1
|
Ehlers CL, Wills DN, Karriker-Jaffe KJ, Gilder DA, Phillips E, Bernert RA. Delta Event-Related Oscillations Are Related to a History of Extreme Binge Drinking in Adolescence and Lifetime Suicide Risk. Behav Sci (Basel) 2020; 10:E154. [PMID: 33036364 PMCID: PMC7599813 DOI: 10.3390/bs10100154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 11/18/2022] Open
Abstract
Alcohol exposure typically begins in adolescence, and heavy binge drinking is associated with health risk behaviors. Event-related oscillations (EROs) may represent sensitive biomarkers or endophenotypes for early alcohol exposure as well as other risk behaviors such as suicidal thoughts and actions. In this study, young adults (age 18-30 years) of American Indian (AI) (n = 479) and Mexican American (MA) (n = 705) ancestry were clinically assessed, and EROs were generated to happy, sad and neutral faces. Extreme adolescent binge drinking (10+ drinks) was common (20%) in this population of AI/MA and associated with a significantly increased risk of a lifetime history of suicidal acts (SA, suicide attempts, deaths) but not suicidal thoughts (ST, ideation, plans). ST were reported among MA participants, whereas SA were more common among AI young adults. Extreme adolescent binge drinking was also associated with errors in detection of sad and neutral faces, increases in delta ERO energy, and decreases in phase locking (PL), particularly in parietal areas. A lifetime history of ST was associated with increases in delta ERO energy and PL, whereas SA were associated with decreases in both. These studies suggest that ERO measures may represent important potential biomarkers of adolescent extreme binge drinking and risk for suicidal behaviors.
Collapse
Affiliation(s)
- Cindy L. Ehlers
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (D.N.W.); (D.A.G.); (E.P.)
| | - Derek N. Wills
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (D.N.W.); (D.A.G.); (E.P.)
| | | | - David A. Gilder
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (D.N.W.); (D.A.G.); (E.P.)
| | - Evelyn Phillips
- Department of Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; (D.N.W.); (D.A.G.); (E.P.)
| | - Rebecca A. Bernert
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA;
| |
Collapse
|
2
|
Habelt B, Arvaneh M, Bernhardt N, Minev I. Biomarkers and neuromodulation techniques in substance use disorders. Bioelectron Med 2020; 6:4. [PMID: 32232112 PMCID: PMC7098236 DOI: 10.1186/s42234-020-0040-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 01/29/2020] [Indexed: 01/10/2023] Open
Abstract
Addictive disorders are a severe health concern. Conventional therapies have just moderate success and the probability of relapse after treatment remains high. Brain stimulation techniques, such as transcranial Direct Current Stimulation (tDCS) and Deep Brain Stimulation (DBS), have been shown to be effective in reducing subjectively rated substance craving. However, there are few objective and measurable parameters that reflect neural mechanisms of addictive disorders and relapse. Key electrophysiological features that characterize substance related changes in neural processing are Event-Related Potentials (ERP). These high temporal resolution measurements of brain activity are able to identify neurocognitive correlates of addictive behaviours. Moreover, ERP have shown utility as biomarkers to predict treatment outcome and relapse probability. A future direction for the treatment of addiction might include neural interfaces able to detect addiction-related neurophysiological parameters and deploy neuromodulation adapted to the identified pathological features in a closed-loop fashion. Such systems may go beyond electrical recording and stimulation to employ sensing and neuromodulation in the pharmacological domain as well as advanced signal analysis and machine learning algorithms. In this review, we describe the state-of-the-art in the treatment of addictive disorders with electrical brain stimulation and its effect on addiction-related neurophysiological markers. We discuss advanced signal processing approaches and multi-modal neural interfaces as building blocks in future bioelectronics systems for treatment of addictive disorders.
