1
|
Mouillet-Richard S, Ghazi A, Laurent-Puig P. The Cellular Prion Protein and the Hallmarks of Cancer. Cancers (Basel) 2021; 13:cancers13195032. [PMID: 34638517 PMCID: PMC8508458 DOI: 10.3390/cancers13195032] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary The cellular prion protein PrPC is best known for its involvement, under its pathogenic isoform, in a group of neurodegenerative diseases. Notwithstanding, an emerging role for PrPC in various cancer-associated processes has attracted increasing attention over recent years. PrPC is overexpressed in diverse types of solid cancers and has been incriminated in various aspects of cancer biology, most notably proliferation, migration, invasion and metastasis, as well as resistance to cytotoxic agents. This article aims to provide a comprehensive overview of the current knowledge of PrPC with respect to the hallmarks of cancer, a reference framework encompassing the major characteristics of cancer cells. Abstract Beyond its causal involvement in a group of neurodegenerative diseases known as Transmissible Spongiform Encephalopathies, the cellular prion protein PrPC is now taking centre stage as an important contributor to cancer progression in various types of solid tumours. The prion cancer research field has progressively expanded in the last few years and has yielded consistent evidence for an involvement of PrPC in cancer cell proliferation, migration and invasion, therapeutic resistance and cancer stem cell properties. Most recent data have uncovered new facets of the biology of PrPC in cancer, ranging from its control on enzymes involved in immune tolerance to its radio-protective activity, by way of promoting angiogenesis. In the present review, we aim to summarise the body of literature dedicated to the study of PrPC in relation to cancer from the perspective of the hallmarks of cancer, the reference framework defined by Hanahan and Weinberg.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Correspondence:
| | - Alexandre Ghazi
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, Université de Paris, INSERM, Sorbonne Université, F-75006 Paris, France; (A.G.); (P.L.-P.)
- Department of Biology, Institut du Cancer Paris CARPEM, APHP, Hôpital Européen Georges Pompidou, F-75015 Paris, France
| |
Collapse
|
2
|
Thom T, Schmitz M, Fischer AL, Correia A, Correia S, Llorens F, Pique AV, Möbius W, Domingues R, Zafar S, Stoops E, Silva CJ, Fischer A, Outeiro TF, Zerr I. Cellular Prion Protein Mediates α-Synuclein Uptake, Localization, and Toxicity In Vitro and In Vivo. Mov Disord 2021; 37:39-51. [PMID: 34448510 DOI: 10.1002/mds.28774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cellular prion protein (PrPC ) is a membrane-bound, multifunctional protein mainly expressed in neuronal tissues. Recent studies indicate that the native trafficking of PrPC can be misused to internalize misfolded amyloid beta and α-synuclein (aSyn) oligomers. OBJECTIVES We define PrPC 's role in internalizing misfolded aSyn in α-synucleinopathies and identify further involved proteins. METHODS We performed comprehensive behavioral studies on four transgenic mouse models (ThySyn and ThySynPrP00, TgM83 and TgMPrP00) at different ages. We developed PrPC -(over)-expressing cell models (cell line and primary cortical neurons), used confocal laser microscopy to perform colocalization studies, applied mass spectrometry to identify interactomes, and determined disassociation constants using surface plasmon resonance (SPR) spectroscopy. RESULTS Behavioral deficits (memory, anxiety, locomotion, etc.), reduced lifespans, and higher oligomeric aSyn levels were observed in PrPC -expressing mice (ThySyn and TgM83), but not in homologous Prnp ablated mice (ThySynPrP00 and TgMPrP00). PrPC colocalized with and facilitated aSyn (oligomeric and monomeric) internalization in our cell-based models. Glimepiride treatment of PrPC -overexpressing cells reduced aSyn internalization in a dose-dependent manner. SPR analysis showed that the binding affinity of PrPC to monomeric aSyn was lower than to oligomeric aSyn. Mass spectrometry-based proteomic studies identified clathrin in the immunoprecipitates of PrPC and aSyn. SPR was used to show that clathrin binds to recombinant PrP, but not aSyn. Experimental disruption of clathrin-coated vesicles significantly decreased aSyn internalization. CONCLUSION PrPC 's native trafficking can be misused to internalize misfolded aSyn through a clathrin-based mechanism, which may facilitate the spreading of pathological aSyn. Disruption of aSyn-PrPC binding is, therefore, an appealing therapeutic target in α-synucleinopathies. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tobias Thom
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Anna-Lisa Fischer
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Angela Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susana Correia
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Anna-Villar Pique
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain.,Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, Spain
| | - Wiebke Möbius
- Department for Neurogenetics, EM Core Unit Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Renato Domingues
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany.,Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | | | - Christopher J Silva
