactions between ion channels, to differences among species, and in which subtypes of HCs these channels have been found. We then discuss a number of unresolved issues pertaining to Ca2+ dynamics in HCs, including a potential role for Ca2+ in feedback to photoreceptors, the role for Ca2+-induced Ca2+ release, and the properties and functions of Ca2+-based action potentials. This review aims to highlight the unique Ca2+ dynamics in HCs, as these are inextricably tied to retinal function.
Collapse
Affiliation(s)
- Michael W Country
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael G Jonz
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Klaassen LJ, de Graaff W, van Asselt JB, Klooster J, Kamermans M. Specific connectivity between photoreceptors and horizontal cells in the zebrafish retina. J Neurophysiol 2016; 116:2799-2814. [PMID: 27707811 DOI: 10.1152/jn.00449.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/30/2016] [Indexed: 11/22/2022] Open
Abstract
The functional and morphological connectivity between various horizontal cell (HC) types (H1, H2, H3, and H4) and photoreceptors was studied in zebrafish retina. Since HCs are strongly coupled by gap junctions and feedback from HCs to photoreceptors depends strongly on connexin (Cx) hemichannels, we characterized the various HC Cxs (Cx52.6, Cx52.7, Cx52.9, and Cx55.5) in Xenopus oocytes. All Cxs formed hemichannels that were conducting at physiological membrane potentials. The Cx hemichannels differed in kinetic properties and voltage dependence, allowing for specific tuning of the coupling of HCs and the feedback signal from HCs to cones. The morphological connectivity between HC layers and cones was determined next. We used zebrafish expressing green fluorescent protein under the control of Cx promoters. We found that all HCs showed Cx55.5 promoter activity. Cx52.7 promoter activity was exclusively present in H4 cells, while Cx52.9 promoter activity occurred only in H1 cells. Cx52.6 promoter activity was present in H4 cells and in the ventral quadrant of the retina also in H1 cells. Finally, we determined the spectral sensitivities of the HC layers. Three response types were found. Monophasic responses were generated by HCs that contacted all cones (H1 cells), biphasic responses were generated by HCs that contacted M, S, and UV cones (H2 cells), and triphasic responses were generated by HCs that contacted either S and UV cones (H3 cells) or rods and UV cones (H4 cells). Electron microscopy confirms that H4 cells innervate cones. This indicates that rod-driven HCs process spectral information during photopic and luminance information during scotopic conditions.
Collapse
Affiliation(s)
- Lauw J Klaassen
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Wim de Graaff
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Jorrit B van Asselt
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Jan Klooster
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and
| | - Maarten Kamermans
- Retinal Signal Processing Lab, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; and .,Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Vila A, Whitaker CM, O'Brien J. Membrane-associated guanylate kinase scaffolds organize a horizontal cell synaptic complex restricted to invaginating contacts with photoreceptors. J Comp Neurol 2016; 525:850-867. [PMID: 27558197 DOI: 10.1002/cne.24101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022]
Abstract
Synaptic processes and plasticity of synapses are mediated by large suites of proteins. In most cases, many of these proteins are tethered together by synaptic scaffold proteins. Scaffold proteins have a large number and typically a variety of protein interaction domains that allow many different proteins to be assembled into functional complexes. Because each scaffold protein has a different set of protein interaction domains and a unique set of interacting partners, the presence of synaptic scaffolds can provide insight into the molecular mechanisms that regulate synaptic processes. In studies of rabbit retina, we found SAP102 and Chapsyn110 selectively localized in the tips of B-type horizontal cell processes, where they contact cone and rod photoreceptors. We further identified some known SAP102 binding partners, kainate receptor GluR6/7 and inward rectifier potassium channel Kir2.1, closely associated with SAP102 in photoreceptor invaginations. The kainate receptor occupies a position distinct from that of the majority of AMPA receptors that dominate the horizontal cell postsynaptic response. GluR6/7 and Kir2.1 presumably are involved in synaptic processes that govern cell-to-cell communication and could both contribute in different ways to synaptic currents that mediate feedback signaling. Notably, we failed to find evidence for the presence of Cx57 or Cx59 that might be involved in ephaptic feedback signaling in this complex. The presence of SAP102 and its binding partners in both cone and rod invaginating synapses suggests that whatever mechanism is supported by this protein complex is present in both types of photoreceptors. J. Comp. Neurol. 525:850-867, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, 77030
| | - Christopher M Whitaker
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - John O'Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, 77030
| |
Collapse
|
18
|
Differential regulation of cone calcium signals by different horizontal cell feedback mechanisms in the mouse retina. J Neurosci 2014; 34:11826-43. [PMID: 25164677 DOI: 10.1523/jneurosci.0272-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Controlling neurotransmitter release by modulating the presynaptic calcium level is a key mechanism to ensure reliable signal transmission from one neuron to the next. In this study, we investigated how the glutamatergic output of cone photoreceptors (cones) in the mouse retina is shaped by different feedback mechanisms from postsynaptic GABAergic horizontal cells (HCs) using a combination of two-photon calcium imaging and pharmacology at the level of individual cone axon terminals. We provide evidence that hemichannel-mediated (putative ephaptic) feedback sets the cone output gain by defining the basal calcium level, a mechanism that may be crucial for adapting cones to the ambient light level. In contrast, pH-mediated feedback did not modulate the cone basal calcium level but affected the size and shape of light-evoked cone calcium signals in a contrast-dependent way: low-contrast light responses were amplified, whereas high-contrast light responses were reduced. Finally, we provide functional evidence that GABA shapes light-evoked calcium signals in cones. Because we could not localize ionotropic GABA receptors on cone axon terminals using electron microscopy, we suggest that GABA may act through GABA autoreceptors on HCs, thereby possibly modulating hemichannel- and/or pH-mediated feedback. Together, our results suggest that at the cone synapse, hemichannel-mediated (ephaptic) and pH-mediated feedback fulfill distinct functions to adjust the output of cones to changing ambient light levels and stimulus contrasts and that the efficacy of these feedback mechanisms is likely modulated by GABA release in the outer retina.
