1
|
Kokhabi P, Mollazadeh R, Hejazi SF, Nezhad AH, Pazoki-Toroudi H. Importance of Zinc Homeostasis for Normal Cardiac Rhythm. Curr Cardiol Rev 2025; 21:1-18. [PMID: 39301907 DOI: 10.2174/011573403x299868240904120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/07/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024] Open
Abstract
Current arrhythmia therapies such as ion channel blockers, catheter ablation, or implantable cardioverter defibrillators have limitations and side effects, and given the proarrhythmic risk associated with conventional, ion channel-targeted anti-arrhythmic drug therapies, a new approach to arrhythmias may be warranted. Measuring and adjusting the level of specific ions that impact heart rhythm can be a simple and low-complication strategy for preventing or treating specific arrhythmias. In addition, new medicines targeting these ions may effectively treat arrhythmias. Numerous studies have shown that intracellular and extracellular zinc concentrations impact the heart's electrical activity. Zinc has been observed to affect cardiac rhythm through a range of mechanisms. These mechanisms encompass the modulation of sodium, calcium, and potassium ion channels, as well as the influence on beta-adrenergic receptors and the enzyme adenylate cyclase. Moreover, zinc can either counteract or induce oxidative stress, hinder calmodulin or the enzyme Ca (2+)/calmodulin-dependent protein kinase II (CaMKII), regulate cellular ATP levels, affect the processes of aging and autophagy, influence calcium ryanodine receptors, and control cellular inflammation. Additionally, zinc has been implicated in the modulation of circadian rhythm. In all the aforementioned cases, the effect of zinc on heart rhythm is largely influenced by its intracellular and extracellular concentrations. Optimal zinc levels are essential for maintaining a normal heart rhythm, while imbalances-whether deficiencies or excesses-can disrupt electrical activity and contribute to arrhythmias.
Collapse
Affiliation(s)
- Pejman Kokhabi
- School of Advanced Medical Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Reza Mollazadeh
- Department of Cardiology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Fatemeh Hejazi
- School of Advanced Medical Sciences, Tonekabon Medical Branch, Islamic Azad University, Tonekabon, Iran
| | - Aida Hossein Nezhad
- School of Advanced Medical Sciences, Tonekabon Medical Branch, Islamic Azad University, Tonekabon, Iran
| | - Hamidreza Pazoki-Toroudi
- Department of Physiology, Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Balasubramanian A, Holbrook JT, Canning BJ, Que LG, Castro M, Make BJ, Rogers L, Busk MF, Rea A, McCook-Veal AA, He J, McCormack MC, Wise RA. Efficacy and tolerability of zinc acetate for treatment of chronic refractory cough: pilot randomised futility trial. ERJ Open Res 2023; 9:00678-2022. [PMID: 37057088 PMCID: PMC10086688 DOI: 10.1183/23120541.00678-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 03/11/2023] Open
Abstract
Background Cough is the most reported symptom in the United States, with chronic refractory cough representing significant morbidity to patients. Zinc acetate may have beneficial effects in the cough reflex pathway. We sought to assess the safety and efficacy of zinc acetate in the management of chronic refractory cough. Study design and methods This was a randomised, placebo-controlled, parallel-design pilot trial of individuals with chronic refractory cough. The effects of 6 weeks of zinc acetate versus placebo on quality of life and symptoms as measured by the Cough Quality-of-Life Questionnaire (CQLQ), Leicester Cough Questionnaire (LCQ), cough visual analogue score (C-VAS) and Global Assessment of Change in Cough (GACC) scores were evaluated. A futility analysis plan with a one-sided 80% confidence interval was used to compare treatment effect to published minimum clinically important differences (MCID) for each outcome. Results 34 participants, 17 in each group, were enrolled and randomised. Participants were primarily white females with moderate-severe cough. Participants assigned to zinc acetate had a significant increase in serum zinc levels after 6 weeks, while those assigned to placebo did not. Both groups showed improvement in CQLQ, LCQ, C-VAS and GACC scores, but the treatment effects of zinc acetate versus placebo were small with confidence intervals that did not include the MCIDs. Interpretation We observed no benefit of zinc therapy over placebo on cough symptoms or quality of life and conclude that larger trials of zinc for chronic cough are not warranted.
