1
|
Broadbelt T, Mutlu-Smith M, Carnicero-Senabre D, Saido TC, Saito T, Wang SH. Impairment in novelty-promoted memory via behavioral tagging and capture before apparent memory loss in a knock-in model of Alzheimer's disease. Sci Rep 2022; 12:22298. [PMID: 36566248 PMCID: PMC9789965 DOI: 10.1038/s41598-022-26113-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) is associated with cognitive impairments and age-dependent memory deficits which have been studied using genetic models of AD. Whether the processes for modulating memory persistence are more vulnerable to the influence of amyloid pathology than the encoding and consolidation of the memory remains unclear. Here, we investigated whether early amyloid pathology would affect peri-learning novelty in promoting memory, through a process called behavioral tagging and capture (BTC). AppNL-G-F/NL-G-F mice and wild-type littermates were trained in an appetitive delayed matching-to-place (ADMP) task which allows for the assessment of peri-learning novelty in facilitating memory. The results show that novelty enabled intermediate-term memory in wild-type mice, but not in AppNL-G-F/NL-G-F mice in adulthood. This effect preceded spatial memory impairment in the ADMP task seen in middle age. Other memory tests in the Barnes maze, Y-maze, novel object or location recognition tasks remained intact. Together, memory modulation through BTC is impaired before apparent deficits in learning and memory. Relevant biological mechanisms underlying BTC and the implication in AD are discussed.
Collapse
Affiliation(s)
- Tabitha Broadbelt
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Menekse Mutlu-Smith
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| | - Daniel Carnicero-Senabre
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK ,grid.5515.40000000119578126Present Address: Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry and Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Takaomi C. Saido
- grid.474690.8Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Saitama, 351-0198 Japan
| | - Takashi Saito
- grid.260433.00000 0001 0728 1069Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Aichi, 467-8601 Japan
| | - Szu-Han Wang
- grid.4305.20000 0004 1936 7988Centre for Clinical Brain Sciences, The University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh, EH16 4SB UK
| |
Collapse
|
2
|
Mercerón-Martínez D, Almaguer-Melian W, Bergado JA. Basolateral amygdala stimulation plus water maze training restore dentate gyrus LTP and improve spatial learning and memory. Behav Brain Res 2022; 417:113589. [PMID: 34547342 DOI: 10.1016/j.bbr.2021.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Synaptic plasticity is a key mechanism of neural plasticity involved in learning and memory. A reduced or impaired synaptic plasticity could lead to a deficient learning and memory. On the other hand, besides reducing hipocampal dependent learning and memory, fimbria-fornix lesion affects LTP. However, we have consistently shown that stimulation of the basolateral amygdala (BLA) 15 min after water maze training is able to improve spatial learning and memory in fimbria fornix lesioned rats while also inducing changes in the expression of plasticity-related genes expression in memory associated brain regions like the hippocampus and prefrontal cortex. In this study we test that hypothesis: whether BLA stimulation 15 min after water maze training can improve LTP in the hippocampus of fimbria-fornix lesioned rats. To address this question, we trained fimbria-fornix lesioned rats in water maze for four consecutive days, and the BLA was bilaterally stimulated 15 min after each training session.Our data show that trained fimbria-fornix lesioned rats develop a partially improved LTP in dentated gyrus compared with the non-trained fimbria-fornix lesioned rats. In contrast, dentated gyrus LTP in trained and BLA stimulated fimbria-fornix lesioned rats improved significantly compared to the trained fimbria-fornix lesioned rats, but was not different from that shown by healthy animals. BLA stimulation in non-trained FF lesioned rats did not improve LTP; instead produces a transient synaptic depression. Restoration of the ability to develop LTP by the combination of training and BLA stimulation would be one of the mechanisms involved in ameliorating memory deficits in lesioned animals.
Collapse
Affiliation(s)
| | | | - Jorge A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Montería, Colombia.