Collapse
|
19
|
Kurtenbach S, Kurtenbach S, Zoidl G. Emerging functions of pannexin 1 in the eye. Front Cell Neurosci 2014; 8:263. [PMID: 25309318 PMCID: PMC4163987 DOI: 10.3389/fncel.2014.00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/14/2014] [Indexed: 01/23/2023] Open
Abstract
Pannexin 1 (Panx1) is a high-conductance, voltage-gated channel protein found in vertebrates. Panx1 is widely expressed in many organs and tissues, including sensory systems. In the eye, Panx1 is expressed in major divisions including the retina, lens and cornea. Panx1 is found in different neuronal and non-neuronal cell types. The channel is mechanosensitive and responds to changes in extracellular ATP, intracellular calcium, pH, or ROS/nitric oxide. Since Panx1 channels operate at the crossroad of major signaling pathways, physiological functions in important autocrine and paracrine feedback signaling mechanisms were hypothesized. This review starts with describing in depth the initial Panx1 expression and localization studies fostering functional studies that uncovered distinct roles in processing visual information in subsets of neurons in the rodent and fish retina. Panx1 is expressed along the entire anatomical axis from optical nerve to retina and cornea in glia, epithelial and endothelial cells as well as in neurons. The expression and diverse localizations throughout the eye points towards versatile functions of Panx1 in neuronal and non-neuronal cells, implicating Panx1 in the crosstalk between immune and neural cells, pressure related pathological conditions like glaucoma, wound repair or neuronal cell death caused by ischemia. Summarizing the literature on Panx1 in the eye highlights the diversity of emerging Panx1 channel functions in health and disease.
Collapse
Affiliation(s)
- Sarah Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Stefan Kurtenbach
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada
| | - Georg Zoidl
- Department of Psychology, Faculty of Health, York University Toronto, ON, Canada ; Department of Biology, Faculty of Science, York University Toronto, ON, Canada
| |
Collapse
|
20
|
Li S, Li X, Chen X, Geng X, Sun J. ATP release channel Pannexin1 is a novel immune response gene in Japanese flounder Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:164-173. [PMID: 25007779 DOI: 10.1016/j.fsi.2014.06.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Extracellular ATP is an important damage-associated molecular pattern molecule that plays key roles in innate immunity. In fish, however, the mechanism for extracellular ATP release remains largely undefined. Pannexin1 (Panx1) is a newly discovered extracellular ATP release channel with a wide tissue distribution and diverse biological functions in mammals. In the present study, we identified and characterized a Panx1 homolog cDNA, termed poPanx1, from Japanese flounder Paralichthys olivaceus, which is one of the most important economic mariculture fish species in China. PoPanx1 is a membrane protein that is composed of 437 amino acids with an estimated molecular mass of 48.7 kDa and an isoelectric point of 6.46. The poPanx1 mRNA ubiquitously expresses in all examined tissues but with predominant expression in hepatopancreas in unstimulated healthy adult Japanese flounder. In Japanese flounder head kidney primary cells, poPanx1 gene expression could be significantly induced by pathogen-associated molecular patterns (PAMPs; polyinosinic-polycytidylic acid and bacterial endotoxin LPS) stimulations. In vivo experiments revealed that poPanx1 mRNA expression was significantly up-regulated upon immune challenges with Edwardsiella tarda and Vibrio anguillarum. Furthermore, we showed that poPanx1 is an important channel protein for PAMP-induced extracellular ATP release that is required for activation of purinergic signaling in fish innate immunity. Taken together, our findings suggest that the ATP release channel, poPanx1, is a novel immune response gene in purinergic signaling of Japanese flounder P. olivaceus.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| | - Xuejing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xiaoli Chen
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China
| | - Xuyun Geng
- Tianjin Center for Control and Prevention of Aquatic Animal Infectious Disease, 442 South Jiefang Road, Hexi District, Tianjin 300221, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 Binshuixidao, Xiqing District, Tianjin 300387, China.