Collapse
Affiliation(s)
- Aparna Balasubramanian
- The Johns Hopkins University, School of Medicine, Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| | - Janet T. Holbrook
- The Johns Hopkins University, Bloomberg School of Public Health, Epidemiology, Baltimore, MD, USA
| | - Brendan J. Canning
- The Johns Hopkins University, School of Medicine, Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| | - Loretta G. Que
- Duke University School of Medicine, Pulmonary, Allergy, and Critical Care Medicine, Durham, NC, USA
| | - Mario Castro
- Kansas University Medical Center, Pulmonary, Critical Care and Sleep Medicine, Kansas City, KA, USA
| | - Barry J. Make
- National Jewish Health, Division of Pulmonary, Critical Care and Sleep Medicine, Denver, CO, USA
| | - Linda Rogers
- Icahn School of Medicine at Mount Sinai, Pulmonary, Critical Care and Sleep Medicine, New York, NY, USA
| | - Michael F. Busk
- St Vincent Health, Wellness and Preventive Care Institute, Indianapolis, IN, USA
| | - Alexis Rea
- The Johns Hopkins University, Bloomberg School of Public Health, Epidemiology, Baltimore, MD, USA
| | - Ashley A. McCook-Veal
- The Johns Hopkins University, Bloomberg School of Public Health, Epidemiology, Baltimore, MD, USA
| | - Jiaxian He
- The Johns Hopkins University, Bloomberg School of Public Health, Epidemiology, Baltimore, MD, USA
| | - Meredith C. McCormack
- The Johns Hopkins University, School of Medicine, Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| | - Robert A. Wise
- The Johns Hopkins University, School of Medicine, Pulmonary and Critical Care Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
The Role of Zinc in Modulating Acid-Sensing Ion Channel Function. Biomolecules 2023; 13:biom13020229. [PMID: 36830598 PMCID: PMC9953155 DOI: 10.3390/biom13020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels widely expressed throughout the central and peripheral nervous systems. They are involved in synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in the body, contributes to numerous physiological functions, with neurotransmission being of note. Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been linked to several neurological and psychological disorders, such as Alzheimer's disease, Parkinson's disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the persistence of each of these neurological and psychological disorders. It is critical to understand how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc's structural interactions with ASICs and discusses the potential therapeutic implications zinc may have on neurological and psychological diseases through targeting ASICs.
Collapse
|
4
|
Dulai JS, Smith ESJ, Rahman T. Acid-sensing ion channel 3: An analgesic target. Channels (Austin) 2021; 15:94-127. [PMID: 33258401 PMCID: PMC7801124 DOI: 10.1080/19336950.2020.1852831] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Acid-sensing ion channel 3 (ASIC3) belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. There are 7 different ASIC subunits encoded by 5 different genes. Most ASIC subunits form trimeric ion channels that upon activation by extracellular protons mediate a transient inward current inducing cellular excitability. ASIC subunits exhibit differential tissue expression and biophysical properties, and the ability of subunits to form homo- and heteromeric trimers further increases the complexity of currents measured and their pharmacological properties. ASIC3 is of particular interest, not only because it exhibits high expression in sensory neurones, but also because upon activation it does not fully inactivate: a transient current is followed by a sustained current that persists during a period of extracellular acidity, i.e. ASIC3 can encode prolonged acidosis as a nociceptive signal. Furthermore, certain mediators sensitize ASIC3 enabling smaller proton concentrations to activate it and other mediators can directly activate the channel at neutral pH. Moreover, there is a plethora of evidence using transgenic mouse models and pharmacology, which supports ASIC3 as being a potential target for development of analgesics. This review will focus on current understanding of ASIC3 function to provide an overview of how ASIC3 contributes to physiology and pathophysiology, examining the mechanisms by which it can be modulated, and highlighting gaps in current understanding and future research directions.