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California, USA
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases, Göttingen, Germany
| |
Collapse
|
3
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
The Prion Protein Regulates Synaptic Transmission by Controlling the Expression of Proteins Key to Synaptic Vesicle Recycling and Exocytosis. Mol Neurobiol 2018; 56:3420-3436. [PMID: 30128651 DOI: 10.1007/s12035-018-1293-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
The cellular prion protein (PrPC), whose misfolded conformers are implicated in prion diseases, localizes to both the presynaptic membrane and postsynaptic density. To explore possible molecular contributions of PrPC to synaptic transmission, we utilized a mass spectrometry approach to quantify the release of glutamate from primary cerebellar granule neurons (CGN) expressing, or deprived of (PrP-KO), PrPC, following a depolarizing stimulus. Under the same conditions, we also tracked recycling of synaptic vesicles (SVs) in the two neuronal populations. We found that in PrP-KO CGN these processes decreased by 40 and 60%, respectively, compared to PrPC-expressing neurons. Unbiased quantitative mass spectrometry was then employed to compare the whole proteome of CGN with the two PrP genotypes. This approach allowed us to assess that, relative to the PrPC-expressing counterpart, the absence of PrPC modified the protein expression profile, including diminution of some components of SV recycling and fusion machinery. Subsequent quantitative RT-PCR closely reproduced proteomic data, indicating that PrPC is committed to ensuring optimal synaptic transmission by regulating genes involved in SV dynamics and neurotransmitter release. These novel molecular and cellular aspects of PrPC add insight into the underlying mechanisms for synaptic dysfunctions occurring in neurodegenerative disorders in which a compromised PrPC is likely to intervene.
Collapse
|
5
|
Macedo JA, Schrama D, Duarte I, Tavares E, Renaut J, Futschik ME, Rodrigues PM, Melo EP. Membrane-enriched proteome changes and prion protein expression during neural differentiation and in neuroblastoma cells. BMC Genomics 2017; 18:319. [PMID: 28431525 PMCID: PMC5401558 DOI: 10.1186/s12864-017-3694-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/08/2017] [Indexed: 01/12/2023] Open
Abstract
Background The function of the prion protein, involved in the so-called prion diseases, remains a subject of intense debate and the possibility that it works as a pleiotropic protein through the interaction with multiple membrane proteins is somehow supported by recent reports. Therefore, the use of proteomic and bioinformatics combined to uncover cellular processes occurring together with changes in the expression of the prion protein may provide further insight into the putative pleiotropic role of the prion protein. Results This study assessed the membrane-enriched proteome changes accompanying alterations in the expression of the prion protein. A 2D-DIGE approach was applied to two cell lines after prefractionation towards the membrane protein subset: an embryonic stem cell line and the PK1 subline of neuroblastoma cells which efficiently propagates prion infection. Several proteins were differentially abundant with the increased expression of the prion protein during neural differentiation of embryonic stem cells and with the knockdown of the prion protein in PK1 cells. The identity of around 20% of the differentially abundant proteins was obtained by tandem MS. The catalytic subunit A of succinate dehydrogenase, a key enzyme for the aerobic energy metabolism and redox homeostasis, showed a similar abundance trend as the prion protein in both proteomic experiments. A gene ontology analysis revealed “myelin sheath”, “organelle membrane” and “focal adhesion” associated proteins as the main cellular components, and “protein folding” and “ATPase activity” as the biological processes enriched in the first set of differentially abundant proteins. The known interactome of these differentially abundant proteins was customized to reveal four interactors with the prion protein, including two heat shock proteins and a protein disulfide isomerase. Conclusions Overall, our study shows that expression of the prion protein occurs concomitantly with changes in chaperone activity and cell-redox homeostasis, emphasizing the functional link between these cellular processes and the prion protein. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3694-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J A Macedo
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - D Schrama
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - I Duarte
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - E Tavares
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - J Renaut
- LIST, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - M E Futschik
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal.,School of Biomedical & Healthcare Sciences, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| | - P M Rodrigues
- CCMAR, Centre of Marine Sciences of Algarve, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - E P Melo
- CBMR, Center for Biomedical Research, University of Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
6