| |
Collapse
|
21
|
Vroman R, Klaassen LJ, Howlett MH, Cenedese V, Klooster J, Sjoerdsma T, Kamermans M. Extracellular ATP hydrolysis inhibits synaptic transmission by increasing ph buffering in the synaptic cleft. PLoS Biol 2014; 12:e1001864. [PMID: 24844296 PMCID: PMC4028192 DOI: 10.1371/journal.pbio.1001864] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 04/10/2014] [Indexed: 11/18/2022] Open
Abstract
A slow mechanism of retinal synaptic inhibition involves hydrolysis of ATP released from pannexin 1 channels (from the tips of horizontal cell dendrites); the resulting protons and phosphates acidify the synaptic cleft, which inhibits neurotransmitter release. Neuronal computations strongly depend on inhibitory interactions. One such example occurs at the first retinal synapse, where horizontal cells inhibit photoreceptors. This interaction generates the center/surround organization of bipolar cell receptive fields and is crucial for contrast enhancement. Despite its essential role in vision, the underlying synaptic mechanism has puzzled the neuroscience community for decades. Two competing hypotheses are currently considered: an ephaptic and a proton-mediated mechanism. Here we show that horizontal cells feed back to photoreceptors via an unexpected synthesis of the two. The first one is a very fast ephaptic mechanism that has no synaptic delay, making it one of the fastest inhibitory synapses known. The second one is a relatively slow (τ≈200 ms), highly intriguing mechanism. It depends on ATP release via Pannexin 1 channels located on horizontal cell dendrites invaginating the cone synaptic terminal. The ecto-ATPase NTPDase1 hydrolyses extracellular ATP to AMP, phosphate groups, and protons. The phosphate groups and protons form a pH buffer with a pKa of 7.2, which keeps the pH in the synaptic cleft relatively acidic. This inhibits the cone Ca2+ channels and consequently reduces the glutamate release by the cones. When horizontal cells hyperpolarize, the pannexin 1 channels decrease their conductance, the ATP release decreases, and the formation of the pH buffer reduces. The resulting alkalization in the synaptic cleft consequently increases cone glutamate release. Surprisingly, the hydrolysis of ATP instead of ATP itself mediates the synaptic modulation. Our results not only solve longstanding issues regarding horizontal cell to photoreceptor feedback, they also demonstrate a new form of synaptic modulation. Because pannexin 1 channels and ecto-ATPases are strongly expressed in the nervous system and pannexin 1 function is implicated in synaptic plasticity, we anticipate that this novel form of synaptic modulation may be a widespread phenomenon. At the first retinal synapse, specific cells—horizontal cells (HCs)—inhibit photoreceptors and help to organize the receptive fields of another retinal cell type, bipolar cells. This synaptic interaction is crucial for visual contrast enhancement. Here we show that horizontal cells feed back to photoreceptors via a very fast ephaptic mechanism and a relatively slow mechanism. The slow mechanism requires ATP release via Pannexin 1 (Panx1) channels that are located on HC dendrites near the site where photoreceptors release the neurotransmitter glutamate to HCs and bipolar cells. The released ATP is hydrolyzed to produce AMP, phosphate groups, and protons; these phosphates and protons form a pH buffer, which acidifies the synaptic cleft. This slow acidification inhibits presynaptic calcium channels and consequently reduces the neurotransmitter release of photoreceptors. This demonstrates a new way in which ATP release can be involved in synaptic modulation. Surprisingly, the action of ATP is not purinergic but is mediated via changes in the pH buffer capacity in the synaptic cleft. Given the broad expression of Panx1 channels in the nervous system and the suggestion that Panx1 function underlies stabilization of synaptic plasticity and is needed for learning, we anticipate that this mechanism will be more widespread than just occurring at the first retinal synapse.
Collapse
Affiliation(s)
- Rozan Vroman
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Lauw J. Klaassen
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | | | - Jan Klooster
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | | | - Maarten Kamermans
- Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
22
|
Abstract
The pannexins (Panxs) are a family of chordate proteins homologous to the invertebrate gap junction forming proteins named innexins. Three distinct Panx paralogs (Panx1, Panx2, and Panx3) are shared among the major vertebrate phyla, but they appear to have suppressed (or even lost) their ability to directly couple adjacent cells. Connecting the intracellular and extracellular compartments is now widely accepted as Panx's primary function, facilitating the passive movement of ions and small molecules along electrochemical gradients. The tissue distribution of the Panxs ranges from pervasive to very restricted, depending on the paralog, and are often cell type-specific and/or developmentally regulated within any given tissue. In recent years, Panxs have been implicated in an assortment of physiological and pathophysiological processes, particularly with respect to ATP signaling and inflammation, and they are now considered to be a major player in extracellular purinergic communication. The following is a comprehensive review of the Panx literature, exploring the historical events leading up to their discovery, outlining our current understanding of their biochemistry, and describing the importance of these proteins in health and disease.