| |
Collapse
|
3
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Calderón-Peña R, Bergado JA. Amygdala stimulation ameliorates memory impairments and promotes c-Fos activity in fimbria-fornix-lesioned rats. Synapse 2020; 74:e22179. [PMID: 32621298 DOI: 10.1002/syn.22179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
Abstract
Recently we provided data showing that amygdala stimulation can ameliorate spatial memory impairments in rats with lesion in the fimbria-fornix (FF). The mechanisms for this improvement involve early gene expression and synthesis of BDNF, MAP-2, and GAP43 in the hippocampus and prefrontal cortex. Now we have studied which brain structures are activated by the amygdala using c-Fos as a marker of neural activation. First, we studied neuronal activation after tetanic stimulation to the amygdala in intact rats. We then carried out a second study in FF-lesioned rats in which the amygdala was stimulated 15 min after daily spatial memory training in the water maze. Our results showed that amygdala stimulation produces widespread brain activation, that includes cortical, thalamic, and brain stem structures. Activation was particularly intense in the dentate gyrus and the prefrontal cortex. Training in the water maze increased c-Fos positive nuclei in the dentate gyrus of the hippocampus and in medial prefrontal cortex. Amygdala stimulation to trained FF-lesioned rats induced an increase of neural activity in the dentate gyrus and medial prefrontal cortex relative to the FF-lesioned, but not stimulated group, like the c-Fos activity seen in trained control rats. Based on these and previous results we explain the mechanisms of amygdala reinforcement of neural plasticity and the partial recovery of spatial memory deficits.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - William Almaguer-Melian
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | - Esteban Alberti-Amador
- Department of Experimental Neurophysiology, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | | | - Jorge A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Montería, Colombia
| |
Collapse
|
4
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Bergado JA. Amygdala stimulation promotes recovery of behavioral performance in a spatial memory task and increases GAP-43 and MAP-2 in the hippocampus and prefrontal cortex of male rats. Brain Res Bull 2018; 142:8-17. [PMID: 29933038 DOI: 10.1016/j.brainresbull.2018.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
The relationships between affective and cognitive processes are an important issue of present neuroscience. The amygdala, the hippocampus and the prefrontal cortex appear as main players in these mechanisms. We have shown that post-training electrical stimulation of the basolateral amygdala (BLA) speeds the acquisition of a motor skill, and produces a recovery in behavioral performance related to spatial memory in fimbria-fornix (FF) lesioned animals. BLA electrical stimulation rises bdnf RNA expression, BDNF protein levels, and arc RNA expression in the hippocampus. In the present paper we have measured the levels of one presynaptic protein (GAP-43) and one postsynaptic protein (MAP-2) both involved in synaptogenesis to assess whether structural neuroplastic mechanisms are involved in the memory enhancing effects of BLA stimulation. A single train of BLA stimulation produced in healthy animals an increase in the levels of GAP-43 and MAP-2 that lasted days in the hippocampus and the prefrontal cortex. In FF-lesioned rats, daily post-training stimulation of the BLA ameliorates the memory deficit of the animals and induces an increase in the level of both proteins. These results support the hypothesis that the effects of amygdala stimulation on memory recovery are sustained by an enhanced formation of new synapses.
Collapse
Affiliation(s)
- D Mercerón-Martínez
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - W Almaguer-Melian
- Laboratorio de Electrofisiología Experimental, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa 11300, Havana City, Cuba.
| | - E Alberti-Amador
- Lab. Biología Molecular, International Center for Neurological Restoration (CIREN), Ave. 25 No. 15806, entre 156 y 158, Playa, Havana City, 11300, Cuba.
| | - J A Bergado
- Universidad del Sinú "Elías Bechara Zainum", Cra. 1w No. 38-153, Barrio Juan XXIII, Montería, Córdoba, 4536534, Colombia.
| |
Collapse
|
5
|
Recording Field Potentials and Synaptic Plasticity From Freely Behaving Rodents. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2018. [DOI: 10.1016/b978-0-12-812028-6.00001-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Mercerón-Martínez D, Almaguer-Melian W, Alberti-Amador E, Estupiñán B, Fernández I, Bergado J. Amygdala electrical stimulation inducing spatial memory recovery produces an increase of hippocampal bdnf and arc gene expression. Brain Res Bull 2016; 124:254-61. [DOI: 10.1016/j.brainresbull.2016.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
|
7
|
Almaguer-Melian W, Mercerón-Martínez D, Delgado-Ocaña S, Pavón-Fuentes N, Ledón N, Bergado JA. EPO induces changes in synaptic transmission and plasticity in the dentate gyrus of rats. Synapse 2016; 70:240-52. [PMID: 26860222 DOI: 10.1002/syn.21895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/24/2022]
Abstract
Erythropoietin has shown wide physiological effects on the central nervous system in animal models of disease, and in healthy animals. We have recently shown that systemic EPO administration 15 min, but not 5 h, after daily training in a water maze is able to induce the recovery of spatial memory in fimbria-fornix chronic-lesioned animals, suggesting that acute EPO triggers mechanisms which can modulate the active neural plasticity mechanism involved in spatial memory acquisition in lesioned animals. Additionally, this EPO effect is accompanied by the up-regulation of plasticity-related early genes. More remarkably, this time-dependent effects on learning recovery could signify that EPO in nerve system modulate specific living-cellular processes. In the present article, we focus on the question if EPO could modulate the induction of long-term synaptic plasticity like LTP and LTD, which presumably could support our previous published data. Our results show that acute EPO peripheral administration 15 min before the induction of synaptic plasticity is able to increase the magnitude of the LTP (more prominent in PSA than fEPSP-Slope) to facilitate the induction of LTD, and to protect LTP from depotentiation. These findings showing that EPO modulates in vivo synaptic plasticity sustain the assumption that EPO can act not only as a neuroprotective substance, but is also able to modulate transient neural plasticity mechanisms and therefore to promote the recovery of nerve function after an established chronic brain lesion. According to these results, EPO could be use as a molecular tool for neurorestaurative treatments.