Collapse
Affiliation(s)
- Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mahnaz Arvaneh
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ivan Minev
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
López-Caneda E, Rodríguez Holguín S, Correas Á, Carbia C, González-Villar A, Maestú F, Cadaveira F. Binge drinking affects brain oscillations linked to motor inhibition and execution. J Psychopharmacol 2017; 31:873-882. [PMID: 28168896 DOI: 10.1177/0269881116689258] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Neurofunctional studies have shown that binge drinking patterns of alcohol consumption during adolescence and youth are associated with anomalies in brain functioning. Recent evidence suggests that event-related oscillations may be an appropriate index of neurofunctional damage associated with alcoholism. However, there is no study to date that has evaluated the effects of binge drinking on oscillatory brain responses related to task performance. The purpose of the present study was to examine brain oscillations linked to motor inhibition and execution in young binge drinkers (BDs) compared with age-matched controls. METHODS Electroencephalographic activity was recorded from 64 electrodes while 72 university students (36 controls and 36 BDs) performed a visual Go/NoGo task. Event-related oscillations along with the Go-P3 and NoGo-P3 event-related potential components were analysed. RESULTS While no significant differences between groups were observed regarding event-related potentials, event-related oscillation analysis showed that BDs displayed a lower oscillatory response than controls in delta and theta frequency ranges during Go and NoGo conditions. CONCLUSIONS Findings are congruent with event-related oscillation studies showing reduced delta and/or theta oscillations in alcoholics during Go/NoGo tasks. Thus, BDs appear to show disruptions in neural oscillations linked to motor inhibition and execution similar to those observed in alcohol-dependent subjects. Finally, these results are the first to evidence that oscillatory brain activity may be a sensitive indicator of underlying brain anomalies in young BDs, which could complement standard event-related potential measures.
Collapse
Affiliation(s)
| | - Socorro Rodríguez Holguín
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Ángeles Correas
- 3 Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology, Madrid, Spain
| | - Carina Carbia
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Alberto González-Villar
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| | - Fernando Maestú
- 3 Laboratory of Cognitive and Computational Neuroscience, Centre of Biomedical Technology, Madrid, Spain
| | - Fernando Cadaveira
- 2 Department of Clinical Psychology and Psychobiology, University of Santiago de Compostela, Galicia, Spain
| |
Collapse
|
4
|
Amodeo LR, Wills DN, Ehlers CL. Acute low-level alcohol consumption reduces phase locking of event-related oscillations in rodents. Behav Brain Res 2017; 330:25-29. [PMID: 28495609 DOI: 10.1016/j.bbr.2017.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Event-related oscillations (EROs) are rhythmic changes that are evoked by a sensory and/or cognitive stimulus that can influence the dynamics of the EEG. EROs are defined by the decomposition of the EEG signal into magnitude (energy) and phase information and can be elicited in both humans and animals. EROs have been linked to several relevant genes associated with ethanol dependence phenotypes in humans and are altered in selectively bred alcohol-preferring rats. However, pharmacological studies are only beginning to emerge investigating the impact low intoxicating doses of ethanol can have on event-related neural oscillations. The main goal of this study was to investigate the effects of low levels of voluntary consumption of ethanol, in rats, on phase locking of EROs in order to give further insight into the acute intoxicating effects of ethanol on the brain. To this end, we allow rats to self-administer unsweetened 20% ethanol over 15 intermittent sessions. This method results in a stable low-dose consumption of ethanol. Using an auditory event-related potential "oddball" paradigm, we investigated the effects of alcohol on the phase variability of EROs from electrodes implanted into the frontal cortex, dorsal hippocampus, and amygdala. We found that intermittent ethanol self-administration was sufficient to produce a significant reduction in overall intraregional synchrony across all targeted regions. These data suggest that phase locking of EROs within brain regions known to be impacted by alcohol may represent a sensitive biomarker of low levels of alcohol intoxication.
Collapse
Affiliation(s)
- Leslie R Amodeo
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA
| | - Derek N Wills
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla 92037, CA, USA.
| |
Collapse
|
5
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
6
|
Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 2015; 1344:12-26. [DOI: 10.1111/nyas.12745] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert E. Featherstone
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Mary F. McMullen
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Katelyn R. Ward
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jakyung Bang
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jane Xiao
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Steven J. Siegel
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
7
|
Sanchez-Alavez M, Ehlers CL. Event-related oscillations (ERO) during an active discrimination task: Effects of lesions of the nucleus basalis magnocellularis. Int J Psychophysiol 2015; 103:53-61. [PMID: 25660307 DOI: 10.1016/j.ijpsycho.2015.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cholinergic system in the brain is involved in attentional processes that are engaged for the identification and selection of relevant information in the environment and the formation of new stimulus associations. In the present study we determined the effects of cholinergic lesions of nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs) generated in an auditory active discrimination task in rats. Rats were trained to press a lever to begin a series of 1kHz tones and to release the lever upon hearing a 2kHz tone. A time-frequency based representation was used to determine ERO energy and phase synchronization (phase lock index, PLI) across trials, recorded within frontal cortical structures. Lesions in NBM produced by an infusion of a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) resulted in (1) a reduction of the number of correct behavioral responses in the active discrimination task, (2) an increase in ERO energy in the delta frequency bands, (3) an increase in theta, alpha and beta ERO energy in the N1, P3a and P3b regions of interest (ROI), and (4) an increase in PLI in the theta frequency band in the N1 ROIs. These studies suggest that the NBM cholinergic system is involved in maintaining the synchronization/phase resetting of oscillations in different frequencies in response to the presentation of the target stimuli in an active discrimination task.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
8
|
Abstract
In the last decade, the brain's oscillatory responses have invaded the literature. The studies on delta (0.5-3.5Hz) oscillatory responses in humans upon application of cognitive paradigms showed that delta oscillations are related to cognitive processes, mainly in decision making and attentional processes. The present manuscript comprehensively reviews the studies on delta oscillatory responses upon cognitive stimulation in healthy subjects and in different pathologies, namely Alzheimer's disease, Mild Cognitive Impairment (MCI), bipolar disorder, schizophrenia and alcoholism. Further delta oscillatory response upon presentation of faces, facial expressions, and affective pictures are reviewed. The relationship between pre-stimulus delta activity and post-stimulus evoked and event-related responses and/or oscillations is discussed. Cross-frequency couplings of delta oscillations with higher frequency windows are also included in the review. The conclusion of this review includes several important remarks, including that delta oscillatory responses are involved in cognitive and emotional processes. A decrease of delta oscillatory responses could be a general electrophysiological marker for cognitive dysfunction (Alzheimer's disease, MCI, bipolar disorder, schizophrenia and alcoholism). The pre-stimulus activity (phase or amplitude changes in delta activity) has an effect on post-stimulus EEG responses.
