1
|
Xu X, Zhao H, Song Y, Cai H, Zhao W, Tang J, Zhu J, Yu Y. Molecular mechanisms underlying the neural correlates of working memory. BMC Biol 2024; 22:238. [PMID: 39428484 PMCID: PMC11492763 DOI: 10.1186/s12915-024-02039-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Working memory (WM), a core component of executive functions, relies on a dedicated brain system that maintains and stores information in the short term. While extensive neuroimaging research has identified a distributed set of neural substrates relevant to WM, their underlying molecular mechanisms remain enigmatic. This study investigated the neural correlates of WM as well as their underlying molecular mechanisms. RESULTS Our voxel-wise analyses of resting-state functional MRI data from 502 healthy young adults showed that better WM performance (higher accuracy and shorter reaction time of the 3-back task) was associated with lower functional connectivity density (FCD) in the left inferior temporal gyrus and higher FCD in the left anterior cingulate cortex. A combination of transcriptome-neuroimaging spatial correlation and the ensemble-based gene category enrichment analysis revealed that the identified neural correlates of WM were associated with expression of diverse gene categories involving important cortical components and their biological processes as well as sodium channels. Cross-region spatial correlation analyses demonstrated significant associations between the neural correlates of WM and a range of neurotransmitters including dopamine, glutamate, serotonin, and acetylcholine. CONCLUSIONS These findings may help to shed light on the molecular mechanisms underlying the neural correlates of WM.
Collapse
Affiliation(s)
- Xiaotao Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Yu Song
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China
| | - Jin Tang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230026, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, 230032, China.
| |
Collapse
|
2
|
Patterson RA, Brooks H, Mirjalili M, Rashidi-Ranjbar N, Zomorrodi R, Blumberger DM, Fischer CE, Flint AJ, Graff-Guerrero A, Herrmann N, Kennedy JL, Kumar S, Lanctôt KL, Mah L, Mulsant BH, Pollock BG, Voineskos AN, Wang W, Rajji TK. Neurophysiological and other features of working memory in older adults at risk for dementia. Cogn Neurodyn 2024; 18:795-811. [PMID: 38826646 PMCID: PMC11143125 DOI: 10.1007/s11571-023-09938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Theta-gamma coupling (TGC) is a neurophysiological process that supports working memory. Working memory is associated with other clinical and biological features. The extent to which TGC is associated with these other features and whether it contributes to working memory beyond these features is unknown. Two-hundred-and-three older participants at risk for Alzheimer's dementia-98 with mild cognitive impairment (MCI), 39 with major depressive disorder (MDD) in remission, and 66 with MCI and MDD (MCI + MDD)-completed a clinical assessment, N-back-EEG, and brain MRI. Among them, 190 completed genetic testing, and 121 completed [11C] Pittsburgh Compound B ([11C] PIB) PET imaging. Hierarchical linear regressions were used to assess whether TGC is associated with demographic and clinical variables; Alzheimer's disease-related features (APOE ε4 carrier status and β-amyloid load); and structural features related to working memory. Then, linear regressions were used to assess whether TGC is associated with 2-back performance after accounting for these features. Other than age, TGC was not associated with any non-neurophysiological features. In contrast, TGC (β = 0.27; p = 0.006), age (β = - 0.29; p = 0.012), and parietal cortical thickness (β = 0.24; p = 0.020) were associated with 2-back performance. We also examined two other EEG features that are linked to working memory-theta event-related synchronization and alpha event-related desynchronization-and found them not to be associated with any feature or performance after accounting for TGC. Our findings suggest that TGC is a process that is independent of other clinical, genetic, neurochemical, and structural variables, and supports working memory in older adults at risk for dementia. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09938-y.