Collapse
Affiliation(s)
- Stephen R Bond
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health Bethesda, MD, USA ; Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| | - Christian C Naus
- Department of Cellular and Physiological Science, Life Sciences Institute, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
23
|
Prochnow N. Relevance of gap junctions and large pore channels in traumatic brain injury. Front Physiol 2014; 5:31. [PMID: 24575046 PMCID: PMC3920098 DOI: 10.3389/fphys.2014.00031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/15/2014] [Indexed: 11/13/2022] Open
Abstract
In case of traumatic brain injury (TBI), occurrence of central nervous tissue damage is frequently aligned with local modulations of neuronal and glial gap junction channel expression levels. The degree of gap junctional protein expression and intercellular coupling efficiency, as well as hemichannel function has substantially impact on the course of trauma recovery and outcome. During TBI, gap junctions are especially involved in the intercellular molecule trafficking on repair of blood vessels and the regulation of vasomotor tone. Furthermore, gliosis and astrocytic swelling due to mechanical strain injury point out the consequences of derailed gap junction communication. This review addresses the outstanding role of gap junction channels in TBI pathophysiology and links the current state of results to applied clinical procedures as well as perspectives in acute and long-term treatment options.
Collapse
Affiliation(s)
- Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
24
|
Pannexin1 channel proteins in the zebrafish retina have shared and unique properties. PLoS One 2013; 8:e77722. [PMID: 24194896 PMCID: PMC3808535 DOI: 10.1371/journal.pone.0077722] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
In mammals, a single pannexin1 gene (Panx1) is widely expressed in the CNS including the inner and outer retinae, forming large-pore voltage-gated membrane channels, which are involved in calcium and ATP signaling. Previously, we discovered that zebrafish lack Panx1 expression in the inner retina, with drPanx1a exclusively expressed in horizontal cells of the outer retina. Here, we characterize a second drPanx1 protein, drPanx1b, generated by whole-genome duplications during teleost evolution. Homology searches strongly support the presence of pannexin sequences in cartilaginous fish and provide evidence that pannexins evolved when urochordata and chordata evolution split. Further, we confirm Panx1 ohnologs being solely present in teleosts. A hallmark of differential expression of drPanx1a and drPanx1b in various zebrafish brain areas is the non-overlapping protein localization of drPanx1a in the outer and drPanx1b in the inner fish retina. A functional comparison of the evolutionary distant fish and mouse Panx1s revealed both, preserved and unique properties. Preserved functions are the capability to form channels opening at resting potential, which are sensitive to known gap junction and hemichannel blockers, intracellular calcium, extracellular ATP and pH changes. However, drPanx1b is unique due to its highly complex glycosylation pattern and distinct electrophysiological gating kinetics. The existence of two Panx1 proteins in zebrafish displaying distinct tissue distribution, protein modification and electrophysiological properties, suggests that both proteins fulfill different functions in vivo.
Collapse
|
25
|
Vroman R, Klaassen LJ, Kamermans M. Ephaptic communication in the vertebrate retina. Front Hum Neurosci 2013; 7:612. [PMID: 24068997 PMCID: PMC3780359 DOI: 10.3389/fnhum.2013.00612] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/07/2013] [Indexed: 11/13/2022] Open
Abstract
In the vertebrate retina, cones project to the horizontal cells (HCs) and bipolar cells (BCs). The communication between cones and HCs uses both chemical and ephaptic mechanisms. Cones release glutamate in a Ca2+-dependent manner, while HCs feed back to cones via an ephaptic mechanism. Hyperpolarization of HCs leads to an increased current through connexin hemichannels located on the tips of HC dendrites invaginating the cone synaptic terminals. Due to the high resistance of the extracellular synaptic space, this current makes the synaptic cleft slightly negative. The result is that the Ca2+-channels in the cone presynaptic membrane experience a slightly depolarized membrane potential and therefore more glutamate is released. This ephaptic mechanism forms a very fast and noise free negative feedback pathway. These characteristics are crucial, since the retina has to perform well in demanding conditions such as low light levels. In this mini-review we will discuss the critical components of such an ephaptic mechanism. Furthermore, we will address the question whether such communication appears in other systems as well and indicate some fundamental features to look for when attempting to identify an ephaptic mechanism.
Collapse
Affiliation(s)
- Rozan Vroman
- 1Retinal Signal Processing, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | | | | |
Collapse
|
26
|
Kranz K, Dorgau B, Pottek M, Herrling R, Schultz K, Bolte P, Monyer H, Penuela S, Laird DW, Dedek K, Weiler R, Janssen-Bienhold U. Expression of Pannexin1 in the outer plexiform layer of the mouse retina and physiological impact of its knockout. J Comp Neurol 2013; 521:1119-35. [PMID: 22965528 DOI: 10.1002/cne.23223] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/09/2012] [Accepted: 09/05/2012] [Indexed: 11/09/2022]
Abstract
Pannexin1 (Panx1) belongs to a class of vertebrate proteins that exhibits sequence homology to innexins, the invertebrate gap junction proteins, and which also shares topological similarities with vertebrate gap junction proteins, the connexins. Unlike gap junctional channels, Panx1 forms single-membrane channels, whose functional role in neuronal circuits is still unsettled. We therefore investigated the subcellular distribution of Panx1 in the mouse retina of wildtype and Panx1-null mice by reverse-transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and electron microscopy. Use of Panx1-deficient mice served as a model to assess the physiological role of Panx1 by electroretinographic recordings and also to ensure the specificity of the anti-Panx1 antibody labeling. Expression of Panx1 was found in type 3a OFF bipolar cells and in dendrites and axonal processes of horizontal cells. Panx1 was also found in horizontal cell dendrites representing the lateral elements of the triad synapse at cone and rod terminals. In vivo electroretinography of Panx1 knockout mice indicated an increased a- and b-wave compared to Panx1 wildtype mice under scotopic conditions. The effect on the b-wave was confirmed by in vitro electroretinograms from the inner retina. These results suggest that Panx1 channels serve as sinks for extracellular current flow making them possible candidates for the mediation of feedback from horizontal cells to photoreceptors.