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Histidine Residues Are Responsible for Bidirectional Effects of Zinc on Acid-Sensing Ion Channel 1a/3 Heteromeric Channels. Biomolecules 2020; 10:biom10091264. [PMID: 32887365 PMCID: PMC7565092 DOI: 10.3390/biom10091264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Acid-sensing ion channel (ASIC) subunits 1a and 3 are highly expressed in central and peripheral sensory neurons, respectively. Endogenous biomolecule zinc plays a critical role in physiological and pathophysiological conditions. Here, we found that currents recorded from heterologously expressed ASIC1a/3 channels using the whole-cell patch-clamp technique were regulated by zinc with dual effects. Co-application of zinc dose-dependently potentiated both peak amplitude and the sustained component of heteromeric ASIC1a/3 currents; pretreatment with zinc between 3 to 100 µM exerted the same potentiation as co-application. However, pretreatment with zinc induced a significant inhibition of heteromeric ASIC1a/3 channels when zinc concentrations were over 250 µM. The potentiation of heteromeric ASIC1a/3 channels by zinc was pH dependent, as zinc shifted the pH dependence of ASIC1a/3 currents from a pH50 of 6.54 to 6.77; whereas the inhibition of ASIC1a/3 currents by zinc was also pH dependent. Furthermore, we systematically mutated histidine residues in the extracellular domain of ASIC1a or ASIC3 and found that histidine residues 72 and 73 in both ASIC1a and ASIC3, and histidine residue 83 in the ASIC3 were responsible for bidirectional effects on heteromeric ASIC1a/3 channels by zinc. These findings suggest that histidine residues in the extracellular domain of heteromeric ASIC1a/3 channels are critical for zinc-mediated effects.
Collapse
|
6
|
Pan Z, Choi S, Ouadid-Ahidouch H, Yang JM, Beattie JH, Korichneva I. Zinc transporters and dysregulated channels in cancers. Front Biosci (Landmark Ed) 2017; 22:623-643. [PMID: 27814637 DOI: 10.2741/4507] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a nutritionally essential metal ion, zinc (Zn) not only constitutes a structural element for more than 3000 proteins but also plays important regulatory functions in cellular signal transduction. Zn homeostasis is tightly controlled by regulating the flux of Zn across cell membranes through specific transporters, i.e. ZnT and ZIP family proteins. Zn deficiency and malfunction of Zn transporters have been associated with many chronic diseases including cancer. However, the mechanisms underlying Zn regulatory functions in cellular signaling and their impact on the pathogenesis and progression of cancers remain largely unknown. In addition to these acknowledged multifunctions, Zn modulates a wide range of ion channels that in turn may also play an important role in cancer biology. The goal of this review is to propose how zinc deficiency, through modified Zn homeostasis, transporter activity and the putative regulatory function of Zn can influence ion channel activity, and thereby contribute to carcinogenesis and tumorigenesis. This review intends to stimulate interest in, and support for research into the understanding of Zn-modulated channels in cancers, and to search for novel biomarkers facilitating effective clinical stratification of high risk cancer patients as well as improved prevention and therapy in this emerging field.