Collapse
Affiliation(s)
| | - Heather Brooks
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Mina Mirjalili
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | | | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Corinne E. Fischer
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B, 1T8 Canada
| | - Alastair J. Flint
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- University Health Network, Toronto, ON M5G 1L7 Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Nathan Herrmann
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - James L. Kennedy
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Sanjeev Kumar
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Krista L. Lanctôt
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Sunnybrook Health Sciences Centre, ON M4N 3M5 Toronto, Canada
| | - Linda Mah
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Rotman Research Institute, Baycrest, Toronto, ON M6A 2E1 Canada
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Temerty Centre for Therapeutic Brain Intervention, CAMH, Toronto, ON M6J 1H1 Canada
| | - Bruce G. Pollock
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| | - Aristotle N. Voineskos
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
| | - Wei Wang
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
| | - Tarek K. Rajji
- Centre for Addiction and Mental Health, Toronto, ON M6J 1H4 Canada
- Department of Psychiatry, TemertyFaculty of Medicine, University of Toronto, Toronto, ON M5S 1A1 Canada
- Toronto Dementia Research Alliance, University of Toronto, ON M5S 1A1 Toronto, Canada
| |
Collapse
|
3
|
Jiang Z, Wei J, Liang J, Huang W, Ouyang F, Chen C, Li P, Cao S, Cai Y, Li J, Huang B, Zeng J, Chen Y. Dl-3-n-Butylphthalide Alleviates Secondary Brain Damage and Improves Working Memory After Stroke in Cynomolgus Monkeys. Stroke 2024; 55:725-734. [PMID: 38406851 DOI: 10.1161/strokeaha.123.045037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Remote secondary neurodegeneration is associated with poststroke cognitive impairment (PSCI). Dl-3-n-butylphthalide (NBP) improves PSCI clinically. However, whether it ameliorates PSCI by alleviating secondary neurodegeneration remains uncertain. Nonhuman primates provide more relevant models than rodents for human stroke and PSCI. This study investigated the effects of NBP on PSCI and secondary neurodegeneration in cynomolgus monkeys after permanent left middle cerebral artery occlusion (MCAO). METHODS Thirteen adult male cynomolgus monkeys were randomly assigned to sham (n=4), MCAO+placebo (n=5), and MCAO+NBP groups (n=4). The MCAO+placebo and MCAO+NBP groups received saline and NBP injections intravenously, respectively, starting at 6-hour postsurgery for 2 weeks, followed by soybean oil and NBP orally, respectively, for 10 weeks after MCAO. Infarct size was assessed at week 4 by magnetic resonance imaging. Working memory and executive function were evaluated dynamically using the delayed response task and object retrieval detour task, respectively. Neuron loss, glia proliferation, and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex, thalamus, and hippocampus were analyzed by immunostaining 12 weeks after MCAO. RESULTS Infarcts were located in the left middle cerebral artery region, apart from the ipsilateral dorsal lateral prefrontal cortex, thalamus, or hippocampus, with no significant difference between the MCAO+placebo and MCAO+NBP group. Higher success in delayed response task was achieved at weeks 4, 8, and 12 after NBP compared with placebo treatments (P<0.05), but not in the object retrieval detour task (all P>0.05). More neurons and less microglia, astrocytes, CD68-positive microglia, tumor necrosis factor-α, and inducible NO synthase were observed in the ipsilateral dorsal lateral prefrontal cortex and thalamus after 12 weeks of NBP treatment (P<0.05), but not in the hippocampus (P>0.05). CONCLUSIONS Our findings indicate that NBP improves working memory by alleviating remote secondary neurodegeneration and neuroinflammation in the ipsilateral dorsal lateral prefrontal cortex and thalamus after MCAO in cynomolgus monkeys.
Collapse
Affiliation(s)
- Zimu Jiang
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Jiating Wei
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Jiahui Liang
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Weixian Huang
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Fubing Ouyang
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Chunyong Chen
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University; Nanning, China (C.C., P.L., B.H.)
| | - Pingping Li
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University; Nanning, China (C.C., P.L., B.H.)
| | - Suhan Cao
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Yuangui Cai
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Jianle Li
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Baozi Huang
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University; Nanning, China (C.C., P.L., B.H.)
