1
|
Jászberényi M, Thurzó B, Jayakumar AR, Schally AV. The Aggravating Role of Failing Neuropeptide Networks in the Development of Sporadic Alzheimer's Disease. Int J Mol Sci 2024; 25:13086. [PMID: 39684795 DOI: 10.3390/ijms252313086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease imposes an increasing burden on aging Western societies. The disorder most frequently appears in its sporadic form, which can be caused by environmental and polygenic factors or monogenic conditions of incomplete penetrance. According to the authors, in the majority of cases, Alzheimer's disease represents an aggravated form of the natural aging of the central nervous system. It can be characterized by the decreased elimination of amyloid β1-42 and the concomitant accumulation of degradation-resistant amyloid plaques. In the present paper, the dysfunction of neuropeptide regulators, which contributes to the pathophysiologic acceleration of senile dementia, is reviewed. However, in the present review, exclusively those neuropeptides or neuropeptide families are scrutinized, and the authors' investigations into their physiologic and pathophysiologic activities have made significant contributions to the literature. Therefore, the pathophysiologic role of orexins, neuromedins, RFamides, corticotrope-releasing hormone family, growth hormone-releasing hormone, gonadotropin-releasing hormone, ghrelin, apelin, and natriuretic peptides are discussed in detail. Finally, the therapeutic potential of neuropeptide antagonists and agonists in the inhibition of disease progression is discussed here.
Collapse
Affiliation(s)
- Miklós Jászberényi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
| | - Balázs Thurzó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary
- Emergency Patient Care Unit, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andrew V Schally
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
3
|
Csabafi K, Ibos KE, Bodnár É, Filkor K, Szakács J, Bagosi Z. A Brain Region-Dependent Alteration in the Expression of Vasopressin, Corticotropin-Releasing Factor, and Their Receptors Might Be in the Background of Kisspeptin-13-Induced Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Rats. Biomedicines 2023; 11:2446. [PMID: 37760887 PMCID: PMC10525110 DOI: 10.3390/biomedicines11092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Previously, we reported that intracerebroventricularly administered kisspeptin-13 (KP-13) induces anxiety-like behavior and activates the hypothalamic-pituitary-adrenal (HPA) axis in rats. In the present study, we aimed to shed light on the mediation of KP-13's stress-evoking actions. The relative gene expressions of the corticotropin-releasing factor (Crf, Crfr1, and Crfr2) and arginine vasopressin (Avp, Avpr1a, and Avpr1b) systems were measured in the amygdala and hippocampus of male Wistar rats after icv KP-13 treatment. CRF and AVP protein content were also determined. A different set of animals received CRF or V1 receptor antagonist pretreatment before the KP-13 challenge, after which either an open-field test or plasma corticosterone levels measurement was performed. In the amygdala, KP-13 induced an upregulation of Avp and Avpr1b expression, and a downregulation of Crf. In the hippocampus, the mRNA level of Crf increased and the level of Avpr1a decreased. A significant rise in AVP protein content was also detected in the amygdala. KP-13 also evoked anxiety-like behavior in the open field test, which the V1 receptor blocker antagonized. Both CRF and V1 receptor blockers reduced the KP-13-evoked rise in the plasma corticosterone level. This suggests that KP-13 alters the AVP and CRF signaling and that might be responsible for its effect on the HPA axis and anxiety-like behavior.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary (K.F.)
| | | | | | | | | | | |
Collapse
|
4
|
Singh N, Hutson R, Milton NGN, Javid FA. Ovarian cancer and KiSS-1 gene expression: A consideration of the use of Kisspeptin plus Kisspeptin aptamers in diagnostics and therapy. Eur J Pharmacol 2022; 917:174752. [PMID: 35026192 DOI: 10.1016/j.ejphar.2022.174752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Gynaecological cancers continue to present a significant health burden upon the health of the global female population. This deficit is most prominent with ovarian cancer which possesses the lowest survival rate compared to all other cancers occurring within this anatomical region, with an annual UK-mortality of 7,300. The poor tolerability and selectively of the treatment options that are currently available is likely to have contributed to this high mortality rate thus, demonstrating the need for the development of enhanced therapeutic approaches. Aptamer technology would involve the engineering of specifically sequenced oligonucleotide chains, which bind to macromolecular targets with a high degree of affinity and selectively. Recent in-vitro studies conducted upon the clinical utility of this technique have supported its superiority in targeting individual therapeutic drug targets compared to various other targeting moieties currently within therapeutic use such as, monoclonal antibodies. For this reason, the employment of this technique is likely to be favourable in reducing the incidence of non-specific, chemotherapy-associated adverse effects. Kisspeptin is a naturally expressed polypeptide with an established role in the development of the reproductive system and other proposed roles in influencing the ability of ovarian cancer growths to exhibit the metastasis hallmark. This distinctive feature would indicate the potential for the manipulation of this pathway through the application of aptamer structures in developing a novel prophylactic strategy and improve the long-term outcome for ovarian cancer patients.
Collapse
Affiliation(s)
- Navinder Singh
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Richard Hutson
- St James's Leeds University Teaching Hospital, Beckett Street, Leeds, LS9 7TF, United Kingdom
| | - Nathaniel G N Milton
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, City Campus, Leeds, LS1 3HE, United Kingdom
| | - Farideh A Javid
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom.
| |
Collapse
|
5
|
Bentefour Y, Bakker J. Kisspeptin signaling and nNOS neurons in the VMHvl modulate lordosis behavior but not mate preference in female mice. Neuropharmacology 2021; 198:108762. [PMID: 34437905 DOI: 10.1016/j.neuropharm.2021.108762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/15/2022]
Abstract
It was recently shown that kisspeptin neurons in the anteroventral periventricular area (AVPV) orchestrate female sexual behavior, including lordosis behavior and mate preference. A potential target of AVPV kisspeptin signaling could be neurons expressing the neuronal form of nitric oxide synthase (nNOS) in the ventrolateral part of the ventromedial hypothalamus (VMHvl). Therefore, in the present study, we further refined the role of the VHMvl in female sexual behavior. Adult female mice received a bilateral cannula aimed at the VMHvl. A single injection with kisspeptin (Kp-10) or SNAP/BAY, a nitric oxide donor, significantly increased lordosis, whereas the nNOS inhibitor l-NAME decreased it. None of these drugs affected mate preference. Interestingly, administration of GnRH into the VMHvl had no effect on lordosis or mate preference. To determine whether the stimulatory effect of Kp-10 on lordosis was specific to the VMHvl, an additional group of females received Kp-10 directly into the paraventricular nucleus (PVN). No effect was found on lordosis and mate preference. These results suggest that kisspeptin most likely modulates lordosis behavior through nNOS neurons in the VMHvl whereas mate preference is modulated by kisspeptin through a separate neuronal circuit not including the VMHvl.
Collapse
Affiliation(s)
- Yassine Bentefour
- GIGA Neurosciences, Neuroendocrinology, University of Liège, 4000, Liège, Belgium
| | - Julie Bakker
- GIGA Neurosciences, Neuroendocrinology, University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
6
|
Ibos KE, Bodnár É, Bagosi Z, Bozsó Z, Tóth G, Szabó G, Csabafi K. Kisspeptin-8 Induces Anxiety-Like Behavior and Hypolocomotion by Activating the HPA Axis and Increasing GABA Release in the Nucleus Accumbens in Rats. Biomedicines 2021; 9:112. [PMID: 33503835 PMCID: PMC7911394 DOI: 10.3390/biomedicines9020112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Kisspeptins (Kp) are RF-amide neuropeptide regulators of the reproductive axis that also influence anxiety, locomotion, and metabolism. We aimed to investigate the effects of intracerebroventricular Kp-8 (an N-terminally truncated octapeptide) treatment in Wistar rats. Elevated plus maze (EPM), computerized open field (OF), and marble burying (MB) tests were performed for the assessment of behavior. Serum LH and corticosterone levels were determined to assess kisspeptin1 receptor (Kiss1r) activation and hypothalamic-pituitary-adrenal axis (HPA) stimulation, respectively. GABA release from the nucleus accumbens (NAc) and dopamine release from the ventral tegmental area (VTA) and NAc were measured via ex vivo superfusion. Kp-8 decreased open arm time and entries in EPM, and also raised corticosterone concentration, pointing to an anxiogenic effect. Moreover, the decrease in arm entries in EPM, the delayed increase in immobility accompanied by reduced ambulatory activity in OF, and the reduction in interactions with marbles show that Kp-8 suppressed exploratory and spontaneous locomotion. The increase in GABA release from the NAc might be in the background of hypolocomotion by inhibiting the VTA-NAc dopaminergic circuitry. As Kp-8 raised LH concentration, it could activate Kiss1r and stimulate the reproductive axis. As Kiss1r is associated with hyperlocomotion, it is more likely that neuropeptide FF receptor activation is involved in the suppression of locomotor activity.
Collapse
Affiliation(s)
- Katalin Eszter Ibos
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| | - Éva Bodnár
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| | - Zsolt Bagosi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| | - Zsolt Bozsó
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.B.); (G.T.)
| | - Gábor Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (Z.B.); (G.T.)
| | - Gyula Szabó
- Office of International Affairs, Budapest Campus, McDaniel College, H-1071 Budapest, Hungary;
| | - Krisztina Csabafi
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (É.B.); (Z.B.); (K.C.)
| |
Collapse
|
7
|
Abstract
The significance of KISS1 goes beyond its original discovery as a metastasis suppressor. Its function as a neuropeptide involved in diverse physiologic processes is more well studied. Enthusiasm regarding KISS1 has cumulated in clinical trials in multiple fields related to reproduction and metabolism. But its cancer therapeutic space is unsettled. This review focuses on collating data from cancer and non-cancer fields in order to understand shared and disparate signaling that might inform clinical development in the cancer therapeutic and biomarker space. Research has focused on amino acid residues 68-121 (kisspeptin 54), binding to the KISS1 receptor and cellular responses. Evidence and counterevidence regarding this canonical pathway require closer look at the covariates so that the incredible potential of KISS1 can be realized.