Collapse
Affiliation(s)
| | | | | | - Nancy Pavón-Fuentes
- Centro Internacional De Restauración Neurológica (CIREN), La Habana 11300, Cuba
| | - Nuris Ledón
- Centro De Inmunología Molecular, Playa, 11600, La Habana, Cuba
| | - Jorge A Bergado
- Centro Internacional De Restauración Neurológica (CIREN), La Habana 11300, Cuba
| |
Collapse
|
8
|
Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats. Proc Natl Acad Sci U S A 2012; 109:953-8. [PMID: 22215603 DOI: 10.1073/pnas.1114198109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.
Collapse
|
9
|
Friedrich J, Urbanczik R, Senn W. Spatio-temporal credit assignment in neuronal population learning. PLoS Comput Biol 2011; 7:e1002092. [PMID: 21738460 PMCID: PMC3127803 DOI: 10.1371/journal.pcbi.1002092] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/02/2011] [Indexed: 01/27/2023] Open
Abstract
In learning from trial and error, animals need to relate behavioral decisions to environmental reinforcement even though it may be difficult to assign credit to a particular decision when outcomes are uncertain or subject to delays. When considering the biophysical basis of learning, the credit-assignment problem is compounded because the behavioral decisions themselves result from the spatio-temporal aggregation of many synaptic releases. We present a model of plasticity induction for reinforcement learning in a population of leaky integrate and fire neurons which is based on a cascade of synaptic memory traces. Each synaptic cascade correlates presynaptic input first with postsynaptic events, next with the behavioral decisions and finally with external reinforcement. For operant conditioning, learning succeeds even when reinforcement is delivered with a delay so large that temporal contiguity between decision and pertinent reward is lost due to intervening decisions which are themselves subject to delayed reinforcement. This shows that the model provides a viable mechanism for temporal credit assignment. Further, learning speeds up with increasing population size, so the plasticity cascade simultaneously addresses the spatial problem of assigning credit to synapses in different population neurons. Simulations on other tasks, such as sequential decision making, serve to contrast the performance of the proposed scheme to that of temporal difference-based learning. We argue that, due to their comparative robustness, synaptic plasticity cascades are attractive basic models of reinforcement learning in the brain. The key mechanisms supporting memory and learning in the brain rely on changing the strength of synapses which control the transmission of information between neurons. But how are appropriate changes determined when animals learn from trial and error? Information on success or failure is likely signaled to synapses by neurotransmitters like dopamine. But interpreting this reward signal is difficult because the number of synaptic transmissions occurring during behavioral decision making is huge and each transmission may have contributed differently to the decision, or perhaps not at all. Extrapolating from experimental evidence on synaptic plasticity, we suggest a computational model where each synapse collects information about its contributions to the decision process by means of a cascade of transient memory traces. The final trace then remodulates the reward signal when the persistent change of the synaptic strength is triggered. Simulation results show that with the suggested synaptic plasticity rule a simple neural network can learn even difficult tasks by trial and error, e.g., when the decision - reward sequence is scrambled due to large delays in reward delivery.
Collapse
Affiliation(s)
| | | | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
10
|
Almaguer-Melian W, Bergado J, Martí LM, Duany-Machado C, Frey J. Basolateral amygdala stimulation does not recruit LTP at depotentiated synapses. Physiol Behav 2010; 101:549-53. [DOI: 10.1016/j.physbeh.2010.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 11/29/2022]
|