| | - Jinsheng Zeng
- Department of Neurology (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z.), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| | - Yicong Chen
- Section II, Department of Neurology and Stroke Center (Y. Chen), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
- National Key Clinical Department, Key Discipline of Neurology; Guangzhou, China (Z.J., J.W., J. Liang, W.H., F.O., C.C., P.L., S.C., Y. Cai, J. Li, B.H., J.Z., Y. Chen)
| |
Collapse
|
4
|
Nozais V, Theaud G, Descoteaux M, Thiebaut de Schotten M, Petit L. Improved Functionnectome by dissociating the contributions of white matter fiber classes to functional activation. Brain Struct Funct 2023; 228:2165-2177. [PMID: 37804431 DOI: 10.1007/s00429-023-02714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
Integrating the underlying brain circuit's structural and functional architecture is required to explore the functional organization of cognitive networks. In that regard, we recently introduced the Functionnectome. This structural-functional method combines an fMRI acquisition with tractography-derived white matter connectivity data to map cognitive processes onto the white matter. However, this multimodal integration faces three significant challenges: (1) the necessarily limited overlap between tractography streamlines and the grey matter, which may reduce the amount of functional signal associated with the related structural connectivity; (2) the scrambling effect of crossing fibers on functional signal, as a single voxel in such regions can be structurally connected to several cognitive networks with heterogeneous functional signals; and (3) the difficulty of interpretation of the resulting cognitive maps, as crossing and overlapping white matter tracts can obscure the organization of the studied network. In the present study, we tackled these problems by developing a streamline-extension procedure and dividing the white matter anatomical priors between association, commissural, and projection fibers. This approach significantly improved the characterization of the white matter involvement in the studied cognitive processes. The new Functionnectome priors produced are now readily available, and the analysis workflow highlighted here should also be generalizable to other structural-functional approaches. We improved the Functionnectome approach to better study the involvement of white matter in brain function by separating the analysis of the three classes of white matter fibers (association, commissural, and projection fibers). This step successfully clarified the activation maps and increased their statistical significance.
Collapse
Affiliation(s)
- Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle - Institut des Maladies Neurodégénératives (GIN-IMN), UMR 5293, Université de Bordeaux, CNRS, CEA, Centre Broca Nouvelle-Aquitaine-3éme étage, 146 Rue Léo Saignat-CS 61292-Case 28, 33076, Bordeaux Cedex, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Guillaume Theaud
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions Inc, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Thiebaut de Schotten
- Groupe d'Imagerie Neurofonctionnelle - Institut des Maladies Neurodégénératives (GIN-IMN), UMR 5293, Université de Bordeaux, CNRS, CEA, Centre Broca Nouvelle-Aquitaine-3éme étage, 146 Rue Léo Saignat-CS 61292-Case 28, 33076, Bordeaux Cedex, France
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle - Institut des Maladies Neurodégénératives (GIN-IMN), UMR 5293, Université de Bordeaux, CNRS, CEA, Centre Broca Nouvelle-Aquitaine-3éme étage, 146 Rue Léo Saignat-CS 61292-Case 28, 33076, Bordeaux Cedex, France.
| |
Collapse
|
5
|
Chen X, Sorenson E, Hwang K. Thalamocortical contributions to working memory processes during the n-back task. Neurobiol Learn Mem 2023; 197:107701. [PMID: 36435360 PMCID: PMC9805524 DOI: 10.1016/j.nlm.2022.107701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/07/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022]
Abstract
Working memory allows individuals to temporally maintain and manipulate information that is no longer accessible from the sensorium. Whereas prior studies have detailed frontoparietal contributions to working memory processes, less emphasis has been placed on subcortical regions, in particular the human thalamus. The thalamus has a complex anatomy that consists of several distinct nuclei, many of which have dense anatomical connectivity with frontoparietal regions, and thus might play an important yet underspecified role for working memory. The goal of our study is to characterize the detailed functional neuroanatomy of the human thalamus and thalamocortical interactions during the n-back task. To that end, we analyzed an n-back fMRI dataset consisting of 395 subjects from the Human Connectome Project (HCP). We found that thalamic nuclei in the anterior, medial, ventral lateral, and posterior medial thalamus showed stronger evoked responses in response to higher working memory load. Activity in most thalamic nuclei were only modulated by working memory load, but not by categorical membership of the memorized stimuli, suggesting that thalamic function supports domain-general processing for working memory. To determine whether thalamocortical interactions contribute to cortical activity for working memory, we employed an activity flow mapping analysis to test whether thalamocortical interactions can predict cortical task activity patterns. In support, this data-driven thalamocortical interaction model explained a significant amount of variance in the observed cortical activity patterns modulated by working memory load. Our results suggest that the anterior, medial, and posterior medial thalamus, and their associated thalamocortical interactions, contribute to the modulations of distributed cortical activity during working memory.