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
7
|
Zafar S, Behrens C, Dihazi H, Schmitz M, Zerr I, Schulz-Schaeffer WJ, Ramljak S, Asif AR. Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells. Cell Death Dis 2017; 8:e2557. [PMID: 28102851 PMCID: PMC5386350 DOI: 10.1038/cddis.2016.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 μM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Christina Behrens
- Department of Neuropathology, Georg-August University, Goettingen 37075, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Goettingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | | | | | - Abdul R Asif
- Institute for Clinical Chemistry / UMG-Laboratories, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
8
|
Sympatric speciation of spiny mice, Acomys, unfolded transcriptomically at Evolution Canyon, Israel. Proc Natl Acad Sci U S A 2016; 113:8254-9. [PMID: 27370801 DOI: 10.1073/pnas.1608743113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spiny mice, Acomys cahirinus, colonized Israel 30,000 y ago from dry tropical Africa and inhabited rocky habitats across Israel. Earlier, we had shown by mtDNA that A. cahirinus incipiently sympatrically speciates at Evolution Canyon I (EC I) in Mount Carmel, Israel because of microclimatic interslope divergence. The EC I microsite consists of a dry and hot savannoid "African" slope (AS) and an abutting humid and cool-forested "European" slope (ES). Here, we substantiate incipient SS in A. cahirinus at EC I based on the entire transcriptome, showing that multiple slope-specific adaptive complexes across the transcriptome result in two divergent clusters. Tajima's D distribution of the abutting Acomys interslope populations shows that the ES population is under stronger positive selection, whereas the AS population is under balancing selection, harboring higher genetic polymorphisms. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25-0.75. Remarkably, 24 and 37 putatively adaptively selected genes were detected in the AS and ES populations, respectively. The AS genes involved DNA repair, growth arrest, neural cell differentiation, and heat-shock proteins adapting to the local AS stresses of high solar radiation, drought, and high temperature. In contrast, the ES genes involved high ATP associated with energetics stress. The sharp ecological interslope divergence led to strong slope-specific selection overruling the interslope gene flow. Earlier tests suggested slope-specific mate choice. Habitat interslope-adaptive selection across the transcriptome and mate choice substantiate sympatric speciation (SS), suggesting its prevalence at EC I and commonality in nature.
Collapse
|
9
|
Abstract
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrP(C)) into a pathological isoform, termed PrP(Sc). Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders - such as Alzheimer's or Parkinson's disease - in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrP(Sc) detection, biomarker discovery, elucidation of PrP(Sc) structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.
Collapse
Affiliation(s)
- Roger A Moore
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIH,NIAID, Hamilton, MT 59840, USA
| | | | | |
Collapse
|
10
|
Cellular prion protein contributes to LS 174T colon cancer cell carcinogenesis by increasing invasiveness and resistance against doxorubicin-induced apoptosis. Tumour Biol 2015; 36:8107-20. [PMID: 25983001 DOI: 10.1007/s13277-015-3530-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/04/2015] [Indexed: 12/17/2022] Open
Abstract
As the cellular prion protein (PrP(C)) has been implicated in carcinogenesis, we aimed to investigate the effects of cancer cell-specific PrP(C) overexpression from the invasion, metastasis, and apoptosis aspects, by performing cell motility assays, cell proliferation assays under anchorage-dependent and anchorage-independent conditions, and apoptosis evasion when subjected to multiple anti-cancer drugs. Overexpression of PrP(C) in LS 174T was achieved by stable transfection. PrP(C) overexpression was shown to increase cell proliferation in anchorage-dependent and anchorage-independent manners, as shown by more viable cells in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, more colonies formed in soft agar assay and increased resistance to anoikis in poly-2-hydroxyethyl methacrylate-coated surface. PrP(C) overexpression also increased cell motility and invasiveness of LS 174T. Cell adhesion to extracellular matrix using collagen- and fibronectin-coated surfaces revealed increased cell attachment in LS 174T cells overexpressing PrP(C). Analysis of apoptotic and necrotic cells by propidium iodide/annexin V-fluorescein isothiocyanate microscopy and 7-amino-actinomycin D/annexin V-phycoerythrin flow cytometry revealed that PrP(C) overexpression attenuated doxorubicin-induced apoptosis. Human apoptosis antibody array with 35 apoptosis-related proteins revealed that three inhibitor of apoptosis proteins (IAPs)-survivin, X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein-1 (cIAP-1)-were upregulated in LS 174T cells overexpressing PrP(C) in doxorubicin-induced apoptosis. In conclusion, the overexpression of PrP(C) could enhance the invasiveness and survival of LS 174T colorectal cancer cells, indicating that PrP(C) plays a role in colorectal cancer biology.
