1
|
Alexander C, Jeon J, Nickerson K, Hassler S, Vasefi M. CBD and the 5-HT1A receptor: A medicinal and pharmacological review. Biochem Pharmacol 2025; 233:116742. [PMID: 39778776 DOI: 10.1016/j.bcp.2025.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Cannabidiol (CBD), a phytocannabinoid, has emerged as a promising candidate for addressing a wide array of symptoms. It has the ability to bind to multiple proteins and receptors, including 5-HT1AR, transient receptor potential vanilloid 1 (TRPV1), and cannabinoid receptors. However, CBD's pharmacodynamic interaction with 5-HT1AR and its medicinal outcomes are still debated. This review explores recent literature to elucidate these questions, highlighting the neurotherapeutic outcomes of this pharmacodynamic interaction and proposing a signaling pathway underlying the mechanism by which CBD desensitizes 5-HT1AR signaling. A comprehensive survey of the literature underscores CBD's multifaceted neurotherapeutic effects, which include antidepressant, anxiolytic, neuroprotective, antipsychotic, antiemetic, anti-allodynic, anti-epileptic, anti-degenerative, and addiction-treating properties, attributable in part to its interactions with 5-HT1AR. Furthermore, evidence suggests that the pharmacodynamic interaction between CBD and 5-HT1AR is contingent upon dosage. Moreover, we propose that CBD can induce desensitization of 5-HT1AR via both homologous and heterologous mechanisms. Homologous desensitization involves the recruitment of G protein-coupled receptor kinase 2 (GRK2) and β-arrestin, leading to receptor endocytosis. In contrast, heterologous desensitization is mediated by an elevated intracellular calcium level or activation of protein kinases, such as c-Jun N-terminal kinase (JNK), through the activity of other receptors.
Collapse
Affiliation(s)
- Claire Alexander
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70118, USA
| | - Jiyoon Jeon
- Department of Biology, Lamar University, Beaumont, TX, 77710, USA
| | - Kyle Nickerson
- Department of Biology, Baylor University, Waco, TX, 76706, USA
| | - Shayne Hassler
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA
| | - Maryam Vasefi
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houton, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Saunders SE, Santin JM. Activation of respiratory-related bursting in an isolated medullary section from adult bullfrogs. J Exp Biol 2023; 226:jeb245951. [PMID: 37665261 PMCID: PMC10546875 DOI: 10.1242/jeb.245951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
Breathing is generated by a rhythmic neural circuit in the brainstem, which contains conserved elements across vertebrate groups. In adult frogs, the 'lung area' located in the reticularis parvocellularis is thought to represent the core rhythm generator for breathing. Although this region is necessary for breathing-related motor output, whether it functions as an endogenous oscillator when isolated from other brainstem centers is not clear. Therefore, we generated thick brainstem sections that encompass the lung area to determine whether it can generate breathing-related motor output in a highly reduced preparation. Brainstem sections did not produce activity. However, subsaturating block of glycine receptors reliably led to the emergence of rhythmic motor output that was further enhanced by blockade of GABAA receptors. Output occurred in singlets and multi-burst episodes resembling the intact network. However, burst frequency was slower and individual bursts had longer durations than those produced by the intact preparation. In addition, burst frequency was reduced by noradrenaline and μ-opioids, and increased by serotonin, as observed in the intact network and in vivo. These results suggest that the lung area can be activated to produce rhythmic respiratory-related motor output in a reduced brainstem section and provide new insights into respiratory rhythm generation in adult amphibians. First, clustering breaths into episodes can occur within the rhythm-generating network without long-range input from structures such as the pons. Second, local inhibition near, or within, the rhythmogenic center may need to be overridden to express the respiratory rhythm.