Collapse
Affiliation(s)
- Bahar Güntekin
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey.
| | - Erol Başar
- Brain Dynamics, Cognition and Complex Systems Research Center, Istanbul Kültür University, Istanbul 34156, Turkey
| |
Collapse
|
9
|
Salvatore JE, Gottesman II, Dick DM. Endophenotypes for Alcohol Use Disorder: An Update on the Field. CURRENT ADDICTION REPORTS 2015; 2:76-90. [PMID: 26236574 DOI: 10.1007/s40429-015-0046-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endophenotype concept was first proposed as a strategy to use (purportedly) genetically simpler phenotypes in gene identification studies for psychiatric disorders, and is distinct from the closely related concept of intermediate phenotypes. In the area of alcohol use disorder (AUD) research, two candidate endophenotypes have produced replicable genetic associations: level of response to alcohol and neurophysiology markers (e.g., event-related oscillations and event-related potentials). Additional candidate endophenotypes from the cognitive, sensory, and neuroimaging literatures show promise, although more evidence is needed to fully evaluate their potential utility. Translational approaches to AUD endophenotypes have helped characterize the underlying neurobiology and genetics of AUD endophenotypes and identified relevant pharmacological interventions. Future research that capitalizes on the polygenic nature of endophenotypes and emphasizes endophenotypes that may change across development will enhance the usefulness of this concept to understand the genetically-influenced pathways toward AUD.
Collapse
Affiliation(s)
- Jessica E Salvatore
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298-0126
| | - Irving I Gottesman
- Department of Psychology, University of Minnesota, N231 Elliott Hall, 75 East River Road, Minneapolis, MN 55455
| | - Danielle M Dick
- Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298-0126
| |
Collapse
|
10
|
Ehlers CL, Wills DN, Desikan A, Phillips E, Havstad J. Decreases in energy and increases in phase locking of event-related oscillations to auditory stimuli occur during adolescence in human and rodent brain. Dev Neurosci 2014; 36:175-95. [PMID: 24819672 DOI: 10.1159/000358484] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/03/2014] [Indexed: 11/19/2022] Open
Abstract
Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of changes in brain remodeling that occur during adolescence. This study sought to investigate developmental changes in EROs using a similar auditory event-related potential (ERP) paradigm in both rats and humans. Energy and phase variability of EROs collected from 38 young adult men (aged 18-25 years), 33 periadolescent boys (aged 10-14 years), 15 male periadolescent rats [at postnatal day (PD) 36] and 19 male adult rats (at PD103) were investigated. Three channels of ERP data (frontal cortex, central cortex and parietal cortex) were collected from the humans using an 'oddball plus noise' paradigm that was presented under passive (no behavioral response required) conditions in the periadolescents and under active conditions (where each subject was instructed to depress a counter each time he detected an infrequent target tone) in adults and adolescents. ERPs were recorded in rats using only the passive paradigm. In order to compare the tasks used in rats to those used in humans, we first studied whether three ERO measures [energy, phase locking index (PLI) within an electrode site and phase difference locking index (PDLI) between different electrode sites] differentiated the 'active' from 'passive' ERP tasks. Secondly, we explored our main question of whether the three ERO measures differentiated adults from periadolescents in a similar manner in both humans and rats. No significant changes were found in measures of ERO energy between the active and passive tasks in the periadolescent human participants. There was a smaller but significant increase in PLI but not PDLI as a function of active task requirements. Developmental differences were found in energy, PLI and PDLI values between the periadolescents and adults in both the rats and the human participants. Neuronal synchrony as indexed by PLI and PDLI was significantly higher to the infrequent (target) tone compared to the frequent (nontarget) tone in all brain sites in all of the regions of interest time-frequency intervals. Significantly higher ERO energy and significantly lower synchrony was seen in the periadolescent humans and rats compared to their adult counterparts. Taken together these findings are consistent with the hypothesis that adolescent remodeling of the brain includes decreases in energy and increases in synchrony over a wide frequency range both within and between neuronal networks and that these effects are conserved over evolution.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, Calif., USA