Collapse
Affiliation(s)
- Zui Pan
- The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA,
| | - Sangyong Choi
- Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Halima Ouadid-Ahidouch
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| | - Jin-Ming Yang
- Department of Pharmacology, College of Medicine, Penn State University, 500 University Drive Hershey, PA 17033, USA
| | - John H Beattie
- Rowett Institute of Nutrition and Health, University of Aberdeen, Foresterhill, Bucksburn, Aberdeen AB25 2ZD, Scotland, UK
| | - Irina Korichneva
- University of Picardie Jules Verne, UFR Sciences, EA 4667, Laboratory of Cell and Molecular Physiology, SFR CAP-SANTE (FED 4231), Amiens, France
| |
Collapse
|
7
|
Nagaeva EI, Potapieva NN, Nikolaev MV, Gmiro VE, Magazanik LG, Tikhonov DB. Determinants of action of hydrophobic amines on ASIC1a and ASIC2a. Eur J Pharmacol 2016; 788:75-83. [DOI: 10.1016/j.ejphar.2016.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/03/2016] [Accepted: 06/08/2016] [Indexed: 11/16/2022]
|
8
|
González-Garrido A, Vega R, Mercado F, López IA, Soto E. Acid-Sensing Ion Channels Expression, Identity and Role in the Excitability of the Cochlear Afferent Neurons. Front Cell Neurosci 2015; 9:483. [PMID: 26733809 PMCID: PMC4686812 DOI: 10.3389/fncel.2015.00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/30/2015] [Indexed: 12/21/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are activated by an increase in the extracellular proton concentration. There are four genes (ASIC1-4) that encode six subunits, and they are involved in diverse neuronal functions, such as mechanosensation, learning and memory, nociception, and modulation of retinal function. In this study, we characterize the ASIC currents of spiral ganglion neurons (SGNs). These ASIC currents are primarily carried by Na(+), exhibit fast activation and desensitization, display a pH50 of 6.2 and are blocked by amiloride, indicating that these are ASIC currents. The ASIC currents were further characterized using several pharmacological tools. Gadolinium and acetylsalicylic acid reduced these currents, and FMRFamide, zinc (at high concentrations) and N,N,N',N'-tetrakis-(2-piridilmetil)-ethylenediamine increased them, indicating that functional ASICs are composed of the subunits ASIC1, ASIC2, and ASIC3. Neomycin and streptomycin reduced the desensitization rate of the ASIC current in SGNs, indicating that ASICs may contribute to the ototoxic action of aminoglycosides. RT-PCR of the spiral ganglion revealed significant expression of all ASIC subunits. By immunohistochemistry the expression of the ASIC1a, ASIC2a, ASIC2b, and ASIC3 subunits was detected in SGNs. Although only a few SGNs exhibited action potential firing in response to an acidic stimulus, protons in the extracellular solution modulated SGN activity during sinusoidal stimulation. Our results show that protons modulate the excitability of SGNs via ASICs.
Collapse
Affiliation(s)
| | - Rosario Vega
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| | - Francisco Mercado
- Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz México D.F., Mexico
| | - Iván A López
- Department of Head and Neck Surgery, David Geffen School of Medicine, University of California Los Angeles, CA, USA
| | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| |
Collapse
|
9
|
Radu BM, Banciu A, Banciu DD, Radu M. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:137-67. [PMID: 26920689 DOI: 10.1016/bs.apcsb.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mihai Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Life and Environmental Physics, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Magurele, Romania.
| |
Collapse
|
10
|
Osmakov DI, Andreev YA, Kozlov SA. Acid-sensing ion channels and their modulators. BIOCHEMISTRY (MOSCOW) 2015; 79:1528-45. [PMID: 25749163 DOI: 10.1134/s0006297914130069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
According to a modern look acid-sensing ion channels (ASICs) are one of the most important receptors that perceive pH change in the body. ASICs represent proton-gated Na+-selective channels, which are expressed in neurons of the central and peripheral nervous system. These channels are attracting attention of researchers around the world, as they are involved in various physiological processes in the body. Drop of pH may occur in tissues in norm (e.g. the accumulation of lactic acid, the release of protons upon ATP hydrolysis) and pathology (inflammation, ischemic stroke, tissue damage and seizure). These processes are accompanied by unpleasant pain sensations, which may be short-lived or can lead to chronic inflammatory diseases. Modulators of ASIC channels activity are potential candidates for new effective analgesic and neuroprotection drugs. This review summarizes available information about structure, function, and physiological role of ASIC channels. In addition a description of all known ligands of these channels and their practical relevance is provided.
Collapse
Affiliation(s)
- D I Osmakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | |
Collapse
|
11
|
Noh S, Lee SR, Jeong YJ, Ko KS, Rhee BD, Kim N, Han J. The direct modulatory activity of zinc toward ion channels. Integr Med Res 2015; 4:142-146. [PMID: 28664120 PMCID: PMC5481804 DOI: 10.1016/j.imr.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The divalent zinc ion is a cation that plays an indispensable role as a structural constituent of numerous proteins, including enzymes and transcription factors. Recently, it has been suggested that zinc also plays a dynamic role in extracellular and intracellular signaling as well. Ion channels are pore-forming proteins that control the flow of specific ions across the membrane, which is important to maintain ion gradients. In this review, we outline the modulatory effect of zinc on the activities of several ion channels through direct binding of zinc into histidine, cysteine, aspartate, and glutamate moieties of channel proteins. The binding of zinc to ion channels results in the activation or inhibition of the channel due to conformational changes. These novel aspects of ion-channel activity modulation by zinc provide new insights into the physiological regulation of ion channels.