Collapse
Affiliation(s)
- Thuc Ly
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA
| | - Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, 3901 Rainbow Blvd. - MS1071, Kansas City, KS, 66160, USA.
- University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
8
|
Watanabe T, Sato K. Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutr Metab Cardiovasc Dis 2020; 30:889-895. [PMID: 32409274 DOI: 10.1016/j.numecd.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
AIMS Kisspeptin-10 (KP-10), a potent vasoconstrictor and inhibitor of angiogenesis, and its receptor, GPR54, have currently received much attention with respect to atherosclerosis, since both KP-10 and GPR54 are expressed at high levels in atheromatous plaques and restenotic lesions after wire-injury. The present review introduces the emerging roles of the KP-10/GPR54 system in atherosclerosis. DATA SYNTHESIS KP-10 suppresses migration and proliferation of human umbilical vein endothelial cells (HUVECs), and induces senescence in HUVECs. KP-10 increases adhesion of human monocytes to HUVECs. KP-10 also stimulates expression of interleukin-6, tumor necrosis factor-α, monocyte chemotactic protein-1, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin genes in HUVECs. KP-10 enhances oxidized low-density lipoprotein-induced foam cell formation associated with upregulation of CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, KP-10 suppresses angiotensin II-induced migration and proliferation, however, it enhances apoptosis and activities of matrix metalloproteinase (MMP)-2 and MMP-9 by upregulation of extracellular signal-regulated kinase 1/2, p38, Bax, and caspase-3. Four-week-infusion of KP-10 into Apoe-/- mice accelerates development of aortic atherosclerotic lesions with increased monocyte/macrophage infiltration and vascular inflammation, also, it decreases intraplaque vascular smooth muscle cell content. Proatherosclerotic effects of endogenous and exogenous KP-10 were completely attenuated upon infusion of P234, a GPR54 antagonist, in Apoe-/- mice. CONCLUSION These findings suggest that KP-10 may contribute to acceleration of progression and to the instability of atheromatous plaques, leading to rupture of plaques. This GPR54 antagonist may be useful for the prevention and treatment of atherosclerosis. Thus, the KP-10/GPR54 system may serve as a novel therapeutic target for atherosclerotic diseases.
Collapse
Affiliation(s)
- Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Department of Internal Medicine, Ushioda General Hospital/Clinic, Yokohama, Japan.
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
9
|
Gibula-Tarlowska E, Grochecki P, Silberring J, Kotlinska JH. The kisspeptin derivative kissorphin reduces the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference in rats. Alcohol 2019; 81:11-19. [PMID: 30981809 DOI: 10.1016/j.alcohol.2019.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/25/2019] [Accepted: 04/05/2019] [Indexed: 12/17/2022]
Abstract
Research has shown that opioids are involved in the rewarding effects of ethanol. Neuropeptide FF (NPFF) has been described as an anti-opioid peptide because, in many cases, it inhibits opioid and ethanol effects in rodents. Kissorphin (KSO) is a new peptide derived from kisspeptin-10 with structural similarities to NPFF. This peptide possesses NPFF-like biological activity in vitro. The aim of the current study was to investigate whether KSO (Tyr-Asn-Trp-Asn-Ser-Phe-NH2) influences the acquisition, expression, and reinstatement of ethanol-induced conditioned place preference (ethanol-CPP) in rats. The ethanol-CPP was established (conditioning for 5 days) by intraperitoneal (i.p.) administration of ethanol (1 g/kg, 20%, w/v) using an unbiased procedure. After that, one group of rats was used in final post-conditioning testing (expression of CPP) and the other group received a priming injection of ethanol after 10 days of extinction (reinstatement of CPP). Our experiments showed that KSO, given intravenously (i.v.) at the doses of 1, 3, and 10 nmol before every ethanol administration, inhibited the acquisition and, given acutely before the post-conditioning test or before the priming dose of ethanol, inhibited the expression and reinstatement of ethanol-CPP, respectively, in a dose-dependent manner. KSO given by itself neither induced place preference nor aversion and did not alter locomotor activity and coordination of rats. These results suggest that KSO can alter rewarding/motivational effects of ethanol. These data suggest this peptide possesses an anti-opioid character.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - Jerzy Silberring
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| |
Collapse
|
10
|
Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat Commun 2018; 9:4722. [PMID: 30413707 PMCID: PMC6226433 DOI: 10.1038/s41467-018-06462-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 09/07/2018] [Indexed: 11/24/2022] Open
Abstract
Excess caloric intake results in increased fat accumulation and an increase in energy expenditure via diet-induced adaptive thermogenesis; however, the underlying mechanisms controlling these processes are unclear. Here we identify the neuropeptide FF receptor-2 (NPFFR2) as a critical regulator of diet-induced thermogenesis and bone homoeostasis. Npffr2−/− mice exhibit a stronger bone phenotype and when fed a HFD display exacerbated obesity associated with a failure in activating brown adipose tissue (BAT) thermogenic response to energy excess, whereas the activation of cold-induced BAT thermogenesis is unaffected. NPFFR2 signalling is required to maintain basal arcuate nucleus NPY mRNA expression. Lack of NPFFR2 signalling leads to a decrease in BAT thermogenesis under HFD conditions with significantly lower UCP-1 and PGC-1α levels in the BAT. Together, these data demonstrate that NPFFR2 signalling promotes diet-induced thermogenesis via a novel hypothalamic NPY-dependent circuitry thereby coupling energy homoeostasis with energy partitioning to adipose and bone tissue. Excess caloric intake leads to increased thermogenesis in brown adipose tissue, to limit weight gain. Here, the authors show that neuropeptide FF receptor-2 signalling promotes thermogenesis via control of NPY expression in the arcuate nucleus, and that it absence in mice leads to a failure of activation of diet-induced thermogenesis and the development of exacerbated obesity.
Collapse
|
11
|
Csabafi K, Bagosi Z, Dobó É, Szakács J, Telegdy G, Szabó G. Kisspeptin modulates pain sensitivity of CFLP mice. Peptides 2018; 105:21-27. [PMID: 29709623 DOI: 10.1016/j.peptides.2018.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/10/2018] [Accepted: 04/27/2018] [Indexed: 01/10/2023]
Abstract
Kisspeptin, a hypothalamic neuropeptide, is a member of the RF-amide family, which have been known to modify pain sensitivity in rodents. The aim of the present study was to investigate the effect of kisspeptin-13 (KP-13), an endogenous derivative of kisspeptin, on nociception in adult male and female CFLP mice and the possible interaction of KP-13 with morphine on nociception. Mice were injected with different doses of KP-13, 30, 60 and 120 min after of which the nociceptive sensitivity were assessed via the tail-flick test. To investigate the receptor involved in the mediation a kisspeptin receptor antagonist (KP-234) pretreatment was applied before KP-13 administration. Furthermore, we investigated the effect of KP-13 on the acute antinociceptive effect of morphine, on acute morphine tolerance and on naloxone-precipitated withdrawal. Last, the Von Frey test was used in order to assess KP-13's effect on mechanical nociception. Our results showed that KP-13 decreased the nociceptive threshold of both males and females independent of sex, which was prevented by KP-234. Furthermore, KP-13 treatment depressed the acute antinociceptive effect of morphine and attenuated the development of morphine tolerance. KP-13 also induced a mechanical hypersensitivity. These data underlie kisspeptin's hyperalgesic action and argues for the role of kisspeptin receptor 1 in the mediation of its action. Furthermore, our results suggest that central KP-13 administration can modify the acute effects of morphine.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, 6701, Szeged, Hungary.
| | - Zsolt Bagosi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, 6701, Szeged, Hungary
| | - Éva Dobó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, 6701, Szeged, Hungary
| | - Júlia Szakács
- Department of Pathophysiology, University of Szeged, P.O. Box 427, 6701, Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, University of Szeged, P.O. Box 427, 6701, Szeged, Hungary; Neuroscience Research Group of the Hungarian Academy of Sciences, P.O. Box 521, 6701, Szeged, Hungary
| | - Gyula Szabó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, 6701, Szeged, Hungary
| |
Collapse
|
12
|
Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018; 221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Neuropeptides are the most diverse class of chemical modulators in nervous systems. They contribute to extensive modulation of circuit activity and have profound influences on animal physiology. Studies on invertebrate model organisms, including the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans, have enabled the genetic manipulation of peptidergic signalling, contributing to an understanding of how neuropeptides pattern the output of neural circuits to underpin behavioural adaptation. Electrophysiological and pharmacological analyses of well-defined microcircuits, such as the crustacean stomatogastric ganglion, have provided detailed insights into neuropeptide functions at a cellular and circuit level. These approaches can be increasingly applied in the mammalian brain by focusing on circuits with a defined and identifiable sub-population of neurons. Functional analyses of neuropeptide systems have been underpinned by systematic studies to map peptidergic networks. Here, we review the general principles and mechanistic insights that have emerged from these studies. We also highlight some of the challenges that remain for furthering our understanding of the functional relevance of peptidergic modulation.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Sarah Melzer
- Howard Hughes Medical Institute, Department of Neurobiology, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Isabel Beets
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ilona C Grunwald Kadow
- Technical University of Munich, TUM School of Life Sciences, ZIEL - Institute for Food and Health, 85354 Freising, Germany
| | - Joris Koene
- Vrije Universiteit - Ecological Science, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Sara Haddad
- Volen Center for Complex Systems, Brandeis University, Mailstop 013, 415 South Street, Waltham, MA 02454, USA
| | - Lindy Holden-Dye
- Biological Sciences, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
13
|
Hellier V, Brock O, Candlish M, Desroziers E, Aoki M, Mayer C, Piet R, Herbison A, Colledge WH, Prévot V, Boehm U, Bakker J. Female sexual behavior in mice is controlled by kisspeptin neurons. Nat Commun 2018; 9:400. [PMID: 29374161 PMCID: PMC5786055 DOI: 10.1038/s41467-017-02797-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/29/2017] [Indexed: 12/17/2022] Open
Abstract
Sexual behavior is essential for the survival of many species. In female rodents, mate preference and copulatory behavior depend on pheromones and are synchronized with ovulation to ensure reproductive success. The neural circuits driving this orchestration in the brain have, however, remained elusive. Here, we demonstrate that neurons controlling ovulation in the mammalian brain are at the core of a branching neural circuit governing both mate preference and copulatory behavior. We show that male odors detected in the vomeronasal organ activate kisspeptin neurons in female mice. Classical kisspeptin/Kiss1R signaling subsequently triggers olfactory-driven mate preference. In contrast, copulatory behavior is elicited by kisspeptin neurons in a parallel circuit independent of Kiss1R involving nitric oxide signaling. Consistent with this, we find that kisspeptin neurons impinge onto nitric oxide-synthesizing neurons in the ventromedial hypothalamus. Our data establish kisspeptin neurons as a central regulatory hub orchestrating sexual behavior in the female mouse brain. Mate preference and copulatory behavior in female rodents are coordinated with the ovulation cycles of the animal. This study shows that hypothalamic kisspeptin neurons control both mate choice and copulation, and therefore, that sexual behavior and ovulation may be synchronized by the same neuropeptide.