Collapse
Affiliation(s)
- Katharina Kranz
- Department of Neurobiology, University of Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
D'hondt C, Iyyathurai J, Vinken M, Rogiers V, Leybaert L, Himpens B, Bultynck G. Regulation of connexin- and pannexin-based channels by post-translational modifications. Biol Cell 2013; 105:373-98. [PMID: 23718186 DOI: 10.1111/boc.201200096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 12/28/2022]
Abstract
Connexin (Cx) and pannexin (Panx) proteins form large conductance channels, which function as regulators of communication between neighbouring cells via gap junctions and/or hemichannels. Intercellular communication is essential to coordinate cellular responses in tissues and organs, thereby fulfilling an essential role in the spreading of signalling, survival and death processes. The functional properties of gap junctions and hemichannels are modulated by different physiological and pathophysiological stimuli. At the molecular level, Cxs and Panxs function as multi-protein channel complexes, regulating their channel localisation and activity. In addition to this, gap junctional channels and hemichannels are modulated by different post-translational modifications (PTMs), including phosphorylation, glycosylation, proteolysis, N-acetylation, S-nitrosylation, ubiquitination, lipidation, hydroxylation, methylation and deamidation. These PTMs influence almost all aspects of communicating junctional channels in normal cell biology and pathophysiology. In this review, we will provide a systematic overview of PTMs of communicating junction proteins and discuss their effects on Cx and Panx-channel activity and localisation.
Collapse
Affiliation(s)
- Catheleyne D'hondt
- Laboratory of Molecular and Cellular Signalling, Department Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O/N 1, BE-3000, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
28
|
Thoreson WB, Mangel SC. Lateral interactions in the outer retina. Prog Retin Eye Res 2012; 31:407-41. [PMID: 22580106 PMCID: PMC3401171 DOI: 10.1016/j.preteyeres.2012.04.003] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/05/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (I(Ca)) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Departments of Ophthalmology & Visual Sciences and Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Stuart C. Mangel
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| |
Collapse
|
29
|
Bond SR, Wang N, Leybaert L, Naus CC. Pannexin 1 Ohnologs in the Teleost Lineage. J Membr Biol 2012; 245:483-93. [DOI: 10.1007/s00232-012-9497-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 07/31/2012] [Indexed: 02/04/2023]
|
30
|
Klaassen LJ, Fahrenfort I, Kamermans M. Connexin hemichannel mediated ephaptic inhibition in the retina. Brain Res 2012; 1487:25-38. [PMID: 22796289 DOI: 10.1016/j.brainres.2012.04.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/11/2012] [Indexed: 11/25/2022]
Abstract
Connexins are the building blocks of gap-junctions; sign conserving electrical synapses. Recently it has been shown that connexins can also function as hemichannels and can mediate a sign inverting inhibitory synaptic signal from horizontal cells to cones via an ephaptic mechanism. In this review we will discuss the critical requirements for such an ephaptic interaction and relate these to the available experimental evidence. The highly conserved morphological structure of the cone synapse together with a number of specific connexin proteins and proteoglycans present in the synaptic complex of the cones creates a synaptic environment that allows ephaptic interactions. The connexins involved are members of a special group of connexins, encoded by the GJA9 and GJA10 genes. Surprisingly, in contrast to many other vertebrates, mouse and other rodents seem to lack a GJA9 encoded connexin. The specific combination of substances that block feedback and the highly specific modification of feedback in a zebrafish lacking Cx55.5 hemichannels all point to an ephaptic feedback mechanism from horizontal cells to cones. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Lauw J Klaassen
- The Netherlands Institute for Neuroscience, Department of Retinal Signal Processing, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | | | | |
Collapse
|
31
|
Prochnow N, Hoffmann S, Dermietzel R, Zoidl G. Replacement of a single cysteine in the fourth transmembrane region of zebrafish pannexin 1 alters hemichannel gating behavior. Exp Brain Res 2012; 199:255-64. [PMID: 19701745 DOI: 10.1007/s00221-009-1957-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 07/18/2009] [Indexed: 01/09/2023]
Abstract
Pannexin1 (Panx1) is a novel candidate for an electrical synapse protein in the retina. At present Panx1 is considered to function as a hemichannel. Since information about the gating properties of Panx1 channels to date rely on blocker pharmacology, we have begun to establish a structural context of channel function starting with site directed mutagenesis of cysteine residues in transmembrane domains of Panx1. Dye uptake and whole cell voltage clamp recordings of transfected N2a cells demonstrate that zfPanx1 forms voltage activated hemichannels with a large unitary conductance in vitro. The function of this channel was significantly reduced following mutation of a single cysteine residue (C282W) in the fourth transmembrane region. This result suggests a role of this domain in gating of the Panx1 hemichannel.