Collapse
Affiliation(s)
- Xitong Chen
- Cognitive Control Collaborative, The University of Iowa, 340 Iowa Ave, Iowa City, IA 52242-1407, United States; Department of Psychological and Brain Science, The University of Iowa, 340 Iowa Ave, Iowa City, IA 52242-1407, United States; Iowa Neuroscience Institute, The University of Iowa, 169 Newton Road, 2312, Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, United States.
| | - Evan Sorenson
- Cognitive Control Collaborative, The University of Iowa, 340 Iowa Ave, Iowa City, IA 52242-1407, United States; Department of Psychological and Brain Science, The University of Iowa, 340 Iowa Ave, Iowa City, IA 52242-1407, United States; Iowa Neuroscience Institute, The University of Iowa, 169 Newton Road, 2312, Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, United States
| | - Kai Hwang
- Cognitive Control Collaborative, The University of Iowa, 340 Iowa Ave, Iowa City, IA 52242-1407, United States; Department of Psychological and Brain Science, The University of Iowa, 340 Iowa Ave, Iowa City, IA 52242-1407, United States; Iowa Neuroscience Institute, The University of Iowa, 169 Newton Road, 2312, Pappajohn Biomedical Discovery Building, Iowa City, IA 52242, United States
| |
Collapse
|
6
|
Maeda CT, Takeuchi H, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Shigeyuki I, Yokota S, Magistro D, Sassa Y, Taki Y, Kawashima R. Brain Microstructural Properties Related to Subjective Well-Being: Diffusion Tensor Imaging Analysis. Soc Cogn Affect Neurosci 2021; 16:1079-1090. [PMID: 33987641 PMCID: PMC8483277 DOI: 10.1093/scan/nsab063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 12/05/2022] Open
Abstract
Although it is known that health is not merely the absence of disease, the positive aspects of mental health have been less comprehensively researched compared with its negative aspects. Subjective well-being (SWB) is one of the indicators of positive psychology, and high SWB is considered to benefit individuals in multiple ways. However, the neural mechanisms underlying individual differences in SWB remain unclear, particularly in terms of brain microstructural properties as detected by diffusion tensor imaging. The present study aimed to investigate the relationship between measurements of diffusion tensor imaging [mean diffusivity (MD) and fractional anisotropy] and the degree of SWB as measured using a questionnaire. Voxel-based analysis was used to investigate the association between MD and SWB scores in healthy young adults (age, 20.7 ± 1.8 years; 695 males and 514 females). Higher levels of SWB were found to be associated with lower MD in areas surrounding the right putamen, insula, globus pallidus, thalamus and caudate. These results indicated that individual SWB is associated with variability in brain microstructural properties.
Collapse
Affiliation(s)
- Chiaki Terao Maeda
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan
| | | | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan.,Division of Psychiatry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Behavioral Medicine National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Psychiatry Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sugiko Hanawa
- Department of Human Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | | | - Carlos Makoto Miyauchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Research Institute for the Earth Inclusive Sensing, Tokyo Institute of Technology, Tokyo, Japan
| | - Ikeda Shigeyuki
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Faculty of arts and science, Kyushu University, Fukuoka, Japan
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology Nottingham Trent University, Nottingham, UK
| | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Human Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Effects of SSRI treatment on GABA and glutamate levels in an associative relearning paradigm. Neuroimage 2021; 232:117913. [PMID: 33657450 PMCID: PMC7610796 DOI: 10.1016/j.neuroimage.2021.117913] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/01/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