Collapse
Affiliation(s)
- Sujin Noh
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Sung Ryul Lee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Yu Jeong Jeong
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Kyung Soo Ko
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Byoung Doo Rhee
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Nari Kim
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| |
Collapse
|
12
|
Baron A, Lingueglia E. Pharmacology of acid-sensing ion channels – Physiological and therapeutical perspectives. Neuropharmacology 2015; 94:19-35. [DOI: 10.1016/j.neuropharm.2015.01.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/15/2014] [Accepted: 01/07/2015] [Indexed: 12/29/2022]
|
13
|
Kellenberger S, Schild L. International Union of Basic and Clinical Pharmacology. XCI. structure, function, and pharmacology of acid-sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 2015; 67:1-35. [PMID: 25287517 DOI: 10.1124/pr.114.009225] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
The epithelial Na(+) channel (ENaC) and the acid-sensing ion channels (ASICs) form subfamilies within the ENaC/degenerin family of Na(+) channels. ENaC mediates transepithelial Na(+) transport, thereby contributing to Na(+) homeostasis and the maintenance of blood pressure and the airway surface liquid level. ASICs are H(+)-activated channels found in central and peripheral neurons, where their activation induces neuronal depolarization. ASICs are involved in pain sensation, the expression of fear, and neurodegeneration after ischemia, making them potentially interesting drug targets. This review summarizes the biophysical properties, cellular functions, and physiologic and pathologic roles of the ASIC and ENaC subfamilies. The analysis of the homologies between ENaC and ASICs and the relation between functional and structural information shows many parallels between these channels, suggesting that some mechanisms that control channel activity are shared between ASICs and ENaC. The available crystal structures and the discovery of animal toxins acting on ASICs provide a unique opportunity to address the molecular mechanisms of ENaC and ASIC function to identify novel strategies for the modulation of these channels by pharmacologic ligands.
Collapse
Affiliation(s)
- Stephan Kellenberger
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| | - Laurent Schild
- Département de Pharmacologie et de Toxicologie, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Du J, Reznikov LR, Welsh MJ. Expression and activity of acid-sensing ion channels in the mouse anterior pituitary. PLoS One 2014; 9:e115310. [PMID: 25506946 PMCID: PMC4266673 DOI: 10.1371/journal.pone.0115310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022] Open
Abstract
Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3 and ASIC4. We also observed acid-evoked ASIC-like currents in isolated anterior pituitary cells that were absent in mice lacking ASIC1a. The biophysical properties and the responses to PcTx1, amiloride, Ca2+ and Zn2+ suggested that ASIC currents were mediated predominantly by heteromultimeric channels that contained ASIC1a and ASIC2a or ASIC2b. ASIC currents were also sensitive to FMRFamide (Phe-Met-Arg-Phe amide), suggesting that FMRFamide-like compounds might endogenously regulate pituitary ASICs. To determine whether ASICs might regulate pituitary cell function, we applied low pH and found that it increased the intracellular Ca2+ concentration. These data suggest that ASIC channels are present and functionally active in anterior pituitary cells and may therefore influence their function.