Collapse
Affiliation(s)
- Nora Prochnow
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum 44780, Germany.
| | | | | | | |
Collapse
|
32
|
Chandrasekhar A, Bera AK. Hemichannels: permeants and their effect on development, physiology and death. Cell Biochem Funct 2012; 30:89-100. [PMID: 22392438 DOI: 10.1002/cbf.2794] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 12/05/2011] [Accepted: 12/05/2011] [Indexed: 12/12/2022]
Abstract
Hemichannels, which are one half of the gap junction channels, have independent physiological roles. Although hemichannels consisting of connexins are more widely documented, hemichannels of pannexins, proteins homologous to invertebrate gap junction proteins also have been studied. There are at least 21 different connexin and three pannexin isotypes. This variety in isotypes results in tissue-specific hemichannels, which have been implicated in varied events ranging from development, cell survival, to cell death. Hemichannel function varies with its spatio-temporal opening, thus demanding a refined degree of regulation. This review discusses the activity of hemichannels and the molecules released in different physiological states and their impact on tissue functioning.
Collapse
|
33
|
Klaassen LJ, Sun Z, Steijaert MN, Bolte P, Fahrenfort I, Sjoerdsma T, Klooster J, Claassen Y, Shields CR, Ten Eikelder HMM, Janssen-Bienhold U, Zoidl G, McMahon DG, Kamermans M. Synaptic transmission from horizontal cells to cones is impaired by loss of connexin hemichannels. PLoS Biol 2011; 9:e1001107. [PMID: 21811399 PMCID: PMC3139627 DOI: 10.1371/journal.pbio.1001107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 06/07/2011] [Indexed: 11/19/2022] Open
Abstract
In the vertebrate retina, horizontal cells generate the inhibitory surround of bipolar cells, an essential step in contrast enhancement. For the last decades, the mechanism involved in this inhibitory synaptic pathway has been a major controversy in retinal research. One hypothesis suggests that connexin hemichannels mediate this negative feedback signal; another suggests that feedback is mediated by protons. Mutant zebrafish were generated that lack connexin 55.5 hemichannels in horizontal cells. Whole cell voltage clamp recordings were made from isolated horizontal cells and cones in flat mount retinas. Light-induced feedback from horizontal cells to cones was reduced in mutants. A reduction of feedback was also found when horizontal cells were pharmacologically hyperpolarized but was absent when they were pharmacologically depolarized. Hemichannel currents in isolated horizontal cells showed a similar behavior. The hyperpolarization-induced hemichannel current was strongly reduced in the mutants while the depolarization-induced hemichannel current was not. Intracellular recordings were made from horizontal cells. Consistent with impaired feedback in the mutant, spectral opponent responses in horizontal cells were diminished in these animals. A behavioral assay revealed a lower contrast-sensitivity, illustrating the role of the horizontal cell to cone feedback pathway in contrast enhancement. Model simulations showed that the observed modifications of feedback can be accounted for by an ephaptic mechanism. A model for feedback, in which the number of connexin hemichannels is reduced to about 40%, fully predicts the specific asymmetric modification of feedback. To our knowledge, this is the first successful genetic interference in the feedback pathway from horizontal cells to cones. It provides direct evidence for an unconventional role of connexin hemichannels in the inhibitory synapse between horizontal cells and cones. This is an important step in resolving a long-standing debate about the unusual form of (ephaptic) synaptic transmission between horizontal cells and cones in the vertebrate retina. Contrast enhancement is a fundamental feature of our visual system, initiated at the first synaptic connections in the retina. These are the synapses between photoreceptors (rods and cones) and their targets, horizontal cells and bipolar cells. Horizontal cells receive input from many cones and subsequently send a feedback signal to photoreceptors. Bipolar cells, however, receive direct input from only a few photoreceptors, but also receive indirect inhibitory input from surrounding cones via the horizontal cell feedback pathway. This organization induces the classic center/surround organization of bipolar cells and is considered the first step in contrast enhancement. Exactly how horizontal cells send feedback signals to photoreceptors has remained a mystery, however. One hypothesis posits that connexin hemichannels are involved. In this study, we tested this hypothesis using mutant zebrafish that lack connexin hemichannels specifically in horizontal cells. Our electrophysiology experiments showed that feedback is indeed reduced in these mutants, confirming that connexin hemichannels play an important role in feedback from horizontal cells to cones. In addition, we find that these mutant fish have decreased contrast sensitivity at a behavioral level, illustrating that functionally relevant contrast enhancement begins at the first synapse of the visual system.