Collapse
|
11
|
Mehrabian M, Brethour D, MacIsaac S, Kim JK, Gunawardana C.G, Wang H, Schmitt-Ulms G. CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 2014; 9:e114594. [PMID: 25490046 PMCID: PMC4260877 DOI: 10.1371/journal.pone.0114594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022] Open
Abstract
The molecular function of the cellular prion protein (PrPC) and the mechanism by which it may contribute to neurotoxicity in prion diseases and Alzheimer's disease are only partially understood. Mouse neuroblastoma Neuro2a cells and, more recently, C2C12 myocytes and myotubes have emerged as popular models for investigating the cellular biology of PrP. Mouse epithelial NMuMG cells might become attractive models for studying the possible involvement of PrP in a morphogenetic program underlying epithelial-to-mesenchymal transitions. Here we describe the generation of PrP knockout clones from these cell lines using CRISPR-Cas9 knockout technology. More specifically, knockout clones were generated with two separate guide RNAs targeting recognition sites on opposite strands within the first hundred nucleotides of the Prnp coding sequence. Several PrP knockout clones were isolated and genomic insertions and deletions near the CRISPR-target sites were characterized. Subsequently, deep quantitative global proteome analyses that recorded the relative abundance of>3000 proteins (data deposited to ProteomeXchange Consortium) were undertaken to begin to characterize the molecular consequences of PrP deficiency. The levels of ∼ 120 proteins were shown to reproducibly correlate with the presence or absence of PrP, with most of these proteins belonging to extracellular components, cell junctions or the cytoskeleton.
Collapse
Affiliation(s)
- Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Dylan Brethour
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sarah MacIsaac
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Jin Kyu Kim
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - C . Geeth Gunawardana
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Anchorless 23-230 PrPC interactomics for elucidation of PrPC protective role. Mol Neurobiol 2014; 49:1385-99. [PMID: 24390569 DOI: 10.1007/s12035-013-8616-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
Accumulation of conformationally altered cellular proteins (i.e., prion protein) is the common feature of prions and other neurodegenerative diseases. Previous studies demonstrated that the lack of terminal sequence of cellular prion protein (PrPC), necessary for the addition of glycosylphosphatidylinositol lipid anchor, leads to a protease-resistant conformation that resembles scrapie-associated isoform of prion protein. Moreover, mice overexpressing the truncated form of PrPC showed late-onset, amyloid deposition, and the presence of a short protease-resistant PrP fragment in the brain similar to those found in Gerstmann-Sträussler-Scheinker disease patients. Therefore, the physiopathological function of truncated_/anchorless 23-230 PrPC (Δ23-230 PrPC) has come into focus of attention. The present study aims at revealing the physiopathological function of the anchorless PrPC form by identifying its interacting proteins. The truncated_/anchorless Δ23-230 PrPC along with its interacting proteins was affinity purified using STrEP-Tactin chromatography, in-gel digested, and identified by quadrupole time-of-flight tandem mass spectrometry analysis in prion protein-deficient murine hippocampus (HpL3-4) neuronal cell line. Twenty-three proteins appeared to interact with anchorless Δ23-230 PrPC in HpL3-4 cells. Out of the 23 proteins, one novel protein, pyruvate kinase isozymes M1/M2 (PKM2), exhibited a potential interaction with the anchorless Δ23-230 form of PrPC. Both reverse co-immunoprecipitation and confocal laser-scanning microscopic analysis confirmed an interaction of PKM2 with the anchorless Δ23-230 form of PrPC. Furthermore, we provide the first evidence for co-localization of PKM2 and PrPC as well as PrPC-dependent PKM2 expression regulation. In addition, given the involvement of PrPC in the regulation of apoptosis, we exposed HpL3-4 cells to staurosporine (STS)-mediated apoptotic stress. In response to STS-mediated apoptotic stress, HpL3-4 cells transiently expressing 23-230-truncated PrPC were markedly less viable, were more prone to apoptosis and exhibited significantly higher PKM2 expressional regulation as compared with HpL3-4 cells transiently expressing full-length PrPC (1-253 PrPC). The enhanced STS-induced apoptosis was shown by increased caspase-3 cleavage. Together, our data suggest that the misbalance or over expression of anchorless Δ23-230 form of PrPC in association with the expressional regulation of interacting proteins could render cells more prone to cellular insults-stress response, formation of aggregates and may ultimately be linked to the cell death.