Collapse
Affiliation(s)
- Vincent Hellier
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Olivier Brock
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium.,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Michael Candlish
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | - Elodie Desroziers
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium
| | - Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany
| | | | - Richard Piet
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - Allan Herbison
- Center for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin, 9054, New Zealand
| | - William Henry Colledge
- Reproductive Physiology Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Inserm U1172, F- 59000, Lille Cedex, France
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421, Homburg, Germany.
| | - Julie Bakker
- GIGA Neurosciences, Neuroendocrinology, University of Liege, 4000, Liege, Belgium. .,Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|
15
|
Mezei Z, Váczi S, Török V, Stumpf C, Ónody R, Földesi I, Szabó G. Effects of kisspeptin on diabetic rat platelets. Can J Physiol Pharmacol 2017; 95:1319-1326. [DOI: 10.1139/cjpp-2017-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hyperglycemia, hyperlipidemia, and free radicals result in platelet activation and atherogenesis. Kisspeptin (KP) is able to regulate metabolism, hemostasis, and the development of atherosclerosis. We examined whether platelet aggregation of streptozotocin-induced diabetic rats depends on the inducer type and if KP-13 and RF-9 (a kisspeptin receptor modifier) can influence platelet function. We measured the speed and the maximum of aggregation, along with the area under the curve. Serum glucose and calcium levels and urine formation of diabetic animals increased, while the body mass and platelet count decreased. Collagen was the most effective inducer of platelet aggregation. The aggregability of nondiabetic platelets was elevated in the presence of 5 × 10−8 mol/L KP-13. This effect was less expressed in diabetic animals. The effectivity of RF-9 was stronger than that of KP-13 in nondiabetic platelets, however it was ineffective in diabetic animals. RF-9 pre-treatment did not change the effects of 5 × 10−8 mol/L KP-13 in either animal group. The in vivo activation of diabetic platelets, which may be due to elevated serum calcium, induces thrombocytopenia and may lead to reduced in vitro aggregability. We could not demonstrate the antagonistic effect of RF-9 against KP-13 in isolated platelets.
Collapse
Affiliation(s)
- Zsófia Mezei
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Sándor Váczi
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Viktória Török
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Csaba Stumpf
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Rita Ónody
- Institute of Laboratory Medicine, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary
| | - Imre Földesi
- Institute of Laboratory Medicine, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary
| | - Gyula Szabó
- Department of Pathophysiology, University of Szeged, Semmelweis u. 1, 6725 Szeged, Hungary
| |
Collapse
|
16
|
The new kisspeptin derivative - kissorphin (KSO) - attenuates acute hyperlocomotion and sensitization induced by ethanol and morphine in mice. Alcohol 2017; 64:45-53. [PMID: 28965655 DOI: 10.1016/j.alcohol.2017.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 12/25/2022]
Abstract
Kissorphin (KSO) is a new peptide derived from kisspeptin-10. This peptide possesses neuropeptide FF (NPFF)-like biological activity in vitro; NPFF, in many cases, inhibits opioid and ethanol effects in rodents. Therefore, the current study explored the influence of KSO on acute ethanol- and morphine-induced hyperactivity, and on the development and expression of locomotor sensitization induced by these drugs. In the present study, sensitization to locomotor effects was induced by repeated exposure to ethanol (2.4 g/kg, intraperitoneally [i.p.], 1 × 4 days) or morphine (10 mg/kg, subcutaneously [s.c.], 1 × 7 days). We found that KSO (1-10 nmol/300 μL, intravenously [i.v.]) did not have an impact on locomotor activity of naïve mice. However, it reduced both acute ethanol- (10 nmol/300 μL) and morphine-induced hyperactivity (3 and 10 nmol/300 μL). Pretreatment of animals with KSO (10 nmol/300 μL), before every ethanol or morphine injection during development of sensitization or before the ethanol or morphine challenge, attenuated the development, as well as the expression of locomotor sensitization to both substances. Moreover, prior administration of the NPFF receptor antagonist RF9 (10 nmol/300 μL, i.v.) inhibited the ability of KSO (10 nmol/300 μL) to reduce the expression of ethanol and morphine sensitization. KSO given alone, at all used doses, did not influence the motor coordination measured via the rotarod test. The results from this study show that KSO effectively attenuated acute and repeated effects of ethanol and morphine. Thus, KSO possesses NPFF-like anti-opioid activity in these behavioral studies.
Collapse
|
17
|
Lents CA, Thorson JF, Desaulniers AT, White BR. RFamide‐related peptide 3 and gonadotropin‐releasing hormone‐II are autocrine–paracrine regulators of testicular function in the boar. Mol Reprod Dev 2017; 84:994-1003. [DOI: 10.1002/mrd.22830] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Clay A. Lents
- United States Department of Agriculture, Agricultural Research ServiceU. S. Meat Animal Research CenterClay CenterNebraska
| | - Jennifer F. Thorson
- United States Department of Agriculture, Agricultural Research ServiceU. S. Meat Animal Research CenterClay CenterNebraska
| | - Amy T. Desaulniers
- University of Nebraska‐LincolnDepartment of Animal ScienceLincolnNebraska
| | - Brett R. White
- University of Nebraska‐LincolnDepartment of Animal ScienceLincolnNebraska
| |
Collapse
|
18
|
Oishi S, Fujii N. Neuropeptide derivatives to regulate the reproductive axis: Kisspeptin receptor (KISS1R) ligands and neurokinin-3 receptor (NK3R) ligands. Biopolymers 2017; 106:588-97. [PMID: 27271543 DOI: 10.1002/bip.22793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Recent research has indicated pivotal roles for neuropeptides and their cognate receptors in reproductive physiology. Kisspeptins are RF-amide neuropeptides that stimulate gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides and positively regulates pulsatile GnRH secretion. These peptides are coexpressed in kisspeptin/NKB/Dyn (KNDy) neurons of the arcuate nucleus, where they contribute to the regulation of puberty onset and other reproductive functions. In this review, the design of peptide ligands for the kisspeptin (KISS1R) and neurokinin-3 (NK3R) receptors are described. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 588-597, 2016.
Collapse
Affiliation(s)
- Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-Ku, Kyoto, 606-8501, Japan
| |
Collapse
|
19
|
Higo S, Iijima N, Ozawa H. Characterisation of Kiss1r (Gpr54)-Expressing Neurones in the Arcuate Nucleus of the Female Rat Hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 27981646 DOI: 10.1111/jne.12452] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/20/2016] [Accepted: 12/08/2016] [Indexed: 11/30/2022]
Abstract
Kisspeptin is essential in reproduction and acts by stimulating neurones expressing gonadotrophin-releasing hormone (GnRH). Recent studies suggest that kisspeptin has multiple roles in the modulation of neuronal circuits in systems outside the hypothalamic-pituitary-gonadal axis. Our recent research using in situ hybridisation (ISH) clarified the histological distribution of Kiss1r (Gpr54)-expressing neurones in the rat brain that were presumed to be putative targets of kisspeptin. The arcuate nucleus (ARN) of the hypothalamus is one of the brain regions in which Kiss1r expression in non-GnRH neurones is prominent. However, the characteristics of Kiss1r-expressing neurones in the ARN remain unclear. The present study aimed to determine the neurochemical characteristics of Kiss1r-expressing neurones in the ARN using ISH and immunofluorescence. We revealed that the majority (approximately 63%) of Kiss1r-expressing neurones in the ARN were pro-opiomelanocortin (POMC) neurones, which have an anorexic effect in mammals. Additionally, a few Kiss1r-expressing neurones in the dorsal ARN are tuberoinfundibular dopamine (TIDA) neurones, which control milk production by inhibiting prolactin secretion from the anterior pituitary. TIDA neurones showed a relatively weak Kiss1r ISH signal compared to POMC neurones, as well as low co-expression of Kiss1r (approximately 15%). We also examined the expression of Kiss1r in neuropeptide Y and kisspeptin neurones, which are reported to arise from POMC-expressing progenitor cells during development. However, the vast majority of neuropeptide Y and kisspeptin neurones in the ARN did not express Kiss1r. These results suggest that kisspeptin may directly regulate energy homeostasis and milk production by modulating the activity of POMC and TIDA neurones, respectively. Our results provide an insight into the wide variety of roles that kisspeptin plays in homeostatic and neuroendocrine functions.