Collapse
Affiliation(s)
- Jianyang Du
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Leah R. Reznikov
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael J. Welsh
- Howard Hughes Medical Institute, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
15
|
Vysotskaya ZV, Moss CR, Gu Q. Differential regulation of ASICs and TRPV1 by zinc in rat bronchopulmonary sensory neurons. Lung 2014; 192:927-34. [PMID: 25108402 DOI: 10.1007/s00408-014-9634-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/25/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE Zinc has been known to act as a signaling molecule that regulates a variety of neuronal functions. In this study, we aimed to study the effect of zinc on two populations of acid-sensitive ion channels, acid-sensing ion channels (ASICs), and transient receptor potential vanilloid receptor-1 (TRPV1), in vagal bronchopulmonary sensory neurons. METHODS Rat vagal sensory neurons innervating lungs and airways were retrogradely labeled with a fluorescent tracer. Whole-cell perforated patch-clamp recordings were carried out in primarily cultured bronchopulmonary sensory neurons. The acid-evoked ASIC and TRPV1 currents were measured and compared between before and after the zinc pretreatment. RESULTS ASIC currents were induced by a pH drop from 7.4 to 6.8 or 6.5 in the presence of capsazepine (10 µM), a specific TRPV1 antagonist. Pretreatment with zinc (50 or 300 µM, 2 min) displayed different effects on the two distinct phenotypes of ASIC currents: a marked potentiation on ASIC channels with fast kinetics of activation and inactivation or no significant effect on ASIC currents with slow activation and inactivation. On the other hand, pretreatment with zinc significantly inhibited the acid (pH 5.5 or 5.3)-induced TRPV1 currents. The inhibition was abolished by intracellular chelation of zinc by TPEN (25 µM), indicating that intracellular accumulation of zinc was likely required for its inhibitory effect on TRPV1 channels. CONCLUSIONS Our study showed that zinc differentially regulates the activities of ASICs and TRPV1 channels in rat vagal bronchopulmonary sensory neurons.
Collapse
Affiliation(s)
- Zhanna V Vysotskaya
- Division of Basic Medical Sciences, Mercer University School of Medicine, 1550 College Street, Macon, GA, 31207, USA
| | | | | |
Collapse
|
16
|
Chu XP, Grasing KA, Wang JQ. Acid-sensing ion channels contribute to neurotoxicity. Transl Stroke Res 2013; 5:69-78. [PMID: 24323724 DOI: 10.1007/s12975-013-0305-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022]
Abstract
Acidosis that occurs under pathological conditions not only affects intracellular signaling molecules, but also directly activates a unique family of ligand-gated ion channels: acid-sensing ion channels (ASICs). ASICs are widely expressed throughout the central and peripheral nervous systems and play roles in pain sensation, learning and memory, and fear conditioning. Overactivation of ASICs contributes to neurodegenerative diseases such as ischemic brain/spinal cord injury, multiple sclerosis, Parkinson's disease, and Huntington's disease. Thus, targeting ASICs might be a potential therapeutic strategy for these conditions. This mini-review focuses on the electrophysiology and pharmacology of ASICs and roles of ASICs in neuronal toxicity.
Collapse
Affiliation(s)
- Xiang-Ping Chu
- Departments of Basic Medical Science and Anesthesiology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Room M3-417, Kansas City, MO, 64108-2792, USA,
| | | | | |
Collapse
|
17
|
Abstract
Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na (+) channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on.
Collapse
Affiliation(s)
- Guo Yingjun
- Department of Basic Medicine; Qilu Hospital; Shandong University; Ji'nan, Shandong Province, PR China
| | | |
Collapse
|
18
|
Jing L, Chu XP, Zha XM. Three distinct motifs within the C-terminus of acid-sensing ion channel 1a regulate its surface trafficking. Neuroscience 2013; 247:321-7. [PMID: 23727453 DOI: 10.1016/j.neuroscience.2013.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
Various protein motifs play a key role in regulating protein biogenesis and trafficking. Here, we discovered that three distinct motifs regulate the trafficking of acid-sensing ion channel 1a (ASIC1a), the primary neuronal proton receptor which plays critical roles in neurological diseases including stroke, multiple sclerosis and seizures. Mutating the PDZ binding motif of ASIC1a increased its surface expression and current density. In contrast, mutating either a RRGK motif or a KEAKR motif reduced ASIC1a surface expression and acid-activated current density. Mutating or deleting the RRGK motif also reduced pH sensitivity and the rate of desensitization of ASIC1a. These changes were likely due to a change in ASIC1a biogenesis; mutating either the RRGK or KEAKR motif reduced N-glycosylation of ASIC1a while mutating the PDZ binding motif had the opposite effect. Our results demonstrate that these C-terminal motifs are important for ASIC1a trafficking and channel function. In addition, in contrast to multiple previous studies, which all show that K/R containing motifs lead to endoplasmic reticulum (ER) retention, our findings indicate that these motifs can also be required for efficient trafficking.