| | | | | | | | | |
Collapse
|
11
|
Burwell SJ, Malone SM, Bernat EM, Iacono WG. Does electroencephalogram phase variability account for reduced P3 brain potential in externalizing disorders? Clin Neurophysiol 2014; 125:2007-15. [PMID: 24656843 DOI: 10.1016/j.clinph.2014.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/18/2014] [Accepted: 02/26/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Amplitude deficits of the P3 event-related potential (ERP) are associated with externalizing psychopathology but little is known about the nature of underlying brain electrical activity that accounts for this amplitude reduction. We sought to understand if group differences in task-induced phase-locking in electroencephalographic (EEG) delta and theta frequencies may account for P3-externalizing associations. METHODS Adult males (N=410) completed a visual oddball task and frontal and parietal P3-related delta- and theta-band phase-invariant evoked energy and inter-trial phase-locking measures were investigated with respect to the externalizing spectrum, including substance dependence, adult antisociality, and childhood disruptive disorders. We hypothesized that P3-related phase-locking is weaker in externalizing-diagnosed individuals and this might mediate prior findings of reduced evoked P3 energy. RESULTS Reductions in both evoked energy and phase-locking, in both frequency bands, at both scalp sites, were associated with greater odds of externalizing diagnoses. Generally, adding phase-locking to evoked energy came with better prediction model fit. Moreover, reduced theta-band phase-locking partially mediated the effects of within-frequency evoked energy on externalizing prediction. CONCLUSIONS Inter-trial phase-locking underlying P3 appears to be an important distinction between externalizing and control subjects. SIGNIFICANCE This cross-trial phase-variability for externalizing-diagnosed individuals might reflect deficient top-down "tuning" by neuromodulatory systems.
Collapse
|
12
|
Sanchez-Alavez M, Robledo P, Wills DN, Havstad J, Ehlers CL. Cholinergic modulation of event-related oscillations (ERO). Brain Res 2014; 1559:11-25. [PMID: 24594019 DOI: 10.1016/j.brainres.2014.02.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/12/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022]
Abstract
The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area.
Collapse
Affiliation(s)
- Manuel Sanchez-Alavez
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | - Patricia Robledo
- Laboratory of Neuropharmacology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Derek N Wills
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | - James Havstad
- Laboratory of Neuropharmacology, Faculty of Health and Life Sciences, Universitat Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Cindy L Ehlers
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Ehlers CL, Wills DN, Havstad J. Ethanol reduces the phase locking of neural activity in human and rodent brain. Brain Res 2012; 1450:67-79. [PMID: 22410292 DOI: 10.1016/j.brainres.2012.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 11/29/2022]
Abstract
How the neuromolecular actions of ethanol translate to its observed intoxicating effects remains poorly understood. Synchrony of phase (phase locking) of event-related oscillations (EROs) within and between different brain areas has been suggested to reflect communication exchange between neural networks and as such may be a sensitive and translational measure of ethanol's effects. Using a similar auditory event-related potential paradigm in both rats and humans we investigated the phase variability of EROs collected from 38 young men who had participated in an ethanol/placebo challenge protocol, and 46 adult male rats given intraperitoneal injections of ethanol/saline. Phase locking was significantly higher in the delta frequencies in humans than in rats. Phase locking was also higher for the rare (target) tone than the frequent (non-target) tone in both species. Significant reductions in phase locking to the rare (target) tone in the delta, theta, alpha, beta and gamma frequencies, within and between brain sites, was found at 1h following ethanol as compared to placebo/saline administration in both rats and humans. Reductions in phase locking in the alpha frequencies in the parietal cortex were found to be correlated with blood ethanol concentrations. These findings are consistent with the hypothesis that ethanol's intoxicating actions in the brain include reducing synchrony within and between neuronal networks, perhaps by increasing the level of noise in key neuromolecular interactions.