Collapse
Affiliation(s)
- S Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - N Iijima
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - H Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
20
|
Seymour AJ, Scott V, Augustine RA, Bouwer GT, Campbell RE, Brown CH. Development of an excitatory kisspeptin projection to the oxytocin system in late pregnancy. J Physiol 2016; 595:825-838. [PMID: 27589336 DOI: 10.1113/jp273051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Oxytocin release from the posterior pituitary gland stimulates uterine contraction during birth but the central mechanisms that activate oxytocin neurones for birth are not well characterized. We found that that kisspeptin fibre density around oxytocin neurones increases in late-pregnant rats. These kisspeptin fibres originated from hypothalamic periventricular nucleus neurones that upregulated kisspeptin expression in late pregnancy. Oxytocin neurones were excited by central kisspeptin administration in late-pregnant rats but not in non-pregnant rats or early- to mid-pregnant rats. Our results reveal the emergence of a new excitatory kisspeptin projection to the oxytocin system in late pregnancy that might contribute to oxytocin neurone activation for birth. ABSTRACT The hormone oxytocin promotes uterine contraction during parturition. Oxytocin is synthesized by magnocellular neurones in the hypothalamic supraoptic and paraventricular nuclei and is released into the circulation from the posterior pituitary gland in response to action potential firing. Systemic kisspeptin administration increases oxytocin neurone activity to elevate plasma oxytocin levels. Here, immunohistochemistry revealed that rats on the expected day of parturition (day 21 of gestation) had a higher density of kisspeptin-positive fibres in the perinuclear zone surrounding the supraoptic nucleus (which provides dense glutamatergic and GABAergic innervation to the supraoptic nucleus) than was evident in non-pregnant rats. Retrograde tracing showed the kisspeptin projections to the perinuclear zone originated from the hypothalamic periventricular nucleus. Quantitative RT-PCR showed that kisspeptin receptor mRNA, Kiss1R mRNA, was expressed in the perinuclear zone-supraoptic nucleus and that the relative Kiss1R mRNA expression does not change over the course of pregnancy. Finally, intracerebroventricular administration of kisspeptin increased the firing rate of oxytocin neurones in anaesthetized late-pregnant rats (days 18-21 of gestation) but not in non-pregnant rats, or in early- or mid-pregnant rats. Taken together, these results suggest that kisspeptin expression is upregulated in the periventricular nucleus projection to the perinuclear zone of the supraoptic nucleus towards the end of pregnancy. Hence, this input might activate oxytocin neurones during parturition.
Collapse
Affiliation(s)
- Alexander J Seymour
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Victoria Scott
- Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rachael A Augustine
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Gregory T Bouwer
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Colin H Brown
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Centre for Neuroendocrinology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.,Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
Uenoyama Y, Pheng V, Tsukamura H, Maeda KI. The roles of kisspeptin revisited: inside and outside the hypothalamus. J Reprod Dev 2016; 62:537-545. [PMID: 27478063 PMCID: PMC5177970 DOI: 10.1262/jrd.2016-083] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Kisspeptin, encoded by KISS1/Kiss1 gene, is now considered a master regulator of reproductive functions in mammals owing to
its involvement in the direct activation of gonadotropin-releasing hormone (GnRH) neurons after binding to its cognate receptor, GPR54. Ever since the discovery
of kisspeptin, intensive studies on hypothalamic expression of KISS1/Kiss1 and on physiological roles of hypothalamic
kisspeptin neurons have provided clues as to how the brain controls sexual maturation at the onset of puberty and subsequent reproductive performance in
mammals. Additionally, emerging evidence indicates the potential involvement of extra-hypothalamic kisspeptin in reproductive functions. Here, we summarize data
regarding kisspeptin inside and outside the hypothalamus and revisit the physiological roles of central and peripheral kisspeptins in the reproductive functions
of mammals.
Collapse
Affiliation(s)
- Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
22
|
Liu X, Herbison AE. Kisspeptin Regulation of Neuronal Activity throughout the Central Nervous System. Endocrinol Metab (Seoul) 2016; 31:193-205. [PMID: 27246282 PMCID: PMC4923402 DOI: 10.3803/enm.2016.31.2.193] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/14/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022] Open
Abstract
Kisspeptin signaling at the gonadotropin-releasing hormone (GnRH) neuron is now relatively well characterized and established as being critical for the neural control of fertility. However, kisspeptin fibers and the kisspeptin receptor (KISS1R) are detected throughout the brain suggesting that kisspeptin is involved in regulating the activity of multiple neuronal circuits. We provide here a review of kisspeptin actions on neuronal populations throughout the brain including the magnocellular oxytocin and vasopressin neurons, and cells within the arcuate nucleus, hippocampus, and amygdala. The actions of kisspeptin in these brain regions are compared to its effects upon GnRH neurons. Two major themes arise from this analysis. First, it is apparent that kisspeptin signaling through KISS1R at the GnRH neuron is a unique, extremely potent form or neurotransmission whereas kisspeptin actions through KISS1R in other brain regions exhibit neuromodulatory actions typical of other neuropeptides. Second, it is becoming increasingly likely that kisspeptin acts as a neuromodulator not only through KISS1R but also through other RFamide receptors such as the neuropeptide FF receptors (NPFFRs). We suggest likely locations of kisspeptin signaling through NPFFRs but note that only limited tools are presently available for examining kisspeptin cross-signaling within the RFamide family of neuropeptides.
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Allan E Herbison
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand.
| |
Collapse
|
23
|
A synthetic kisspeptin analog that triggers ovulation and advances puberty. Sci Rep 2016; 6:26908. [PMID: 27245315 PMCID: PMC4887910 DOI: 10.1038/srep26908] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/09/2016] [Indexed: 12/26/2022] Open
Abstract
The neuropeptide kisspeptin and its receptor, KiSS1R, govern the reproductive timeline of mammals by triggering puberty onset and promoting ovulation by stimulating gonadotrophin-releasing hormone (GnRH) secretion. To overcome the drawback of kisspeptin short half-life we designed kisspeptin analogs combining original modifications, triazole peptidomimetic and albumin binding motif, to reduce proteolytic degradation and to slow down renal clearance, respectively. These analogs showed improved in vitro potency and dramatically enhanced pharmacodynamics. When injected intramuscularly into ewes (15 nmol/ewe) primed with a progestogen, the best analog (compound 6, C6) induced synchronized ovulations in both breeding and non-breeding seasons. Ovulations were fertile as demonstrated by the delivery of lambs at term. C6 was also fully active in both female and male mice but was completely inactive in KiSS1R KO mice. Electrophysiological recordings of GnRH neurons from brain slices of GnRH-GFP mice indicated that C6 exerted a direct excitatory action on GnRH neurons. Finally, in prepubertal female mice daily injections (0.3 nmol/mouse) for five days significantly advanced puberty. C6 ability to trigger ovulation and advance puberty demonstrates that kisspeptin analogs may find application in the management of livestock reproduction and opens new possibilities for the treatment of reproductive disorders in humans.
Collapse
|
24
|
Higo S, Honda S, Iijima N, Ozawa H. Mapping of Kisspeptin Receptor mRNA in the Whole Rat Brain and its Co-Localisation with Oxytocin in the Paraventricular Nucleus. J Neuroendocrinol 2016; 28. [PMID: 26709462 DOI: 10.1111/jne.12356] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/12/2015] [Accepted: 12/21/2015] [Indexed: 11/29/2022]
Abstract
The neuropeptide kisspeptin and its receptor play an essential role in reproduction as a potent modulator of the gonadotrophin-releasing hormone (GnRH) neurone. In addition to its reproductive function, kisspeptin signalling is also involved in extra-hypothalamic-pituitary-gonadal (HPG) axis systems, including oxytocin and arginine vasopressin (AVP) secretion. By contrast to the accumulating information for kisspeptin neurones and kisspeptin fibres, the histological distribution and function of the kisspeptin receptor in the rat brain remain poorly characterised. Using in situ hybridisation combined with immunofluorescence, the present study aimed to determine the whole brain map of Kiss1r mRNA (encoding the kisspeptin receptor), and to examine whether oxytocin or AVP neurones express Kiss1r. Neurones with strong Kiss1r expression were observed in several rostral brain areas, including the olfactory bulb, medial septum, diagonal band of Broca and throughout the preoptic area, with the most concentrated population being around 0.5 mm rostral to the bregma. Co-immunofluorescence staining revealed that, in these rostral brain areas, the vast majority of the Kiss1r-expressing neurones co-expressed GnRH. Moderate levels of Kiss1r mRNA were also noted in the rostral periventricular area, paraventricular nucleus (PVN), and throughout the arcuate nucleus. Relatively weak Kiss1r expression was observed in the supraoptic nucleus and supramammillary nuclei. Moderate to weak expression of Kiss1r was also observed in several regions in the midbrain, including the periaqueductal gray and dorsal raphe nucleus. We also examined whether oxytocin and AVP neurones in the PVN co-express Kiss1r. Immunofluorescence revealed the co-expression of Kiss1r in a subset of the oxytocin neurones but not in the AVP neurones in the PVN. The present study provides a fundamental anatomical basis for further examination of the kisspeptin signalling system in the extra-HPG axis, as well as in reproductive function.
Collapse
Affiliation(s)
- S Higo
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, , Japan
| | - S Honda
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, , Japan
| | - N Iijima
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, , Japan
| | - H Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, , Japan
| |
Collapse
|
25
|
Quillet R, Ayachi S, Bihel F, Elhabazi K, Ilien B, Simonin F. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacol Ther 2016; 160:84-132. [PMID: 26896564 DOI: 10.1016/j.pharmthera.2016.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RF-amide neuropeptides, with their typical Arg-Phe-NH2 signature at their carboxyl C-termini, belong to a lineage of peptides that spans almost the entire life tree. Throughout evolution, RF-amide peptides and their receptors preserved fundamental roles in reproduction and feeding, both in Vertebrates and Invertebrates. The scope of this review is to summarize the current knowledge on the RF-amide systems in Mammals from historical aspects to therapeutic opportunities. Taking advantage of the most recent findings in the field, special focus will be given on molecular and pharmacological properties of RF-amide peptides and their receptors as well as on their implication in the control of different physiological functions including feeding, reproduction and pain. Recent progress on the development of drugs that target RF-amide receptors will also be addressed.