Collapse
Affiliation(s)
- L Jing
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, 307 University Boulevard, MSB1201, Mobile, AL 36688, United States
| | | | | |
Collapse
|
19
|
|
20
|
Gautam M, Benson CJ. Acid-sensing ion channels (ASICs) in mouse skeletal muscle afferents are heteromers composed of ASIC1a, ASIC2, and ASIC3 subunits. FASEB J 2012; 27:793-802. [PMID: 23109675 DOI: 10.1096/fj.12-220400] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acid-sensing ion channels (ASICs) are expressed in skeletal muscle afferents, in which they sense extracellular acidosis and other metabolites released during ischemia and exercise. ASICs are formed as homotrimers or heterotrimers of several isoforms (ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3), with each channel displaying distinct properties. To dissect the ASIC composition in muscle afferents, we used whole-cell patch-clamp recordings to study the properties of acid-evoked currents (amplitude, pH sensitivity, the kinetics of desensitization and recovery from desensitization, and pharmacological modulation) in isolated, labeled mouse muscle afferents from wild-type (C57BL/6J) and specific ASIC(-/-) mice. We found that ASIC-like currents in wild-type muscle afferents displayed fast desensitization, indicating that they are carried by heteromeric channels. Currents from ASIC1a(-/-) muscle afferents were less pH-sensitive and displayed faster recovery, currents from ASIC2(-/-) mice showed diminished potentiation by zinc, and currents from ASIC3(-/-) mice displayed slower desensitization than those from wild-type mice. Finally, ASIC-like currents were absent from triple-null mice lacking ASIC1a, ASIC2a, and ASIC3. We conclude that ASIC1a, ASIC2a, and ASIC3 heteromers are the principle channels in skeletal muscle afferents. These results will help us understand the role of ASICs in exercise physiology and provide a molecular target for potential drug therapies to treat muscle pain.
Collapse
Affiliation(s)
- Mamta Gautam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University ofIowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
21
|
N-glycosylation of acid-sensing ion channel 1a regulates its trafficking and acidosis-induced spine remodeling. J Neurosci 2012; 32:4080-91. [PMID: 22442073 DOI: 10.1523/jneurosci.5021-11.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acid-sensing ion channel-1a (ASIC1a) is a potential therapeutic target for multiple neurological diseases. We studied here ASIC1a glycosylation and trafficking, two poorly understood processes pivotal in determining the functional outcome of an ion channel. We found that most ASIC1a in the mouse brain was fully glycosylated. Inhibiting glycosylation with tunicamycin reduced ASIC1a surface trafficking, dendritic targeting, and acid-activated current density. N-glycosylation of the two glycosylation sites, Asn393 and Asn366, has differential effects on ASIC1a biogenesis. Maturation of Asn393 increased ASIC1a surface and dendritic trafficking, pH sensitivity, and current density. In contrast, glycosylation of Asn366 was dispensable for ASIC1a function and may be a rate-limiting step in ASIC1a biogenesis. In addition, we revealed that acidosis reduced the density and length of dendritic spines in a time- and ASIC1a-dependent manner. ASIC1a N366Q, which showed increased glycosylation and dendritic targeting, potentiated acidosis-induced spine loss. Conversely, ASIC1a N393Q, which had diminished dendritic targeting and inhibited ASIC1a current dominant-negatively, had the opposite effect. These data tie N-glycosylation of ASIC1a with its trafficking. More importantly, by revealing a site-specific effect of acidosis on dendritic spines, our findings suggest that these processes have an important role in regulating synaptic plasticity and determining long-term consequences in diseases that generate acidosis.