Collapse
Affiliation(s)
- Lauw J. Klaassen
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ziyi Sun
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Marvin N. Steijaert
- Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | - Petra Bolte
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Iris Fahrenfort
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Trijntje Sjoerdsma
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jan Klooster
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Yvonne Claassen
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Colleen R. Shields
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Neurobiology and Behavior, SUNY at Stony Brook, Stony Brook, New York, United States of America
| | | | | | - Georg Zoidl
- Department of Neuroanatomy and Molecular Brain Research, Ruhr University, Bochum, Germany
- Department of Cytology, Ruhr University, Bochum, Germany
| | - Douglas G. McMahon
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Maarten Kamermans
- Research Unit Retinal Signal Processing, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Neurogenetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
34
|
Gehi R, Shao Q, Laird DW. Pathways regulating the trafficking and turnover of pannexin1 protein and the role of the C-terminal domain. J Biol Chem 2011; 286:27639-53. [PMID: 21659516 DOI: 10.1074/jbc.m111.260711] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pannexin1 (Panx1) is an integral membrane protein comprised of three species as follows: an unglycosylated core-Gly0, a high mannose-Gly1, and a complex glycosylated Gly2 species. Although Panx1 channels mediate several cellular responses, the domain regulating its oligomerization and cell surface trafficking and the mechanisms governing its internalization and degradation have not been identified. This study characterizes the role of the Panx1 C-tail domain by truncating the polypeptide at residue 307 and expressing the mutant in BICR-M1R(k) and HEK-293T cells. Enzymatic digestion and immunolabeling assays revealed that the Panx1(T307)-RFP was glycosylated primarily to the high mannose species consistent with its retention in the endoplasmic reticulum. Co-expression of Panx1(T307)-RFP with Panx1 followed by co-immunoprecipitation assays revealed that the mutant and Panx1 could interact, whereas biotinylation assays showed that this interaction inhibited Panx1 from maturing into the Gly2 species and reaching the cell surface. Additional inhibitor studies indicated that the degradation of the mutant was via proteasomes, whereas Panx1 was degraded by lysosomes. Analysis of the pathways important in Panx1 internalization revealed partial co-distribution of Panx1 with many molecular constituents of the endocytic machinery that include clathrin, AP2, dynamin II, caveolin-1, and caveolin-2. However, co-immunoprecipitation assays together with the disruption of lipid rafts by methyl-β-cyclodextrin suggest that Panx1 does not engage this endocytic machinery. Furthermore, dominant-negative and pharmacological studies revealed that Panx1 internalization was dynamin II-independent. Collectively, these results indicate that the oligomerization and trafficking of Panx1 are regulated by the C-terminal domain, whereas internalization of long lived Panx1 channels occurs in a manner that is distinct from classical endocytic pathways.
Collapse
Affiliation(s)
- Ruchi Gehi
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
35
|
Gründken C, Hanske J, Wengel S, Reuter W, Abdulazim A, Shestopalov VI, Dermietzel R, Zoidl G, Prochnow N. Unified patch clamp protocol for the characterization of Pannexin 1 channels in isolated cells and acute brain slices. J Neurosci Methods 2011; 199:15-25. [PMID: 21549752 DOI: 10.1016/j.jneumeth.2011.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
In the central nervous system, Pannexin 1 (Panx1) channels are implicated in a variety of physiological and pathological conditions. One of the prerequisites to enlighten the role of Panx1 is the development and standardization of reliable methods. Here, we address the applicability of voltage clamp protocols to identify Panx1 channel mediated currents in neurons of acutely dissected brain slices. We improved an established protocol and report on a modified paradigm that robustly evokes Panx1 channel currents. Crucial advances are the use of physiologic ion gradient conditions and a preconditioning step of depolarizing membrane potential ramps of long duration. This new paradigm provides significant impact on membrane current generation at hypo- and depolarized holding potential steps post voltage ramp preconditioning in heterologous expression systems and primary hippocampal CA1 neurons of mouse brain slices in vitro. Finally, we demonstrate that under these conditions the analysis of tail currents elicited by repolarization of the cells from preconditioning holding potential depolarization permits an independent method to isolate Panx1 mediated channel activity. In summary, this study provides a comprehensive methodological improvement in the biophysical analysis of Panx1 channels with a particular focus on investigations under physiological conditions in complex tissues.
Collapse
Affiliation(s)
- Christina Gründken
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kienitz MC, Bender K, Dermietzel R, Pott L, Zoidl G. Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J Biol Chem 2010; 286:290-8. [PMID: 21041301 DOI: 10.1074/jbc.m110.163477] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A large conductance (∼300 picosiemens) channel (LCC) of unknown molecular identity, activated by Ca(2+) release from the sarcoplasmic reticulum, particularly when augmented by caffeine, has been described previously in isolated cardiac myocytes. A potential candidate for this channel is pannexin 1 (Panx1), which has been shown to form large ion channels when expressed in Xenopus oocytes and mammalian cells. Panx1 function is implicated in ATP-mediated auto-/paracrine signaling, and a crucial role in several cell death pathways has been suggested. Here, we demonstrate that after culturing for 4 days LCC activity is no longer detected in myocytes but can be rescued by adenoviral gene transfer of Panx1. Endogenous LCCs and those related to expression of Panx1 share key pharmacological properties previously used for identifying and characterizing Panx1 channels. These data demonstrate that Panx1 constitutes the LCC of cardiac myocytes. Sporadic openings of single Panx1 channels in the absence of Ca(2+) release can trigger action potentials, suggesting that Panx1 channels potentially promote arrhythmogenic activities.