Collapse
Affiliation(s)
- Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Bihel
- Laboratoire Innovation Thérapeutique, UMR 7200 CNRS, Université de Strasbourg, Illkirch, France
| | - Khadija Elhabazi
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Brigitte Ilien
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242 CNRS, Université de Strasbourg, Illkirch, France.
| |
Collapse
|
26
|
Mezei Z, Zamani-Forooshani O, Csabafi K, Szikszai B, Papp E, Ónodi Á, Török D, Leprán Á, Telegdy G, Szabó G. The effect of kisspeptin on the regulation of vascular tone. Can J Physiol Pharmacol 2015; 93:787-91. [DOI: 10.1139/cjpp-2015-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Kisspeptin has been implicated in cardiovascular control. Eicosanoids play a crucial role in the activation of platelets and the regulation of vascular tone. In the present study, we investigated the effect of kisspeptins on eicosanoid synthesis in platelets and aorta in vitro. Platelets and aorta were isolated from Wistar–Kyoto rats. After preincubation with different doses of kisspeptin, samples were incubated with [1-14C]arachidonic acid (0.172 pmol/mL) in tissue culture Medium 199. The amount of labeled eicosanoids was measured with liquid scintillation, after separation with overpressure thin-layer chromatography. Kisspeptin-13 stimulated the thromboxane synthesis. The dose–response curve was bell-shaped and the most effective concentration was 2.5 × 10−8 mol/L, inducing a 27% increase. Lipoxygenase products of platelets displayed a dose-dependent elevation up to the dose of 5 × 10−8 mol/L. In the aorta, kisspeptin-13 induced a marked elevation in the production of 6-keto-prostaglandin F1α, the stable metabolite of prostacyclin, and lipoxygenase products. Different effects of kisspeptin on cyclooxygenase and lipoxygenase products indicate that beyond intracellular Ca2+ mobilization, other signaling pathways might also contribute to its actions. Our data suggest that kisspeptin, through the alteration of eicosanoid synthesis in platelets and aorta, may play a physiologic and (or) pathologic role in the regulation of vascular tone.
Collapse
Affiliation(s)
- Zsófia Mezei
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Omid Zamani-Forooshani
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Bence Szikszai
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Eszter Papp
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Ádám Ónodi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Dóra Török
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Ádám Leprán
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Gyula Telegdy
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| | - Gyula Szabó
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701, Semmelweis u. 1, 6725 Szeged, Hungary
| |
Collapse
|
27
|
Liu X, Herbison A. Kisspeptin regulation of arcuate neuron excitability in kisspeptin receptor knockout mice. Endocrinology 2015; 156:1815-27. [PMID: 25756309 DOI: 10.1210/en.2014-1845] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The G protein-coupled receptor 54 (GPR54) is critical for kisspeptin to activate GnRH neurons to modulate fertility. However, the often mismatching distribution of kisspeptin and GPR54 in the brain suggests that kisspeptin may also act on other receptors. The arcuate nucleus (ARN) is one brain region with a very high density of kisspeptin fibers but only limited evidence for the expression of GPR54. Using acute brain slice electrophysiology in combination with Gpr54 knockout (GPR54KO) mouse models, we examined whether actions of kisspeptin in the ARN were dependent upon GPR54. Cell-attached recordings from unidentified ARN neurons in wild-type mice revealed that approximately one third of neurons were either excited or inhibited by kisspeptin in a dose-dependent manner. The responses of ARN neurons to kisspeptin were exactly the same in GPR54KO mice despite effects of kisspeptin on GnRH neurons being abolished. To evaluate whether kisspeptin may be acting through neuropeptide FF receptors, the effects of an agonist RFamide-related peptide 3 (RFRP-3) and antagonists RF9 and BIBP-3226 were evaluated. Both the excitatory and inhibitory effects of kisspeptin were mimicked by the agonist RFRP-3. RF9 itself activated ARN neurons and suppressed only the inhibitory actions of kisspeptin. BIBP-3226 suppressed kisspeptin actions in 50% of neurons. Whole-cell recordings in GPR54KO mice demonstrated that both kisspeptin and RFRP-3 acted directly on the same ARN neurons and activated the same ion channels. Together, these studies demonstrate that kisspeptin can act partly through neuropeptide FF receptors to modulate neuronal activity independent of GPR54 in the mouse brain.
Collapse
Affiliation(s)
- Xinhuai Liu
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, School of Medical Sciences, Dunedin 9054, New Zealand
| | | |
Collapse
|
28
|
Beltramo M, Robert V, Galibert M, Madinier JB, Marceau P, Dardente H, Decourt C, De Roux N, Lomet D, Delmas AF, Caraty A, Aucagne V. Rational design of triazololipopeptides analogs of kisspeptin inducing a long-lasting increase of gonadotropins. J Med Chem 2015; 58:3459-70. [PMID: 25811530 DOI: 10.1021/jm5019675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New potent and selective KISS1R agonists were designed using a combination of rational chemical modifications of the endogenous neuropeptide kisspeptin 10 (KP10). Improved resistance to degradation and presumably reduced renal clearance were obtained by introducing a 1,4-disubstituted 1,2,3-triazole as a proteolysis-resistant amide mimic and a serum albumin-binding motif, respectively. These triazololipopeptides are highly potent full agonists of KISS1R and are >100 selective over the closely related NPFF1R. When injected in ewes with a quiescent reproductive system, the best compound of our series induced a much prolonged increase of luteinizing hormone release compared to KP10 and increased follicle-stimulating hormone plasma concentration. Hence, this KISS1R agonist is a new valuable pharmacological tool to explore the potential of KP system in reproduction control. Furthermore, it represents the first step to develop drugs treating reproductive system disorders due to a reduced activity of the hypothalamo-pituitary-gonadal axis such as delayed puberty, hypothalamic amenorrhea, and hypogonadotropic hypogonadism.
Collapse
Affiliation(s)
- Massimiliano Beltramo
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Vincent Robert
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Mathieu Galibert
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Jean-Baptiste Madinier
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Philippe Marceau
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Hugues Dardente
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Caroline Decourt
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | | | - Didier Lomet
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Agnès F Delmas
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| | - Alain Caraty
- †UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85; CNRS, UMR7247; Université François Rabelais Tours; IFCE), F-37380 Nouzilly, France
| | - Vincent Aucagne
- ‡Centre de Biophysique Moléculaire (CNRS UPR4301), Rue Charles Sadron, F-45071 Orléans Cedex 2, France
| |
Collapse
|
29
|
Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Sioncke L, Wadman W, Bihel F, Schmitt M, Vonck K, Bourguignon JJ, Simonin F, Smolders I, Boon P. Neuropeptide FF and prolactin-releasing peptide decrease cortical excitability through activation of NPFF receptors. Epilepsia 2015; 56:489-98. [PMID: 25684325 DOI: 10.1111/epi.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Drugs with a novel mechanism of action are needed to reduce the number of people with epilepsy that are refractory to treatment. Increasing attention is paid to neuropeptide systems and several anticonvulsant neuropeptides have already been described, such as galanin, ghrelin, and neuropeptide Y (NPY). Many others, however, have not been investigated for their ability to affect epileptic seizures. In this study, the potential anticonvulsant activities of three members of the RF-amide neuropeptide family, neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), and kisspeptin (Kp) and other receptor ligands (NPFF1/2 R, GPR10, and GRP54, respectively) were tested in the motor cortex stimulation model. METHODS A train of pulses with increasing intensity (0-10 mA over 150 s, 50 Hz, pulse width 2 msec) was delivered to the motor cortex of rats. The threshold intensity for eliciting a motor response (i.e., motor threshold) was determined through behavioral observation and used as a measure for cortical excitability. The threshold was determined before, during, and after the intracerebroventricular (i.c.v.) administration of various NPFF1/2 R, GPR10, and GPR54 receptor ligands. RESULTS NPFF and PrRP significantly increased the motor threshold by a maximum of 143 ± 27 and 83 ± 13 μA, respectively, for the doses of 1 nmol/h (p < 0.05). The increase of motor threshold by NPFF and PrRP was prevented by pretreatment and co-treatment with the NPFF1/2 R antagonist RF9. Pretreatment with a selective NPFF1 R antagonist also prevented the threshold increase induced by NPFF. Kp did not increase motor threshold. SIGNIFICANCE Intracerebroventricular infusion of NPFF or PrRP decreases cortical excitability in rats through activation of NPFFRs. Furthermore, the NPFF1 R is required for the NPFF-induced decrease in cortical excitability.
Collapse
Affiliation(s)
- Ine Buffel
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Uenoyama Y, Tsukamura H, Maeda KI. KNDy neuron as a gatekeeper of puberty onset. J Obstet Gynaecol Res 2014; 40:1518-26. [DOI: 10.1111/jog.12398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya
| | - Kei-ichiro Maeda
- Department of Veterinary; Medical Sciences; The University of Tokyo; Tokyo Japan
| |
Collapse
|
31
|
Kaneda M, Misu R, Ohno H, Hirasawa A, Ieda N, Uenoyama Y, Tsukamura H, Maeda KI, Oishi S, Fujii N. Design and synthesis of fluorescent probes for GPR54. Bioorg Med Chem 2014; 22:3325-30. [PMID: 24857775 DOI: 10.1016/j.bmc.2014.04.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptins are neuropeptides that induce the secretion of gonadotropin-releasing hormone via the activation of the cognate receptor, G-protein coupled receptor 54 (GPR54). The kisspeptin-GPR54 axis is associated with the onset of puberty and the maintenance of the reproductive system. In this study, several fluorescent probes have been designed and synthesized for rat GPR54 through the modification of the N-terminus of rat kisspeptins to allow for the visualization of the expression and localization of kisspeptin receptor(s) in living cells and native tissues. The tetramethylrhodamine (TMR) and rhodamine green (RG)-labeled kisspeptins exhibited good binding and agonistic activities towards GPR54, and the results of the application studies demonstrated that these fluorescent probes could be used effectively for the detection of GPR54 receptors in flow cytometry and confocal microscopy experiments.
Collapse
Affiliation(s)
- Masato Kaneda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryosuke Misu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-ichiro Maeda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
32
|
Ayachi S, Simonin F. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents. Front Endocrinol (Lausanne) 2014; 5:158. [PMID: 25324831 PMCID: PMC4183120 DOI: 10.3389/fendo.2014.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/17/2014] [Indexed: 01/04/2023] Open
Abstract
Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.