Impaired cognitive flexibility represents a widespread symptom in psychiatric disorders, including major depressive disorder (MDD), a disease, characterized by an imbalance of neuro-transmitter concentrations. While memory formation is mostly associated with glutamate, also gamma-Aminobutyric acid (GABA) and serotonin show attributions in a complex interplay between neurotransmitter systems. Treatment with selective serotonin reuptake inhibitors (SSRIs) does not solely affect the serotonergic system but shows downstream effects on GABA- and glutamatergic neurotransmission, potentially helping to restore cognitive function via neuroplastic effects. Hence, this study aims to elaborate the effects of associative relearning and SSRI treatment on GABAergic and glutamatergic function within and between five brain regions using magnetic resonance spectroscopy imaging (MRSI). In this study, healthy subjects were randomized into four groups which underwent three weeks of an associative relearning paradigm, with or without emotional connotation, under SSRI (10mg escitalopram) or placebo administration. MRSI measurements, using a spiral-encoded, 3D-GABA-edited MEGA-LASER sequence at 3T, were performed on the first and last day of relearning. Mean GABA+/tCr (GABA+ = GABA + macromolecules; tCr = total creatine) and Glx/tCr (Glx = glutamate + glutamine) ratios were quantified in a ROI-based approach for the hippocampus, insula, putamen, pallidum and thalamus, using LCModel. A total of 66 subjects ((37 female, mean age ± SD = 25.4±4.7) for Glx/tCr and 58 subjects (32 female, mean age ± SD = 25.1±4.7) for GABA+/tCr were included in the final analysis. A significant measurement by region and treatment (SSRI vs placebo) interaction on Glx/tCr ratios was found (pcor=0.017), with post hoc tests confirming differential effects on hippocampus and thalamus (pcor=0.046). Moreover, treatment by time comparison, for each ROI independently, showed a reduction of hippocampal Glx/tCr ratios after SSRI treatment (puncor=0.033). No significant treatment effects on GABA+/tCr ratios or effects of relearning condition on any neurotransmitter ratio could be found. Here, we showed a significant SSRI- and relearning-driven interaction effect of hippocampal and thalamic Glx/tCr levels, suggesting differential behavior based on different serotonin transporter and receptor densities. Moreover, an indication for Glx/tCr adaptions in the hippocampus after three weeks of SSRI treatment could be revealed. Our findings are in line with animal studies reporting glutamate adaptions in the hippocampus following chronic SSRI intake. Due to the complex interplay of serotonin and hippocampal function, involving multiple serotonin receptor subtypes on glutamatergic cells and GABAergic interneurons, the interpretation of underlying neurobiological actions remains challenging.
Collapse
|
8
|
Zhong S, Lai S, Yue J, Wang Y, Shan Y, Liao X, Chen J, Li Z, Chen G, Chen F, Jia Y. The characteristic of cognitive impairments in patients with bipolar II depression and its association with N-acetyl aspartate of the prefrontal white matter. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1457. [PMID: 33313202 PMCID: PMC7723520 DOI: 10.21037/atm-20-7098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Cognitive deficit is acknowledged as a core feature of clinical manifestations of bipolar disorder (BD). However, the underlying mechanism of cognitive impairment in bipolar II depression has remained uncertain. We aim to determine the association of cognitive impairments with biochemical metabolism using proton magnetic resonance spectroscopy (1H-MRS) and a battery of neuropsychological testing. Methods The current study was designed to assess four cognitive domains in a sample of 110 patients with bipolar II depression and 110 healthy controls, using a battery of 6 cognitive tests, including the Digit Symbol Substitution Test (DSST), Wisconsin Cart Sorting Test (WCST), Trail Making Test Part B (TMT-B), Digit Span Test (DST), TMT-part A (TMT-A) and Verbal Fluency Test (VFT). Metabolite levels were obtained in the following brain regions of interest: bilateral prefrontal white matter (PWM), bilateral anterior cingulate cortex (ACC), bilateral lenticular nucleus (LN), and bilateral thalamus. N-acetyl aspartate (NAA)/creatine (Cr) and choline-containing compounds (Cho)/Cr ratios are analyzed. Results Patients with bipolar II depression performed significantly worse on DSST (score), TMT (completion time), DSB (score), and VFT (valid word number) when compared with healthy controls. In the bilateral PWM, NAA/Cr ratios in the PWM were significantly reduced (bilaterally) than those in healthy controls. Correlation analysis was conducted with data from patients with bipolar II depression, we found that the NAA/Cr ratio of the left PWM was positively correlated with the score of DS and DSB, and the NAA/Cr ratio of the right PWM was negatively correlated with the completion time of TMT-B. Conclusions Our findings suggested that psychomotor speed, executive function, working memory, and verbal fluency are impaired in patients with BD II depression. Hypoactivity NAA/Cr in bilateral PWM may be associated with BD II depression's pathophysiology and results in cognitive dysfunction.
