1
|
Vitiello A, Troiano V, La Porta R. Statins in Alzheimer’s disease (AD). Eur J Clin Pharmacol 2022; 78:1201-1202. [DOI: 10.1007/s00228-022-03315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
|
2
|
Bhat A, Dalvi H, Jain H, Rangaraj N, Singh SB, Srivastava S. Perspective insights of repurposing the pleiotropic efficacy of statins in neurodegenerative disorders: An expository appraisal. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100012. [PMID: 34909647 PMCID: PMC8663947 DOI: 10.1016/j.crphar.2020.100012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 10/26/2022] Open
Abstract
Neurodegenerative disorders which affects a larger population pose a great clinical challenge. These disorders impact the quality of life of an individual by damaging the neurons, which are the unit cells of the brain. Clinicians are faced with the grave challenge of inhibiting the progression of these diseases as available treatment options fail to meet the clinical demand. Thus, treating the disease/disorder symptomatically is the Hobson's choice. The goal of the researchers is to introduce newer therapies in this segment and introducing a new molecule will take long years of development. Hence, drug repurposing/repositioning can be a better substitute in comparison to time consuming and expensive drug discovery and development cycle. Presently, a paradigm shift towards the re-purposing of drugs can be witnessed. Statins which have been previously approved as anti-hyperlipidemic agents are in the limelight of research for re-purposed drugs. Owing to their anti-inflammatory and antioxidant nature, statins act as neuroprotective in several brain disorders. Further they attenuate the amyloid plaques and protein aggregation which are the triggering factors in the Alzheimer's and Parkinson's respectively. In case of Huntington disease and Multiple sclerosis they help in improving the psychomotor symptoms and stimulate remyelination thus acting as neuroprotective. This article reviews the potential of statins in treating neurodegenerative disorders along with a brief discussion on the safety concerns associated with use of statins and human clinical trial data linked with re-tasking statins for neurodegenerative disorders along with the regulatory perspectives involved with the drug repositioning.
Collapse
Affiliation(s)
- Aditi Bhat
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Harshita Dalvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Harsha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Nagarjun Rangaraj
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Department of Pharmacology and Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
3
|
Dutta S, Rahman S, Ahmad R, Kumar T, Dutta G, Banerjee S, Abubakar AR, Rowaiye AB, Dhingra S, Ravichandiran V, Kumar S, Sharma P, Haque M, Charan J. An evidence-based review of neuronal cholesterol role in dementia and statins as a pharmacotherapy in reducing risk of dementia. Expert Rev Neurother 2021; 21:1455-1472. [PMID: 34756134 DOI: 10.1080/14737175.2021.2003705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Dementia is a progressive neurodegenerative disorder impairing memory and cognition. Alzheimer's Disease, followed by vascular dementia - the most typical form. Risk factors for vascular dementia include diabetes, cardiovascular disease, hyperlipidemia. Lipids' levels are significantly associated with vascular changes in the brain. AREAS COVERED The present article reviews the cholesterol metabolism in the brain, which includes: the synthesis, transport, storage, and elimination process. Additionally, it reviews the role of cholesterol in the pathogenesis of dementia and statin as a therapeutic intervention in dementia. In addition to the above, it further reviews evidence in support of as well as against statin therapy in dementia, recent updates of statin pharmacology, and demerits of use of statin pharmacotherapy. EXPERT OPINION Amyloid-β peptides and intraneuronal neurofibrillary tangles are markers of Alzheimer's disease. Evidence shows cholesterol modulates the functioning of enzymes associated with Amyloid-β peptide processing and synthesis. Lowering cholesterol using statin may help prevent or delay the progression of dementia. This paper reviews the role of statin in dementia and recommends extensive future studies, including genetic research, to obtain a precise medication approach for patients with dementia.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| | - Sayeeda Rahman
- School of Medicine, American University of Integrative Sciences, Bridgetown, Barbados
| | - Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka, Bangladesh
| | - Tarun Kumar
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | - Gitashree Dutta
- Department of Community Medicine, Neigrihms, Shillong, India
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati University, Gandhinagar, India
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujrat, India
| |
Collapse
|
4
|
Eskandary A, Moazedi AA, Najaph zade varzi H, Akhond MR. Combined Effects of Donepezil and Lovastatin on Cognition Deficit Induced by Bilateral Lesion of the Nucl. Basalis Magnocellularis in a Rat Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9723-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Hou XQ, Zhang L, Yang C, Rong CP, He WQ, Zhang CX, Li S, Su RY, Chang X, Qin JH, Chen YB, Xian SX, Wang Q. Alleviating effects of Bushen-Yizhi formula on ibotenic acid-induced cholinergic impairments in rat. Rejuvenation Res 2016; 18:111-27. [PMID: 25482164 DOI: 10.1089/rej.2014.1603] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases.
Collapse
Affiliation(s)
- Xue-Qin Hou
- 1 DME Center, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine , Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sun JH, Yu JT, Tan L. The Role of Cholesterol Metabolism in Alzheimer’s Disease. Mol Neurobiol 2014; 51:947-65. [DOI: 10.1007/s12035-014-8749-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/07/2014] [Indexed: 12/25/2022]
|
7
|
Huang J, Deng F, Wang L, Xiang XR, Zhou WW, Hu N, Xu L. Hypoxia induces osteogenesis-related activities and expression of core binding factor α1 in mesenchymal stem cells. TOHOKU J EXP MED 2011; 224:7-12. [PMID: 21498965 DOI: 10.1620/tjem.224.7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mesenchymal stem sells (MSCs) have received much attention in the field of bone tissue engineering due to their biological capability to differentiate into osteogenic lineage cells. Hypoxia-inducible factor 1alpha (HIF-1α) plays an important role in the MSC-related bone regeneration during hypoxia, while core binding factor alpha 1 (Cbfα1) is a transcription regulator that is involved in the chondrocyte differentiation and ossification. In the present study, we investigated the effects of hypoxia on biological capability of MSCs. MSCs were isolated from adult rabbit bone marrow, and were cultured in vitro under normoxia (air with 5% CO(2)) or hypoxia (5% CO(2) and 95% N(2)). The proliferation of MSCs, alkaline phosphatase (ALP) activity, and production of collagens type I and type III (Col I/III) were examined. The expression levels of HIF-1α and Cbfα1 were measured by real-time PCR and western blot analyses. We found that hypoxia significantly induced the proliferation of MSCs and increased ALP activity and the production of Col I/III. Moreover, hypoxia increased the expression of Cbfα1 mRNA after 12 h, whereas the expression of HIF-1α mRNA was increased after 1 h of hypoxia. Knockdown of HIF-1α expression with a small interfering RNA significantly increased the expression levels of Cbfα1 protein either under the normoxia or hypoxia condition. Our results indicate that hypoxia enhances MSCs to differentiate into osteogenic lineage cells and suggest that Cbfα1 may be negatively regulated by HIF-1α.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Periodontology, Affiliated Hospital of Stomatology, Chongqing University of Medical Sciences, PR China
| | | | | | | | | | | | | |
Collapse
|