Collapse
|
13
|
Guillot-Sestier MV, Checler F. a-Secretase-Derived Cleavage of Cellular Prion Yields Biologically Active Catabolites with Distinct Functions. NEURODEGENER DIS 2012; 10:294-7. [DOI: 10.1159/000333804] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
|
14
|
Stella R, Cifani P, Peggion C, Hansson K, Lazzari C, Bendz M, Levander F, Sorgato MC, Bertoli A, James P. Relative Quantification of Membrane Proteins in Wild-Type and Prion Protein (PrP)-Knockout Cerebellar Granule Neurons. J Proteome Res 2011; 11:523-36. [DOI: 10.1021/pr200759m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roberto Stella
- Department of Biological Chemistry, University of Padova, Italy
| | - Paolo Cifani
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | - Karin Hansson
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | - Maria Bendz
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Fredrik Levander
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| | | | | | - Peter James
- Department of Immunotechnology and CREATE Health, Lund University, Sweden
| |
Collapse
|
15
|
Altmeppen HC, Prox J, Puig B, Kluth MA, Bernreuther C, Thurm D, Jorissen E, Petrowitz B, Bartsch U, De Strooper B, Saftig P, Glatzel M. Lack of a-disintegrin-and-metalloproteinase ADAM10 leads to intracellular accumulation and loss of shedding of the cellular prion protein in vivo. Mol Neurodegener 2011; 6:36. [PMID: 21619641 PMCID: PMC3224557 DOI: 10.1186/1750-1326-6-36] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/27/2011] [Indexed: 11/13/2022] Open
Abstract
Background The cellular prion protein (PrPC) fulfils several yet not completely understood physiological functions. Apart from these functions, it has the ability to misfold into a pathogenic scrapie form (PrPSc) leading to fatal transmissible spongiform encephalopathies. Proteolytic processing of PrPC generates N- and C-terminal fragments which play crucial roles both in the pathophysiology of prion diseases and in transducing physiological functions of PrPC. A-disintegrin-and-metalloproteinase 10 (ADAM10) has been proposed by cell culture experiments to be responsible for both shedding of PrPC and its α-cleavage. Here, we analyzed the role of ADAM10 in the proteolytic processing of PrPC in vivo. Results Using neuron-specific Adam10 knockout mice, we show that ADAM10 is the sheddase of PrPC and that its absence in vivo leads to increased amounts and accumulation of PrPC in the early secretory pathway by affecting its posttranslational processing. Elevated PrPC levels do not induce apoptotic signalling via p53. Furthermore, we show that ADAM10 is not responsible for the α-cleavage of PrPC. Conclusion Our study elucidates the proteolytic processing of PrPC and proves a role of ADAM10 in shedding of PrPC in vivo. We suggest that ADAM10 is a mediator of PrPC homeostasis at the plasma membrane and, thus, might be a regulator of the multiple functions discussed for PrPC. Furthermore, identification of ADAM10 as the sheddase of PrPC opens the avenue to devising novel approaches for therapeutic interventions against prion diseases.
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Transmissible spongiform encephalopathies, or prion diseases, are lethal neurodegenerative disorders caused by the infectious agent named prion, whose main constituent is an aberrant conformational isoform of the cellular prion protein, PrP(C) . The mechanisms of prion-associated neurodegeneration and the physiologic function of PrP(C) are still unclear, although it is now increasingly acknowledged that PrP(C) plays a role in cell differentiation and survival. PrP(C) thus exhibits dichotomic attributes, as it can switch from a benign function under normal conditions to the triggering of neuronal death during disease. By reviewing data from models of prion infection and PrP-knockout paradigms, here we discuss the possibility that Ca(2+) is the hidden factor behind the multifaceted behavior of PrP(C) . By featuring in almost all processes of cell signaling, Ca(2+) might explain diverse aspects of PrP(C) pathophysiology, including the recently proposed one in which PrP(C) acts as a mediator of synaptic degeneration in Alzheimer's disease.
Collapse
|