Collapse
Affiliation(s)
- Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jihui Yue
- Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanyan Shan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Xiaoxiao Liao
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Junhao Chen
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhinan Li
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
"Switchboard" malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102300. [PMID: 32554322 PMCID: PMC7303672 DOI: 10.1016/j.nicl.2020.102300] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
The thalamus is a key cerebral hub relaying a multitude of corticoefferent and corticoafferent connections and mediating distinct extrapyramidal, sensory, cognitive and behavioural functions. While the thalamus consists of dozens of anatomically well-defined nuclei with distinctive physiological roles, existing imaging studies in motor neuron diseases typically evaluate the thalamus as a single structure. Based on the unique cortical signatures observed in ALS and PLS, we hypothesised that similarly focal thalamic involvement may be observed if the nuclei are individually evaluated. A prospective imaging study was undertaken with 100 patients with ALS, 33 patients with PLS and 117 healthy controls to characterise the integrity of thalamic nuclei. ALS patients were further stratified for the presence of GGGGCC hexanucleotide repeat expansions in C9orf72. The thalamus was segmented into individual nuclei to examine their volumetric profile. Additionally, thalamic shape deformations were evaluated by vertex analyses and focal density alterations were examined by region-of-interest morphometry. Our data indicate that C9orf72 negative ALS patients and PLS patients exhibit ventral lateral and ventral anterior involvement, consistent with the ‘motor’ thalamus. Degeneration of the sensory nuclei was also detected in C9orf72 negative ALS and PLS. Both ALS groups and the PLS cohort showed focal changes in the mediodorsal-paratenial-reuniens nuclei, which mediate memory and executive functions. PLS patients exhibited distinctive thalamic changes with marked pulvinar and lateral geniculate atrophy compared to both controls and C9orf72 negative ALS. The considerable ventral lateral and ventral anterior pathology detected in both ALS and PLS support the emerging literature of extrapyramidal dysfunction in MND. The involvement of sensory nuclei is consistent with sporadic reports of sensory impairment in MND. The unique thalamic signature of PLS is in line with the distinctive clinical features of the phenotype. Our data confirm phenotype-specific patterns of thalamus involvement in motor neuron diseases with the preferential involvement of nuclei mediating motor and cognitive functions. Given the selective involvement of thalamic nuclei in ALS and PLS, future biomarker and natural history studies in MND should evaluate individual thalamic regions instead overall thalamic changes.
Collapse
|
10
|
Spurny B, Seiger R, Moser P, Vanicek T, Reed MB, Heckova E, Michenthaler P, Basaran A, Gryglewski G, Klöbl M, Trattnig S, Kasper S, Bogner W, Lanzenberger R. Hippocampal GABA levels correlate with retrieval performance in an associative learning paradigm. Neuroimage 2020; 204:116244. [PMID: 31606475 PMCID: PMC7610791 DOI: 10.1016/j.neuroimage.2019.116244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/29/2019] [Accepted: 10/03/2019] [Indexed: 11/23/2022] Open
Abstract
Neural plasticity is a complex process dependent on neurochemical underpinnings. Next to the glutamatergic system which contributes to memory formation via long-term potentiation (LTP) and long-term depression (LTD), the main inhibitory neurotransmitter, GABA is crucially involved in neuroplastic processes. Hence, we investigated changes in glutamate and GABA levels in the brain in healthy participants performing an associative learning paradigm. Twenty healthy participants (10 female, 25 ± 5 years) underwent paired multi-voxel magnetic resonance spectroscopy imaging before and after completing 21 days of a facial associative learning paradigm in a longitudinal study design. Changes of GABA and glutamate were compared to retrieval success in the hippocampus, insula and thalamus. No changes in GABA and glutamate concentration were found after 21 days of associative learning. However, baseline hippocampal GABA levels were significantly correlated with initial retrieval success (pcor = 0.013, r = 0.690). In contrast to the thalamus and insula (pcor>0.1), higher baseline GABA levels in the hippocampus were associated with better retrieval performance in an associative learning paradigm. Therefore, our findings support the importance of hippocampal GABA levels in memory formation in the human brain in vivo.