Collapse
Affiliation(s)
- Sandy E. Saunders
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Joseph M. Santin
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Song XJ, Yang CL, Chen D, Yang Y, Mao Y, Cao P, Jiang A, Wang W, Zhang Z, Tao W. Up-regulation of LCN2 in the anterior cingulate cortex contributes to neural injury-induced chronic pain. Front Cell Neurosci 2023; 17:1140769. [PMID: 37362002 PMCID: PMC10285483 DOI: 10.3389/fncel.2023.1140769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Chronic pain caused by disease or injury affects more than 30% of the general population. The molecular and cellular mechanisms underpinning the development of chronic pain remain unclear, resulting in scant effective treatments. Here, we combined electrophysiological recording, in vivo two-photon (2P) calcium imaging, fiber photometry, Western blotting, and chemogenetic methods to define a role for the secreted pro-inflammatory factor, Lipocalin-2 (LCN2), in chronic pain development in mice with spared nerve injury (SNI). We found that LCN2 expression was upregulated in the anterior cingulate cortex (ACC) at 14 days after SNI, resulting in hyperactivity of ACC glutamatergic neurons (ACCGlu) and pain sensitization. By contrast, suppressing LCN2 protein levels in the ACC with viral constructs or exogenous application of neutralizing antibodies leads to significant attenuation of chronic pain by preventing ACCGlu neuronal hyperactivity in SNI 2W mice. In addition, administering purified recombinant LCN2 protein in the ACC could induce pain sensitization by inducing ACCGlu neuronal hyperactivity in naïve mice. This study provides a mechanism by which LCN2-mediated hyperactivity of ACCGlu neurons contributes to pain sensitization, and reveals a new potential target for treating chronic pain.
Collapse
Affiliation(s)
- Xiang-Jie Song
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen-Ling Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Danyang Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yumeng Yang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yu Mao
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Cao
- Department of Neurology, Stroke Center, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aijun Jiang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenjuan Tao
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Albert PR, Vahid-Ansari F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2019; 161:34-45. [DOI: 10.1016/j.biochi.2018.10.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023]
|
5
|
Tomàs JM, Garcia N, Lanuza MA, Nadal L, Tomàs M, Hurtado E, Simó A, Cilleros V. Membrane Receptor-Induced Changes of the Protein Kinases A and C Activity May Play a Leading Role in Promoting Developmental Synapse Elimination at the Neuromuscular Junction. Front Mol Neurosci 2017; 10:255. [PMID: 28848391 PMCID: PMC5552667 DOI: 10.3389/fnmol.2017.00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023] Open
Abstract
Synapses that are overproduced during histogenesis in the nervous system are eventually lost and connectivity is refined. Membrane receptor signaling leads to activity-dependent mutual influence and competition between axons directly or with the involvement of the postsynaptic cell and the associated glial cell/s. Presynaptic muscarinic acetylcholine (ACh) receptors (subtypes mAChR; M1, M2 and M4), adenosine receptors (AR; A1 and A2A) and the tropomyosin-related kinase B receptor (TrkB), among others, all cooperate in synapse elimination. Between these receptors there are several synergistic, antagonic and modulatory relations that clearly affect synapse elimination. Metabotropic receptors converge in a limited repertoire of intracellular effector kinases, particularly serine protein kinases A and C (PKA and PKC), to phosphorylate protein targets and bring about structural and functional changes leading to axon loss. In most cells A1, M1 and TrkB operate mainly by stimulating PKC whereas A2A, M2 and M4 inhibit PKA. We hypothesize that a membrane receptor-induced shifting in the protein kinases A and C activity (inhibition of PKA and/or stimulation of PKC) in some nerve endings may play an important role in promoting developmental synapse elimination at the neuromuscular junction (NMJ). This hypothesis is supported by: (i) the tonic effect (shown by using selective inhibitors) of several membrane receptors that accelerates axon loss between postnatal days P5-P9; (ii) the synergistic, antagonic and modulatory effects (shown by paired inhibition) of the receptors on axonal loss; (iii) the fact that the coupling of these receptors activates/inhibits the intracellular serine kinases; and (iv) the increase of the PKA activity, the reduction of the PKC activity or, in most cases, both situations simultaneously that presumably occurs in all the situations of singly and paired inhibition of the mAChR, AR and TrkB receptors. The use of transgenic animals and various combinations of selective and specific PKA and PKC inhibitors could help to elucidate the role of these kinases in synapse maturation.