Collapse
Affiliation(s)
- Safia Ayachi
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- *Correspondence: Frédéric Simonin, UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, 300 Boulevard Sébastien Brant, Illkirch 67412, France e-mail:
| |
Collapse
|
33
|
Sandvik GK, Hodne K, Haug TM, Okubo K, Weltzien FA. RFamide Peptides in Early Vertebrate Development. Front Endocrinol (Lausanne) 2014; 5:203. [PMID: 25538682 PMCID: PMC4255600 DOI: 10.3389/fendo.2014.00203] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/16/2014] [Indexed: 12/17/2022] Open
Abstract
RFamides (RFa) are neuropeptides involved in many different physiological processes in vertebrates, such as reproductive behavior, pubertal activation of the reproductive endocrine axis, control of feeding behavior, and pain modulation. As research has focused mostly on their role in adult vertebrates, the possible roles of these peptides during development are poorly understood. However, the few studies that exist show that RFa are expressed early in development in different vertebrate classes, perhaps mostly associated with the central nervous system. Interestingly, the related peptide family of FMRFa has been shown to be important for brain development in invertebrates. In a teleost, the Japanese medaka, knockdown of genes in the Kiss system indicates that Kiss ligands and receptors are vital for brain development, but few other functional studies exist. Here, we review the literature of RFa in early vertebrate development, including the possible functional roles these peptides may play.
Collapse
Affiliation(s)
- Guro Katrine Sandvik
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| | - Kjetil Hodne
- Institute for Experimental Medical Research, Oslo University Hospital , Oslo , Norway
| | | | - Kataaki Okubo
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo , Bunkyo , Japan
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic medicine, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
34
|
Ohga H, Fujinaga Y, Selvaraj S, Kitano H, Nyuji M, Yamaguchi A, Matsuyama M. Identification, characterization, and expression profiles of two subtypes of kisspeptin receptors in a scombroid fish (chub mackerel). Gen Comp Endocrinol 2013; 193:130-40. [PMID: 23932907 DOI: 10.1016/j.ygcen.2013.07.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 11/21/2022]
Abstract
The kisspeptin receptor (Kiss1R) is a cognate receptor for kisspeptin (Kiss), and this Kiss-Kiss1R system has been shown to regulate seasonal reproduction in vertebrates. Our previous study found the chub mackerel (Scomber japonicus) brain expresses both kiss1 and kiss2 and exhibits sexually dimorphic changes during the seasonal reproductive cycle. The present study cloned two subtypes of kissr from the chub mackerel brain, and their signal transduction pathways to Kiss1 and Kiss2 were characterized in a mammalian cell line. Results of identification showed that kissr1 and kissr2 mRNAs encode 369 and 378 deduced amino acids, respectively, and share 52% similarity in amino acid sequences. In vitro functional analysis revealed that chub mackerel Kiss receptor signals are also preferentially transduced via the protein kinase C (PKC) rather than protein kinase A (PKA) pathway. Synthetic chub mackerel Kiss1-15 and Kiss2-12 peptides showed the highest potency for the activation of KissR1 and KissR2, respectively, stronger than their corresponding Kiss-10 peptides. Tissue distribution analyses indicated that both genes are highly expressed in the brain and that only kissr2 mRNA is expressed in the pituitary of both sexes. Unexpectedly, both kissr1 and kissr2 mRNAs were detected only in the testes. Seasonal expression changes showed higher expression levels of both kissr1 and kissr2 mRNAs in the brain of females during the early vitellogenic period; however, no significant differences were found in the brain of males. Pituitary kissr2 mRNA levels showed no significant variations. In the testes, the kissr1 mRNA expression level increased dramatically at spermiation compared with the immature and post-spawning periods. However, kissr2 mRNA levels in the testes did not vary significantly at different testicular stages. These results suggest that both kissr1 and kissr2 likely participate in the seasonal ovarian development of females, and thus in males, we propose a paracrine or autocrine role for kissr1 in testicular development.
Collapse
Affiliation(s)
- Hirofumi Ohga
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Hodne K, Weltzien FA, Oka Y, Okubo K. Expression and putative function of kisspeptins and their receptors during early development in medaka. Endocrinology 2013; 154:3437-46. [PMID: 23825126 DOI: 10.1210/en.2013-1065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptins (Kiss1 and Kiss2) and their receptors (putatively Gpr54-1 and Gpr54-2) have emerged as key players in vertebrate reproduction owing to their stimulatory effect on the brain-pituitary-gonadal axis. Virtually nothing is known, however, about their role during embryogenesis. Using medaka (Teleostei) as a model system, we report, for the first time in vertebrates, an early developmental expression and putative function of kisspeptins. Expression analyses and knockdown experiments suggest that early actions of kisspeptins are probably mediated by binding to maternally supplied Gpr54-1 and late action by both Gpr54-1 and Gpr54-2. Knockdown of maternally provided kiss1 and gpr54-1 arrested development during gastrulation, before establishment of any germ layers, whereas knockdown of zygotically provided kiss1 and gpr54-1 disrupted brain development. A similar phenotype was observed for gpr54-2 knockdown embryos, suggesting a critical role for kiss1, gpr54-1, and gpr54-2 in neurulation. These data demonstrate that kisspeptin signaling is active both maternally and zygotically and is involved in embryonic survival and morphogenesis.
Collapse
Affiliation(s)
- K Hodne
- Department of Basic Sciences and Aquatic Medicine, Weltzien Laboratory, The Norwegian School of Veterinary Science, 0033 Oslo, Norway
| | | | | | | |
Collapse
|
36
|
Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology 2013; 75:164-71. [PMID: 23911743 DOI: 10.1016/j.neuropharm.2013.07.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022]
Abstract
Mammalian RF-amide peptides are encoded by five different genes and act through five different G protein-coupled receptors. RF-amide-related peptides-1 and -3, neuropeptides AF and FF, Prolactin releasing peptides, Kisspeptins and RFa peptides are currently considered endogenous peptides for NPFF1, NPFF2, GPR10, GPR54 and GPR103 receptors, respectively. However, several studies suggest that the selectivity of these peptides for their receptors is low and indicate that expression patterns for receptors and their corresponding ligands only partially overlap. In this study, we took advantage of the cloning of the five human RF-amide receptors to systematically examine their affinity for and their activation by all human RF-amide peptides. Binding experiments, performed on membranes from CHO cells expressing GPR10, GPR54 and GPR103 receptors, confirmed their high affinity and remarkable selectivity for their cognate ligands. Conversely, NPFF1 and NPFF2 receptors displayed high affinity for all RF-amide peptides. Moreover, GTPγS and cAMP experiments showed that almost all RF-amide peptides efficiently activate NPFF1 and NPFF2 receptors. As NPFF is known to modulate morphine analgesia, we undertook a systematic analysis in mice of the hyperalgesic and anti morphine-induced analgesic effects of a representative set of endogenous RF-amide peptides. All of them induced hyperalgesia and/or prevented morphine analgesia following intracerebroventricular administration. Importantly, these effects were prevented by administration of RF9, a highly selective NPFF1/NPFF2 antagonist. Altogether, our results show that all endogenous RF-amide peptides display pain-modulating properties and point to NPFF receptors as essential players for these effects.
Collapse
|
37
|
The Role of Neurotransmitters in Protection against Amyloid- β Toxicity by KiSS-1 Overexpression in SH-SY5Y Neurons. ISRN NEUROSCIENCE 2013; 2013:253210. [PMID: 24967306 PMCID: PMC4045539 DOI: 10.1155/2013/253210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/19/2013] [Indexed: 12/21/2022]
Abstract
Recent studies have suggested that the kisspeptin (KP) and kissorphin (KSO) peptides have neuroprotective actions against the Alzheimer's amyloid-β (Aβ) peptide. Overexpression of the human KiSS-1 gene that codes for KP and KSO peptides in SH-SY5Y neurons has also been shown to inhibit Aβ neurotoxicity. The in vivo actions of KP include activation of neuroendocrine and neurotransmitter systems. The present study used antagonists of KP, neuropeptide FF (NPFF), opioids, oxytocin, estrogen, adrenergic, cholinergic, dopaminergic, serotonergic, and γ-aminobutyric acid (GABA) receptors plus inhibitors of catalase, cyclooxygenase, nitric oxide synthase, and the mitogen activated protein kinase cascade to characterize the KiSS-1 gene overexpression neuroprotection against Aβ cell model. The results showed that KiSS-1 overexpression is neuroprotective against Aβ and the action appears to involve the KP or KSO peptide products of KiSS-1 processing. The mechanism of neuroprotection does not involve the activation of the KP or NPFF receptors. Opioids play a role in the toxicity of Aβ in the KiSS-1 overexpression system and opioid antagonists naloxone or naltrexone inhibited Aβ toxicity. The mechanism of KiSS-1 overexpression induced protection against Aβ appears to have an oxytocin plus a cyclooxygenase dependent component, with the oxytocin antagonist atosiban and the cyclooxygenase inhibitor SC-560 both enhancing the toxicity of Aβ.
Collapse
|
38
|
Immunolocalization of Kisspeptin Associated with Amyloid-β Deposits in the Pons of an Alzheimer's Disease Patient. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:879710. [PMID: 26317001 PMCID: PMC4437339 DOI: 10.1155/2013/879710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 02/03/2023]
Abstract
The pons region of the Alzheimer's disease (AD) brain is one of the last to show amyloid-β (Aβ) deposits and has been suggested to contain neuroprotective compounds. Kisspeptin (KP) is a hormone that activates the hypothalamic-pituitary-gonadal axis and has been suggested to be neuroprotective against Aβ toxicity. The localization of KP, plus the established endogenous neuroprotective compounds corticotropin releasing hormone (CRH) and catalase, in tissue sections from the pons region of a male AD subject has been determined in relation to Aβ deposits. Results showed Aβ deposits also stained with KP, CRH, and catalase antibodies. At high magnification the staining of deposits was either KP or catalase positive, and there was only a limited area of the deposits with KP-catalase colocalization. The CRH does not bind Aβ, whilst both KP and catalase can bind Aβ, suggesting that colocalization in Aβ deposits is not restricted to compounds that directly bind Aβ. The neuroprotective actions of KP, CRH, and catalase were confirmed in vitro, and fibrillar Aβ preparations were shown to stimulate the release of KP in vitro. In conclusion, neuroprotective KP, CRH, and catalase all colocalize with Aβ plaque-like deposits in the pons region from a male AD subject.