Collapse
Affiliation(s)
- Cindy L Ehlers
- Department of Molecular and Integrative Neuroscience, The Scripps Research Institute,10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
14
|
Pandey AK, Kamarajan C, Rangaswamy M, Porjesz B. Event-Related Oscillations in Alcoholism Research: A Review. ACTA ACUST UNITED AC 2012; Suppl 7. [PMID: 24273686 DOI: 10.4172/2155-6105.s7-001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism.
Collapse
Affiliation(s)
- Ashwini K Pandey
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
15
|
EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 2011; 36:677-95. [PMID: 22020231 DOI: 10.1016/j.neubiorev.2011.10.002] [Citation(s) in RCA: 442] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/23/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Functional significance of delta oscillations is not fully understood. One way to approach this question would be from an evolutionary perspective. Delta oscillations dominate the EEG of waking reptiles. In humans, they are prominent only in early developmental stages and during slow-wave sleep. Increase of delta power has been documented in a wide array of developmental disorders and pathological conditions. Considerable evidence on the association between delta waves and autonomic and metabolic processes hints that they may be involved in integration of cerebral activity with homeostatic processes. Much evidence suggests the involvement of delta oscillations in motivation. They increase during hunger, sexual arousal, and in substance users. They also increase during panic attacks and sustained pain. In cognitive domain, they are implicated in attention, salience detection, and subliminal perception. This evidence shows that delta oscillations are associated with evolutionary old basic processes, which in waking adults are overshadowed by more advanced processes associated with higher frequency oscillations. The former processes rise in activity, however, when the latter are dysfunctional.
Collapse
|
16
|
Event-related oscillations in the parietal cortex of adult alcohol-preferring (P) and alcohol-nonpreferring rats (NP). Alcohol 2010; 44:335-42. [PMID: 20598842 DOI: 10.1016/j.alcohol.2010.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 02/08/2010] [Accepted: 02/25/2010] [Indexed: 11/23/2022]
Abstract
The selectively bred alcohol-preferring (P) and -nonpreferring (NP) lines were developed from Wistar rats to model high and low voluntary alcohol consumption and have been demonstrated to exhibit many of the characteristics of human alcohol dependence. Electrophysiologic studies have shown P rats exhibit more electroencephalographic fast frequency activity and reduced P3 amplitude in the parietal cortex than NP rats, findings that are more common in alcohol-dependent individuals. Event-related oscillations (EROs) have been suggested to be good endophenotypes associated with ethanol dependence in clinical studies. Recently EROs have also been demonstrated to occur in rodents in response to stimuli that are similar to that used in human clinical studies. The objective of the present study was to characterize EROs in adult P and NP rats. A time-frequency representation method was used to determine delta, theta, and alpha/beta ERO energy and the degree of phase variation in the parietal cortex of adult P and NP rats. The present results suggest that the decrease in P3 amplitudes previously shown in P rats were not associated with changes in ERO energy but were significantly associated with decreases in evoked delta and alpha/beta phase locking. These studies demonstrate ERO measures may also be good endophenotypes in animal models of alcoholism.
Collapse
|
17
|
Criado JR, Ehlers CL. Effects of adolescent ethanol exposure on event-related oscillations (EROs) in the hippocampus of adult rats. Behav Brain Res 2010; 210:164-70. [PMID: 20170688 DOI: 10.1016/j.bbr.2010.02.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 02/09/2010] [Accepted: 02/09/2010] [Indexed: 01/19/2023]
Abstract
Electrophysiological studies have shown that adolescent ethanol (EtOH) exposure can produce long-term changes in hippocampal EEG and ERP activity. Recently, evidence has emerged suggesting that event-related oscillations (EROs) may be good indices of alcoholism risk in humans, however, have not been evaluated for their ability to index the effects of EtOH exposure. The objective of the present study was to characterize EROs generated in hippocampus in adult rats exposed to EtOH during adolescence. Adolescent male Sprague-Dawley rats were exposed to EtOH vapor for 12h/d for 10 days. A time-frequency representation method was used to determine delta, theta, alpha and beta ERO energy and the degree of phase variation in the hippocampus of adult rats exposed to EtOH and age-matched controls. The present results suggest that the decrease in P3 amplitudes, previously observed in adult rats exposed to EtOH during adolescence, is associated with increases in evoked theta ERO energy. These studies suggest that EROs are suitable for characterizing the long-term effects of adolescent EtOH exposure. Further studies are needed to determine the relationship between the mechanisms that regulate these neurophysiological endophenotypes and the consequences of adolescent EtOH exposure.
Collapse
Affiliation(s)
- José R Criado
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, La Jolla, CA 92037, USA
| | | |
Collapse
|