Collapse
Affiliation(s)
- Josep M Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Neus Garcia
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Maria A Lanuza
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Laura Nadal
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Marta Tomàs
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Erica Hurtado
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Anna Simó
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| | - Víctor Cilleros
- Unitat d'Histologia i Neurobiologia (UHN), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i VirgiliReus, Spain
| |
Collapse
|
6
|
Heindorff K, Baumann O. Calcineurin is part of a negative feedback loop in the InsP3/Ca²⁺ signalling pathway in blowfly salivary glands. Cell Calcium 2014; 56:215-24. [PMID: 25108568 DOI: 10.1016/j.ceca.2014.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 07/01/2014] [Accepted: 07/17/2014] [Indexed: 02/02/2023]
Abstract
The ubiquitous InsP3/Ca(2+) signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca(2+) and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca(2+)] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca(2+) release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca(2+) signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca(2+) signals; (2) cyclosporin A and FK506, inhibitors of Ca(2+)/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca(2+) oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca(2+) responses does not involve Ca(2+) entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca(2+) release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca(2+) responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca(2+) signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca(2+) signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.
Collapse
Affiliation(s)
- Kristoffer Heindorff
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
7
|
van Amsterdam C, Seyfried CA. Mechanism of action of the bimodal antidepressant vilazodone: evidence for serotonin1A-receptor-mediated auto-augmentation of extracellular serotonin output. Psychopharmacology (Berl) 2014; 231:2547-58. [PMID: 24419272 DOI: 10.1007/s00213-013-3428-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/22/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE The recently approved antidepressant vilazodone, a serotonin (5-HT)1A receptor partial agonist/selective 5-HT reuptake inhibitor offers new possibilities to study the underlying mechanisms of depression pharmacotherapy and of 5-HT augmenting antidepressants. OBJECTIVE The role of the 5-HT1A receptor with respect to the regulation of 5-HT output in the mechanism of action of vilazodone. METHOD We measured 5-HT levels in two subregions of the rat prefrontal cortex by microdialysis, and 5-hydroxytryptophan (5-HTP) accumulation and tissue 5-HT concentrations ex vivo. RESULTS Vilazodone-induced maximal 5-HT levels were similar in the medial and the lateral cortex and were up to sixfold higher than those induced by paroxetine, citalopram, or fluoxetine tested in parallel. Depolarization/autoreceptor-insensitive 5-HT release by vilazodone could be excluded. The citalopram (1 μM, locally infused)-induced increase of 5-HT was further increased by vilazodone (1 mg/kg i.p.), but not by citalopram (10 mg/kg i.p.). Unlike fluoxetine, vilazodone-induced extracellular 5-HT output was not potentiated by cotreatment with the 5-HT1A receptor blocker N-[2-(4-{2-methoxyphenyl}-1-piperazinyl)-ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY 100635). In contrast to fluoxetine, vilazodone exhibited intrinsic 5-HT1A agonist activity: it reduced, similar to (±)-8-hydroxy-2-(dipropylamino)-tetralin (8-OH-DPAT), 5-HTP accumulation in striatum and n. raphe of reserpinized rats. Hence, vilazodone's agonistic actions must be 5-HT1A receptor-related since endogenous 5-HT is lacking in the reserpine-depleted animal. CONCLUSIONS In spite of high intrinsic 5-HT1A activity in reserpinized rats, the net effect of vilazodone at release-regulating 5-HT1A autoreceptors must be inhibitory, leading to markedly increased 5-HT output. Another possibility is that vilazodone rapidly desensitizes autoinhibitory 5-HT1A receptors by an unknown mechanism.