Collapse
|
22
|
Jing L, Jiang YQ, Jiang Q, Wang B, Chu XP, Zha XM. The interaction between the first transmembrane domain and the thumb of ASIC1a is critical for its N-glycosylation and trafficking. PLoS One 2011; 6:e26909. [PMID: 22046405 PMCID: PMC3203923 DOI: 10.1371/journal.pone.0026909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/06/2011] [Indexed: 12/25/2022] Open
Abstract
Acid-sensing ion channel-1a (ASIC1a), the primary proton receptor in the brain, contributes to multiple diseases including stroke, epilepsy and multiple sclerosis. Thus, a better understanding of its biogenesis will provide important insights into the regulation of ASIC1a in diseases. Interestingly, ASIC1a contains a large, yet well organized ectodomain, which suggests the hypothesis that correct formation of domain-domain interactions at the extracellular side is a key regulatory step for ASIC1a maturation and trafficking. We tested this hypothesis here by focusing on the interaction between the first transmembrane domain (TM1) and the thumb of ASIC1a, an interaction known to be critical in channel gating. We mutated Tyr71 and Trp287, two key residues involved in the TM1-thumb interaction in mouse ASIC1a, and found that both Y71G and W287G decreased synaptic targeting and surface expression of ASIC1a. These defects were likely due to altered folding; both mutants showed increased resistance to tryptic cleavage, suggesting a change in conformation. Moreover, both mutants lacked the maturation of N-linked glycans through mid to late Golgi. These data suggest that disrupting the interaction between TM1 and thumb alters ASIC1a folding, impedes its glycosylation and reduces its trafficking. Moreover, reducing the culture temperature, an approach commonly used to facilitate protein folding, increased ASIC1a glycosylation, surface expression, current density and slowed the rate of desensitization. These results suggest that correct folding of extracellular ectodomain plays a critical role in ASIC1a biogenesis and function.
Collapse
Affiliation(s)
- Lan Jing
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
- State Key Lab of New Drug & Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Yu-Qing Jiang
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
- Department of Urology, The Third Hospital of Hebei Medical University, ShiJiaZhuang, HeBei Province, China
| | - Qian Jiang
- Departments of Basic Medical Sciences and Anesthesiology, University of Missouri- Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama, United States of America
| | - Xiang-Ping Chu
- Departments of Basic Medical Sciences and Anesthesiology, University of Missouri- Kansas City School of Medicine, Kansas City, Missouri, United States of America
| | - Xiang-ming Zha
- Department of Cell Biology and Neuroscience, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
23
|
Cysteine 149 in the extracellular finger domain of acid-sensing ion channel 1b subunit is critical for zinc-mediated inhibition. Neuroscience 2011; 193:89-99. [PMID: 21767613 DOI: 10.1016/j.neuroscience.2011.07.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/14/2011] [Accepted: 07/07/2011] [Indexed: 01/21/2023]
Abstract
Acid-sensing ion channel 1b (ASIC1b) is a proton-gated Na(+) channel mostly expressed in peripheral sensory neurons. To date, the functional significance of ASIC1b in these cells is unclear due to the lack of a specific inhibitor/blocker. A better understanding of the regulation of ASIC1b may provide a clue for future investigation of its functional importance. One important regulator of acid-sensing ion channels (ASICs) is zinc. In this study, we examined the detailed zinc inhibition of ASIC1b currents and specific amino acid(s) involved in the inhibition. In Chinese hamster ovary (CHO) cells expressing rat ASIC1b subunit, pretreatment with zinc concentration-dependently inhibited the ASIC1b currents triggered by pH dropping from 7.4 to 6.0 with a half-maximum inhibitory concentration of 26 μM. The inhibition of ASIC1b currents by pre-applied zinc was independent of pH, voltage, or extracellular Ca(2+). Further, we showed that the effect of zinc is dependent on the extracellular cysteine, but not histidine residue. Mutating cysteine 149, but not cysteine 58 or cysteine 162, located in the extracellular domain of the ASIC1b subunit abolished the zinc inhibition. These findings suggest that cysteine 149 in the extracellular finger domain of ASIC1b subunit is critical for zinc-mediated inhibition and provide the basis for future mechanistic studies addressing the functional significance of zinc inhibition of ASIC1b.
Collapse
|