Collapse
|
39
|
Misu R, Oishi S, Setsuda S, Noguchi T, Kaneda M, Ohno H, Evans B, Navenot JM, Peiper SC, Fujii N. Characterization of the receptor binding residues of kisspeptins by positional scanning using peptide photoaffinity probes. Bioorg Med Chem Lett 2013; 23:2628-31. [PMID: 23522565 DOI: 10.1016/j.bmcl.2013.02.098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
Abstract
Kisspeptins, endogenous peptide ligands for GPR54, play an important role in GnRH secretion. Since in vivo administration of kisspeptins induces increased plasma LH levels, GPR54 agonists hold promise as therapeutic agents for the treatment of hormonal secretion diseases. To facilitate the design of novel potent GPR54 ligands, residues in kisspeptins that involve in the interaction with GPR54 were investigated by kisspeptin-based photoaffinity probes. Herein, we report the design and synthesis of novel kisspeptin-based photoaffinity probes, and the application to crosslinking experiments for GPR54-expressing cells.
Collapse
Affiliation(s)
- Ryosuke Misu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Structure, synthesis, and phylogeny of kisspeptin and its receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:9-26. [PMID: 23550000 DOI: 10.1007/978-1-4614-6199-9_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The kisspeptin system is considered to be essential for successful mammalian reproduction. In addition to the Kiss1 peptide, Kiss2, the product of kiss2 (the kiss1 paralogue), has also been shown to activate kisspeptin receptor signaling pathways in nonmammalian species. Furthermore, in nonmammalian species, there are two subtypes of receptors, Gpr54-1 (known as GPR54 or Kiss1R in mammals) and Gpr54-2. Although complete understanding of the two kisspeptin-two kisspeptin receptor systems in vertebrates is not so simple, a careful examination of the phylogeny of their genes may provide insights into the functional generality and differences among the kisspeptin systems in different animal phyla. In this chapter, we first discuss the structure of kisspeptin ligands, Kiss1 and Kiss2, and their characteristics as physiologically active peptides. Then, we discuss the evolutionary traits of kiss1 and kiss2 genes and their receptor genes, gpr54-1 and gpr54-2. It appears that each animal species has selected either kiss1 or kiss2 rather randomly, leading us to propose that some of the important characteristics of kisspeptin neurons, such as steroid sensitivity and the anatomical relationship with the hypophysiotropic GnRH1 neurons, may be the keys to understanding the general functions of different kisspeptin neuronal populations throughout vertebrates. Species differences in kiss1/kiss2 may also provide insights into the evolutionary mechanisms of paralogous gene-expressing neuronal systems. Finally, because kisspeptins belong to one of the members of the RFamide peptide families, we discuss the functional divergence of kisspeptins from the other RFamide peptides, which may be explained from phylogenetic viewpoints.
Collapse
|
41
|
Poling MC, Kauffman AS. Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrinol 2013; 34:3-17. [PMID: 22728025 PMCID: PMC3725275 DOI: 10.1016/j.yfrne.2012.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/17/2012] [Accepted: 06/07/2012] [Indexed: 11/29/2022]
Abstract
Kisspeptin, encoded by the Kiss1 gene, is a neuropeptide required for puberty and adult reproductive function. Understanding the regulation and development of the kisspeptin system provides valuable knowledge about the physiology of puberty and adult fertility, and may provide insights into human pubertal or reproductive disorders. Recent studies, particularly in rodent models, have assessed how kisspeptin neurons develop and how hormonal and non-hormonal factors regulate this developmental process. Exposure to sex steroids (testosterone and estradiol) during critical periods of development can induce organizational (permanent) effects on kisspeptin neuron development, with respect to both sexually dimorphic and non-sexually dimorphic aspects of kisspeptin biology. In addition, sex steroids can also impart activational (temporary) effects on kisspeptin neurons and Kiss1 gene expression at various times during neonatal and peripubertal development, as they do in adulthood. Here, we discuss the current knowledge--and in some cases, lack thereof--of the influence of hormones and other factors on kisspeptin neuronal development.
Collapse
Affiliation(s)
- Matthew C Poling
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
42
|
Csabafi K, Jászberényi M, Bagosi Z, Lipták N, Telegdy G. Effects of kisspeptin-13 on the hypothalamic-pituitary-adrenal axis, thermoregulation, anxiety and locomotor activity in rats. Behav Brain Res 2012; 241:56-61. [PMID: 23219969 DOI: 10.1016/j.bbr.2012.11.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/09/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
Abstract
Kisspeptin is a mammalian amidated neurohormone, which belongs to the RF-amide peptide family and is known for its key role in reproduction. However, in contrast with the related members of the RF-amide family, little information is available regarding its role in the stress-response. With regard to the recent data suggesting kisspeptin neuronal projections to the paraventricular nucleus, in the present experiments we investigated the effect of kisspeptin-13 (KP-13), an endogenous derivative of kisspeptin, on the hypothalamus-pituitary-adrenal (HPA) axis, motor behavior and thermoregulatory function. The peptide was administered intracerebroventricularly (icv.) in different doses (0.5-2 μg) to adult male Sprague-Dawley rats, the behavior of which was then observed by means of telemetry, open field and elevated plus maze tests. Additionally, plasma concentrations of corticosterone were measured in order to assess the influence of KP-13 on the HPA system. The effects on core temperature were monitored continuously via telemetry. The results demonstrated that KP-13 stimulated the horizontal locomotion (square crossing) in the open field test and decreased the number of entries into and the time spent in the open arms during the elevated plus maze tests. The peptide also caused marked elevations in the spontaneous locomotor activity and the core temperature recorded by the telemetric system, and significantly increased the basal corticosterone level. In conclusion, our data indicate that icv. administered KP-13 stimulates the HPA axis, induces hyperthermia, activates motor behavior and causes anxiety in rats.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, PO Box 427, H-6701 Szeged, Hungary.
| | | | | | | | | |
Collapse
|
43
|
Milton NGN, Chilumuri A, Rocha-Ferreira E, Nercessian AN, Ashioti M. Kisspeptin prevention of amyloid-β peptide neurotoxicity in vitro. ACS Chem Neurosci 2012; 3:706-19. [PMID: 23019497 DOI: 10.1021/cn300045d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/30/2012] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) onset is associated with changes in hypothalamic-pituitary-gonadal (HPG) function. The 54 amino acid kisspeptin (KP) peptide regulates the HPG axis and alters antioxidant enzyme expression. The Alzheimer's amyloid-β (Aβ) is neurotoxic, and this action can be prevented by the antioxidant enzyme catalase. Here, we examined the effects of KP peptides on the neurotoxicity of Aβ, prion protein (PrP), and amylin (IAPP) peptides. The Aβ, PrP, and IAPP peptides stimulated the release of KP and KP 45-54. The KP peptides inhibited the neurotoxicity of Aβ, PrP, and IAPP peptides, via an action that could not be blocked by kisspeptin-receptor (GPR-54) or neuropeptide FF (NPFF) receptor antagonists. Knockdown of KiSS-1 gene, which encodes the KP peptides, in human neuronal SH-SY5Y cells with siRNA enhanced the toxicity of amyloid peptides, while KiSS-1 overexpression was neuroprotective. A comparison of the catalase and KP sequences identified a similarity between KP residues 42-51 and the region of catalase that binds Aβ. The KP peptides containing residues 45-50 bound Aβ, PrP, and IAPP, inhibited Congo red binding, and were neuroprotective. These results suggest that KP peptides are neuroprotective against Aβ, IAPP, and PrP peptides via a receptor independent action involving direct binding to the amyloid peptides.
Collapse
Affiliation(s)
- Nathaniel G. N. Milton
- Department of Human and Health
Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
- Health Sciences Research Centre, University of Roehampton, Holybourne Avenue, London
SW15 4JD, U.K
| | - Amrutha Chilumuri
- Department of Human and Health
Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Eridan Rocha-Ferreira
- Department of Human and Health
Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Amanda N. Nercessian
- Health Sciences Research Centre, University of Roehampton, Holybourne Avenue, London
SW15 4JD, U.K
| | - Maria Ashioti
- Department of Human and Health
Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| |
Collapse
|
44
|
In Vitro Activities of Kissorphin, a Novel Hexapeptide KiSS-1 Derivative, in Neuronal Cells. JOURNAL OF AMINO ACIDS 2012; 2012:691463. [PMID: 22848794 PMCID: PMC3400367 DOI: 10.1155/2012/691463] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/11/2012] [Indexed: 01/14/2023]
Abstract
The primary products of the metastasis-suppressor KiSS-1 gene are the kisspeptin (KP) peptides that stimulate gonadotrophin-releasing-hormone (GnRH) release via GPR-54 receptor activation. Recent studies have suggested that the KP-10 peptide also activates neuropeptide FF (NPFF) receptors. The aim of the current study was to determine the activities of the KiSS-1 derivative kissorphin (KSO), which contains the first six amino acids of the KP-10 peptide, is C-terminally amidated, and shares amino acid similarities with the biologically active NPFF 3–8 sequence. The KSO peptide inhibited forskolin-stimulated cyclic adenosine monophosphate (cAMP) production in ND7/23 neuroblastoma cells via an action that could be inhibited by the NPFF receptor antagonist RF9. Release of GnRH by LA-N-1 neuroblastoma cells was not altered by the KSO peptide. In ND7/23 neuroblastoma cells, the KSO peptide was able to reduce forskolin neuroprotection against H2O2 toxicity. The KSO peptide was also able to prevent prostaglandin E2-induced apoptosis in rat cortical neurons. The NPFF receptor antagonist RF9 could inhibit these actions of the KSO peptide in oxidative stress and apoptosis models. In conclusion, the kissorphin peptide, comprising the amino acid sequence Tyr-Asn-Trp-Asn-Ser-Phe-NH2, has NPFF-like biological activity without showing any GnRH releasing activity and inhibits forskolin-activated cAMP release.