Collapse
Affiliation(s)
- Christoph van Amsterdam
- Department of CNS Research, Biomedical Research, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany,
| | | |
Collapse
|
8
|
Wu X, Kushwaha N, Banerjee P, Albert PR, Penington NJ. Role of protein kinase C in agonist-induced desensitization of 5-HT₁A receptor coupling to calcium channels in F11 cells. Eur J Pharmacol 2013; 706:84-91. [PMID: 23510743 DOI: 10.1016/j.ejphar.2013.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/21/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
Abstract
The 5-Hydroxytriptamine 1A receptor (5-HT1A) is expressed both as a pre- and post-synaptic receptor in neurons. The presynaptic receptor preferentially desensitizes compared to post-synaptic receptors, suggesting different underlying mechanisms of agonist-induced desensitization. Using F11 cells as a model of post-synaptic neurons, the present study examined the role of protein kinase C (PKC) and protein kinase A (PKA) in desensitization of the 5-HT1A-receptor by agonist. Desensitization in whole cell experiments was dependent on internal [Ca(2+)] and was blocked by chelation of intracellular Ca(2+). Using the perforated patch technique, desensitization was reduced when Ba(2+) was used as the conducting cation. Selective inhibitors of conventional PKC isoforms prevented 5-HT-induced desensitization, whereas an inhibitor of PKA did not. In cells in which 3 PKC/PKA sites located in the third intracellular loop (i3) of the 5-HT1A receptor were mutated (i3, T229A-S253G-T343A), 5-HT-mediated desensitization was reduced (and abolished in the absence of intracellular Ca(2+)). In cells in which a fourth mutation was added (T149 in the second i2 loop), the cells responded similarly to the triple mutants suggesting that phosphorylation of T149 does not contribute greatly to the desensitization induced by 5-HT-mediated activation of PKC. Thus agonist-induced uncoupling of the 5-HT1A-receptor is PKC-dependent, but requires a different set of phosphorylation sites than phorbol ester-mediated PKC activation, suggesting differential recruitment of PKC. Furthermore, these studies reveal that 5-HT1A-receptor desensitization utilizes a different kinase in F11 cells and serotonergic neurons, which may in part account for their differential sensitivity in vivo.
Collapse
Affiliation(s)
- Xiaoping Wu
- Program in Neural & Behavioral Science and Robert F. Furchgott Center for Neural & Behavioral Science, USA
| | | | | | | | | |
Collapse
|
9
|
Röser C, Jordan N, Balfanz S, Baumann A, Walz B, Baumann O, Blenau W. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina. PLoS One 2012; 7:e49459. [PMID: 23145175 PMCID: PMC3493529 DOI: 10.1371/journal.pone.0049459] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022] Open
Abstract
Secretion in blowfly (Calliphora vicina) salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT), which activates both inositol 1,4,5-trisphosphate (InsP(3))/Ca(2+) and cyclic adenosine 3',5'-monophosphate (cAMP) signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7) that share high similarity with mammalian 5-HT(2) and 5-HT(7) receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+)] in a dose-dependent manner (EC(50) = 24 nM). In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i) (EC(50) = 4 nM). We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α) or Cv5-HT(7) in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM) activates only the Cv5-HT(2α) receptor, 5-carboxamidotryptamine (300 nM) activates only the Cv5-HT(7) receptor, and clozapine (1 µM) antagonizes the effects of 5-HT via Cv5-HT(7) in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+)- and cAMP-signalling cascades.
Collapse
Affiliation(s)
- Claudia Röser
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Nadine Jordan
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Sabine Balfanz
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems (ICS-4), Research Center Jülich, Jülich, Germany
| | - Bernd Walz
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Otto Baumann
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Wolfgang Blenau
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institut für Bienenkunde (Polytechnische Gesellschaft), Goethe University Frankfurt, Oberursel, Germany
| |
Collapse
|
10
|
Fechner L, Baumann O, Walz B. Activation of the cyclic AMP pathway promotes serotonin-induced Ca2+ oscillations in salivary glands of the blowfly Calliphora vicina. Cell Calcium 2012; 53:94-101. [PMID: 23131569 DOI: 10.1016/j.ceca.2012.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 11/28/2022]
Abstract
Ca(2+) and cAMP signalling pathways interact in a complex manner at multiple sites. This crosstalk fine-tunes the spatiotemporal patterns of Ca(2+) and cAMP signals. In salivary glands of the blowfly Calliphora vicina fluid secretion is stimulated by serotonin (5-hydroxytryptamine, 5-HT) via activation of two different 5-HT receptors coupled to the InsP(3)/Ca(2+) (Cv5-HT(2α)) or the cAMP pathway (Cv5-HT(7)), respectively. We have shown recently in permeabilized gland cells that cAMP sensitizes InsP(3)-induced Ca(2+) release to InsP(3). Here we study the effects of the cAMP signalling pathway on 5-HT-induced oscillations in transepithelial potential (TEP) and in intracellular [Ca(2+)]. We show: (1) Blocking the activation of the cAMP pathway by cinanserin suppresses the generation of TEP and Ca(2+) oscillations, (2) application of 8-CPT-cAMP in the presence of cinanserin restores 5-HT-induced TEP and Ca(2+) oscillations, (3) 8-CPT-cAMP sensitizes the InsP(3)/Ca(2+) signalling pathway to 5-HT and the Cv5-HT(2α) receptor agonist 5-MeOT, (4) 8-CPT-cAMP induces Ca(2+) oscillations in cells loaded with subthreshold concentrations of InsP(3), (5) inhibition of protein kinase A by H-89 abolishes 5-HT-induced TEP and Ca(2+) spiking and mimics the effect of cinanserin. These results suggest that activation of the cyclic AMP pathway promotes the generation of 5-HT-induced Ca(2+) oscillations in blowfly salivary glands.