Collapse
Affiliation(s)
- Marie-Cecile Kienitz
- Department of Cellular Physiology, Ruhr-University Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
37
|
Bunse S, Schmidt M, Prochnow N, Zoidl G, Dermietzel R. Intracellular cysteine 346 is essentially involved in regulating Panx1 channel activity. J Biol Chem 2010; 285:38444-52. [PMID: 20829356 DOI: 10.1074/jbc.m110.101014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pannexins constitute a family of proteins exhibiting predominantly hemichannel activity. Pannexin channels have been suggested to participate in a wide spectrum of biological functions such as propagation of calcium waves, release of IL-1β, and responses to ischemic conditions. At present, the molecular mechanisms regulating pannexin hemichannel activity are essentially unknown. Because cysteines have been shown to constitute key elements in regulating hemichannel properties of the connexin-type we performed site-directed mutagenesis of intracellular cysteine residues of Panx1. Cysteine to serine exchange (Cys → Ser) at the C-terminal position amino acid 346 led to a constitutively leaky hemichannel and subsequently to cell death. Increased channel activity was demonstrated by dye uptake and electrophysiological profiling in injected Xenopus laevis oocytes and transfected N2A cells. Mutations of the remaining intracellular cysteines did not result in major changes of Panx1 channel properties. From these data we conclude that the Cys-346 residue is important for proper functioning of the Panx1 channel.
Collapse
Affiliation(s)
- Stefanie Bunse
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, 44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
38
|
Ambrosi C, Gassmann O, Pranskevich JN, Boassa D, Smock A, Wang J, Dahl G, Steinem C, Sosinsky GE. Pannexin1 and Pannexin2 channels show quaternary similarities to connexons and different oligomerization numbers from each other. J Biol Chem 2010; 285:24420-31. [PMID: 20516070 DOI: 10.1074/jbc.m110.115444] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pannexins are homologous to innexins, the invertebrate gap junction family. However, mammalian pannexin1 does not form canonical gap junctions, instead forming hexameric oligomers in single plasma membranes and intracellularly. Pannexin1 acts as an ATP release channel, whereas less is known about the function of Pannexin2. We purified cellular membranes isolated from MDCK cells stably expressing rat Pannexin1 or Pannexin2 and identified pannexin channels (pannexons) in single membranes by negative stain and immunogold labeling. Protein gel and Western blot analysis confirmed Pannexin1 (Panx1) or Pannexin2 (Panx2) as the channel-forming proteins. We expressed and purified Panx1 and Panx2 using a baculovirus Sf9 expression system and obtained doughnut-like structures similar to those seen previously in purified connexin hemichannels (connexons) and mammalian membranes. Purified pannexons were comparable in size and overall appearance to Connexin46 and Connexin50 connexons. Pannexons and connexons were further analyzed by single-particle averaging for oligomer and pore diameters. The oligomer diameter increased with increasing monomer molecular mass, and we found that the measured oligomeric pore diameter for Panxs was larger than for Connexin26. Panx1 and Panx2 formed active homomeric channels in Xenopus oocytes and in vitro vesicle assays. Cross-linking and native gels of purified homomeric full-length and a C-terminal Panx2 truncation mutant showed a banding pattern more consistent with an octamer. We purified Panx1/Panx2 heteromeric channels and found that they were unstable over time, possibly because Panx1 and Panx2 homomeric pannexons have different monomer sizes and oligomeric symmetry from each other.
Collapse
Affiliation(s)
- Cinzia Ambrosi
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, California 92093-0608, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Penuela S, Bhalla R, Nag K, Laird DW. Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 2009; 20:4313-23. [PMID: 19692571 DOI: 10.1091/mbc.e09-01-0067] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pannexin family of mammalian proteins, composed of Panx1, Panx2, and Panx3, has been postulated to be a new class of single-membrane channels with functional similarities to connexin gap junction proteins. In this study, immunolabeling and coimmunoprecipitation assays revealed that Panx1 can interact with Panx2 and to a lesser extent, with Panx3 in a glycosylation-dependent manner. Panx2 strongly interacts with the core and high-mannose species of Panx1 but not with Panx3. Biotinylation and dye uptake assays indicated that all three pannexins, as well as the N-glycosylation-defective mutants of Panx1 and Panx3, can traffic to the cell surface and form functional single-membrane channels. Interestingly, Panx2, which is also a glycoprotein and seems to only be glycosylated to a high-mannose form, is more abundant in intracellular compartments, except when coexpressed with Panx1, when its cell surface distribution increases by twofold. Functional assays indicated that the combination of Panx1 and Panx2 results in compromised channel function, whereas coexpressing Panx1 and Panx3 does not affect the incidence of dye uptake in 293T cells. Collectively, these results reveal that the functional state and cellular distribution of mouse pannexins are regulated by their glycosylation status and interactions among pannexin family members.
Collapse
Affiliation(s)
- Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | |
Collapse
|