Collapse
|
45
|
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and Reproduction: Physiological Roles and Regulatory Mechanisms. Physiol Rev 2012; 92:1235-316. [DOI: 10.1152/physrev.00037.2010] [Citation(s) in RCA: 524] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Procreation is essential for survival of species. Not surprisingly, complex neuronal networks have evolved to mediate the diverse internal and external environmental inputs that regulate reproduction in vertebrates. Ultimately, these regulatory factors impinge, directly or indirectly, on a final common pathway, the neurons producing the gonadotropin-releasing hormone (GnRH), which stimulates pituitary gonadotropin secretion and thereby gonadal function. Compelling evidence, accumulated in the last few years, has revealed that kisspeptins, a family of neuropeptides encoded by the Kiss1 gene and produced mainly by neuronal clusters at discrete hypothalamic nuclei, are pivotal upstream regulators of GnRH neurons. As such, kisspeptins have emerged as important gatekeepers of key aspects of reproductive maturation and function, from sexual differentiation of the brain and puberty onset to adult regulation of gonadotropin secretion and the metabolic control of fertility. This review aims to provide a comprehensive account of the state-of-the-art in the field of kisspeptin physiology by covering in-depth the consensus knowledge on the major molecular features, biological effects, and mechanisms of action of kisspeptins in mammals and, to a lesser extent, in nonmammalian vertebrates. This review will also address unsolved and contentious issues to set the scene for future research challenges in the area. By doing so, we aim to endow the reader with a critical and updated view of the physiological roles and potential translational relevance of kisspeptins in the integral control of reproductive function.
Collapse
Affiliation(s)
- Leonor Pinilla
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Enrique Aguilar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlos Dieguez
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert P. Millar
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, University of Córdoba; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III; and Instituto Maimónides de Investigaciones Biomédicas, Córdoba, Spain; Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; and Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Caraty A, Blomenröhr M, Vogel GMT, Lomet D, Briant C, Beltramo M. RF9 powerfully stimulates gonadotrophin secretion in the ewe: evidence for a seasonal threshold of sensitivity. J Neuroendocrinol 2012; 24:725-36. [PMID: 22283564 DOI: 10.1111/j.1365-2826.2012.02283.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GPR147 and its endogenous ligands, RFRPs, are emerging as important actors in hypothalamic-pituitary axis control. The role of this system would be to inhibit gonadotrophin secretion. However, data on the subject are contradictory. The discovery of RF9 (adamantanecarbonyl-RF-2-NH(2)), a GPR147 antagonist, prompted us to use this new tool to further investigate this system in the ewe. Accordingly, we tested the effect of i.c.v. administration of RF9 on gonadotrophin secretion in the ewe during anoestrous and the breeding season. Intracerebroventricular injections of RF9 (from 50-450 nmol) caused a clear elevation in peripheral blood plasma luteinising hormone (LH) concentrations. The effect of RF9 on LH was more pronounced during the anoestrous season. Furthermore, peripheral administration of RF9 as a bolus (2.1, 6.2 and 12.4 μmol per ewe) or as a constant i.v. infusion (2.1, 6.2, 12.4 and 18.6 μmol/h per ewe) to anoestrous acyclic ewes induced a sustained increase in LH plasma concentrations. A pharmacokinetic study showed that RF9 (12.4 μmol bolus i.v.) has an effective half life of 5.5 h in the plasma. Conversely, RF9 is not detectable in the cerebrospinal fluid, suggesting that it does not cross the blood-brain barrier. The increase in LH plasma concentrations induced by RF9 was blocked by previous administration of 1.3 μmol per ewe of gondotrophin-releasing hormone (GnRH) antagonist Teverelix. This suggests that GnRH is involved in the stimulatory effect of RF9 on gonadotrophin secretion. Finally, no variation in LH plasma concentrations could be detected in ovariectomised ewes injected either i.c.v. or i.v. with RFRP3 (VPNLPQRF-NH(2)). The lack of effect of RFRP3 in our experimental setting suggests that the mechanisms involved in RF9 action are probably more complex than previously assumed. Our results indicate that delivery of RF9 in the ewe greatly increases gondadotrophin secretion in both the oestrus and anoestrus season, suggesting a potential new way of controlling reproduction in mammals.
Collapse
Affiliation(s)
- A Caraty
- UMR 7247, Physiologie de la Reproduction et des Comportements (INRA/CNRS/Université Tours/Haras Nationaux), 37380 Nouzilly, France.
| | | | | | | | | | | |
Collapse
|
47
|
Kanda S, Oka Y. Evolutionary Insights into the Steroid Sensitive kiss1 and kiss2 Neurons in the Vertebrate Brain. Front Endocrinol (Lausanne) 2012; 3:28. [PMID: 22654859 PMCID: PMC3356069 DOI: 10.3389/fendo.2012.00028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/06/2012] [Indexed: 11/13/2022] Open
Abstract
Kisspeptin was originally found as a peptide product of Kiss1 gene and is now supposed to be an essential central regulator of reproduction in mammals. However, there is now a growing body of evidence to suggest that kiss2, the paralogous gene for kiss1, evolved in parallel during vertebrate lineage, and the kiss2 product also activates the GPR54 (kisspeptin receptor) signaling pathways. Therefore, it is now widely accepted that both kiss1 and kiss2 are the kisspeptin genes. Interestingly, either kiss1 or kiss2 or both have been lost during evolution in many vertebrate species, and the functional significance of kiss1 or kiss2 for the central regulation of reproduction is suggested to vary according to the species. Here, we argue that the steroid sensitivity of the kiss1 or kiss2 neurons has been well conserved during evolution among tetrapods and teleosts, and thus it may be the key to understanding the functional homologies of certain populations of kisspeptin (kiss1 or kiss2) neurons among different species of vertebrates. In the present review, we will first introduce recent advances in the study of steroid sensitive kiss1 and kiss2 systems in vertebrates and effects of peptide administrations in vivo. By comparing the similarities and differences between kiss1 and kiss2 of neuronal localization and sensitivity to gonadal steroids in various tetrapods and teleosts, we discuss the evolution of kisspeptin neuronal systems after gene duplication of ancestral kisspeptin genes to give rise to kiss1 and kiss2.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Science, Graduate School of Sciences, The University of TokyoTokyo, Japan
| | - Yoshitaka Oka
- Department of Biological Science, Graduate School of Sciences, The University of TokyoTokyo, Japan
- *Correspondence: Yoshitaka Oka, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan. e-mail:
| |
Collapse
|
48
|
Findeisen M, Rathmann D, Beck-Sickinger AG. Structure-activity studies of RFamide peptides reveal subtype-selective activation of neuropeptide FF1 and FF2 receptors. ChemMedChem 2011; 6:1081-93. [PMID: 21548099 DOI: 10.1002/cmdc.201100089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/19/2011] [Indexed: 12/18/2022]
Abstract
Selectivity is a major issue in closely related multiligand/multireceptor systems. In this study we investigated the RFamide systems of hNPFF₁R and hNPFF₂R that bind the endogenous peptide hormones NPFF, NPAF, NPVF, and NPSF. By use of a systematic approach, we characterized the role of the C-terminal dipeptide with respect to agonistic properties using synthesized [Xaa 7]NPFF and [Xaa 8]NPFF analogues. We were able to identify only slight differences in potency upon changing the position of Arg 7, as all modifications resulted in identical behavior at the NPFF₁R and NPFF₂R. However, the C-terminal Phe 8 was able to be replaced by Trp or His with only a minor loss in potency at the NPFF₂R relative to the NPFF₁R. Analogues with shorter side chains, such as α-amino-4-guanidino butyric acid ([Agb 7]NPFF) or phenylglycine ([Phg 8]NPFF), decreased efficacy for the NPFF₁ R to 25-31 % of the maximal response, suggesting that these agonist-receptor complexes are more susceptible to structural modifications. In contrast, mutations to the conserved Asp 6.59 residue in the third extracellular loop of both receptors revealed a higher sensitivity toward the hNPFF₂R receptor than toward hNPFF₁R. These data provide new insight into the subtype-specific agonistic activation of the NPFF₁ and NPFF(2) receptors that are necessary for the development of selective agonists.
Collapse
Affiliation(s)
- Maria Findeisen
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany
| | | | | |
Collapse
|
49
|
Oishi S, Misu R, Tomita K, Setsuda S, Masuda R, Ohno H, Naniwa Y, Ieda N, Inoue N, Ohkura S, Uenoyama Y, Tsukamura H, Maeda KI, Hirasawa A, Tsujimoto G, Fujii N. Activation of Neuropeptide FF Receptors by Kisspeptin Receptor Ligands. ACS Med Chem Lett 2011; 2:53-7. [PMID: 24900254 DOI: 10.1021/ml1002053] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/15/2010] [Indexed: 11/29/2022] Open
Abstract
Kisspeptin is a member of the RFamide neuropeptide family that is implicated in gonadotropin secretion. Because kisspeptin-GPR54 signaling is implicated in the neuroendocrine regulation of reproduction, GPR54 ligands represent promising therapeutic agents against endocrine secretion disorders. In the present study, the selectivity profiles of GPR54 agonist peptides were investigated for several GPCRs, including RFamide receptors. Kisspeptin-10 exhibited potent binding and activation of neuropeptide FF receptors (NPFFR1 and NPFFR2). In contrast, short peptide agonists bound with much lower affinity to NPFFRs while showing relatively high selectivity toward GPR54. The possible localization of secondary kisspeptin targets was also demonstrated by variation in the levels of GnRH release from the median eminence and the type of GPR54 agonists used. Negligible affinity of the reported NPFFR ligands to GPR54 was observed and indicates the unidirectional cross-reactivity between both ligands.
Collapse
Affiliation(s)
- Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryosuke Misu
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenji Tomita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shohei Setsuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryo Masuda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yousuke Naniwa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Nahoko Ieda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Satoshi Ohkura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kei-ichiro Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Akira Hirasawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gozoh Tsujimoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|