Collapse
Affiliation(s)
- Lennart Fechner
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | |
Collapse
|
11
|
Thompson PM, Cruz DA, Olukotun DY, Delgado PL. Serotonin receptor, SERT mRNA and correlations with symptoms in males with alcohol dependence and suicide. Acta Psychiatr Scand 2012; 126:165-74. [PMID: 22176604 DOI: 10.1111/j.1600-0447.2011.01816.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study tested the hypothesis that abnormalities in components of the serotonin (5HT) system in the prefrontal cortex are associated with suicide in alcohol-dependent subjects. Second, we assessed the relationship of lifetime impulsivity and mood symptoms with prefrontal cortex 5-HT measures. METHOD Tissue was obtained from Brodmann's areas (BA) 9 and 24 in postmortem samples of individuals who were alcohol dependent with suicide (n = 5), alcohol dependent without suicide (n = 9) and normal controls (n = 5). Serotonin receptor (5HT) and serotonin reuptake transporter (SERT) mRNA were measured. Interviews with next of kin estimated lifetime impulsivity and mood symptoms in the last week of life. RESULTS Serotonin receptor 1A (5HT1A) mRNA in BA 9 was elevated in the alcohol dependence without suicide group compared with controls. In the alcohol dependence with suicide group, anxiety symptoms were associated with decreased BA 24 SERT mRNA and depressive symptoms with BA 9 5HT1A mRNA expression. In the alcohol dependent only group impulsivity is correlated with increased BA 9, and BA 24 serotonin receptor 2A mRNA. CONCLUSION Our data suggest region-specific change, rather than global serotonin blunting is involved in alcohol dependence and suicide. It also suggests that symptoms are differentially influenced by prefrontal cortex serotonin receptor mRNA levels.
Collapse
Affiliation(s)
- P M Thompson
- Department of Psychiatry, University of Texas Health Science Center San Antonio Southwest Brain Bank, USA.
| | | | | | | |
Collapse
|
12
|
Penington NJ, Tuckwell HC. Properties of I(A) in a neuron of the dorsal raphe nucleus. Brain Res 2012; 1449:60-8. [PMID: 22410293 DOI: 10.1016/j.brainres.2012.02.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 02/02/2012] [Accepted: 02/13/2012] [Indexed: 01/10/2023]
Abstract
Voltage clamp data were analyzed in order to characterize the properties of the fast potassium transient current I(A) for a presumed serotonergic neuron of the rat dorsal raphe nucleus (DRN). We obtain maximal conductance, time constants of activation and inactivation, and the steady state activation and inactivation functions m(∞) and h(∞), as Boltzmann curves, defined by half-activation potentials and slope factors. I(A) is estimated as g¯(V-V(rev))m(4)h, with g¯=20.5nS. For activation, the half-activation potential is V(a)=-52.5mV with slope factor k(a)=16.5mV, whereas for inactivation the corresponding quantities are -91.5mV and -9.3mV. We discuss the results in terms of the corresponding properties of I(A) in other cell types and their possible relevance to pacemaking activity in cells of the DRN. Methods of identification of serotonergic DRN neurons and the nature of the K(v) channels underlying the A-type current are also discussed.
Collapse
Affiliation(s)
- Nicholas J Penington
- Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA
| | | |
Collapse
|