Collapse
Affiliation(s)
- Benjamin Spurny
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Rene Seiger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Philipp Moser
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Eva Heckova
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Alim Basaran
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
11
|
Takeuchi H, Kawashima R. Mean Diffusivity in the Dopaminergic System and Neural Differences Related to Dopaminergic System. Curr Neuropharmacol 2018; 16:460-474. [PMID: 29119929 PMCID: PMC6018195 DOI: 10.2174/1570159x15666171109124839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/29/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The mean diffusivity (MD) parameter obtained by diffusion tensor imaging provides a measure of how freely water molecules move in brain tissue. Greater tissue density conferred by closely arrayed cellular structures is assumed to lower MD by inhibiting the free diffusion of water molecules. METHODS In this paper, we review studies showing MD variation among regions of the brain dopaminergic system (MDDS), especially subcortical structures such as the putamen, caudate nucleus, and globus pallidus, in different conditions with known associations to dopaminergic system function or dysfunction. The methodologies and background related to MD and MDDS are also discussed. RESULTS Past studies indicate that MDDS is sensitive to pathological derangement of dopaminergic activity, neural changes caused by cognitive and pharmacological interventions that are known to affect the dopaminergic system, and individual character traits related to dopaminergic function. CONCLUSION These results suggest that MDDS can be one useful tool to tap the neural differences related to the dopaminergic system.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Address correspondence to this author at the Division of Developmental Cognitive Neuroscience, IDAC, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan; Tel/Fax: +81-22-717-7988;, E-mail:
| | | |
Collapse
|
12
|
Peräkylä J, Sun L, Lehtimäki K, Peltola J, Öhman J, Möttönen T, Ogawa KH, Hartikainen KM. Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory. J Cogn Neurosci 2017; 29:2090-2102. [DOI: 10.1162/jocn_a_01176] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general (OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors (OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. “Total errors” is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.
Collapse
Affiliation(s)
| | | | | | | | - Juha Öhman
- Tampere University Hospital
- University of Tampere
| | | | | | | |
Collapse
|
13
|
Gillespie NA, Neale MC, Hagler DJ, Eyler LT, Fennema-Notestine C, Franz CE, Lyons MJ, McEvoy LK, Dale AM, Panizzon MS, Kremen WS. Genetic and environmental influences on mean diffusivity and volume in subcortical brain regions. Hum Brain Mapp 2017; 38:2589-2598. [PMID: 28240386 DOI: 10.1002/hbm.23544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/15/2022] Open
Abstract
Increased mean diffusivity (MD) is hypothesized to reflect tissue degeneration and may provide subtle indicators of neuropathology as well as age-related brain changes in the absence of volumetric differences. Our aim was to determine the degree to which genetic and environmental variation in subcortical MD is distinct from variation in subcortical volume. Data were derived from a sample of 387 male twins (83 MZ twin pairs, 55 DZ twin pairs, and 111 incomplete twin pairs) who were MRI scanned as part of the Vietnam Era Twin Study of Aging. Quantitative estimates of MD and volume for 7 subcortical regions were obtained: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala, and nucleus accumbens. After adjusting for covariates, bivariate twin models were fitted to estimate the size and significance of phenotypic, genotypic, and environmental correlations between MD and volume at each subcortical region. With the exception of the amygdala, familial aggregation in MD was entirely explained by additive genetic factors across all subcortical regions with estimates ranging from 46 to 84%. Based on bivariate twin modeling, variation in subcortical MD appears to be both genetically and environmentally unrelated to individual differences in subcortical volume. Therefore, subcortical MD may be an alternative biomarker of brain morphology for complex traits worthy of future investigation. Hum Brain Mapp 38:2589-2598, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nathan A Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Virginia
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Virginia
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, California
| | - Lisa T Eyler
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, California.,Department of Psychiatry, University of California, San Diego, California
| | - Christine Fennema-Notestine
- Department of Radiology, University of California, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Carol E Franz
- Department of Psychiatry, University of California, San Diego, California
| | - Michael J Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts
| | - Linda K McEvoy
- Department of Radiology, University of California, San Diego, California
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, California.,Department of Psychiatry, University of California, San Diego, California
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, California
| | - William S Kremen
- Department of Psychiatry, University of California, San Diego, California.,Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, California
| |
Collapse
|
14
|
Waltzman D, Soman S, Hantke NC, Fairchild JK, Kinoshita LM, Wintermark M, Ashford JW, Yesavage J, Williams L, Adamson MM, Furst AJ. Altered Microstructural Caudate Integrity in Posttraumatic Stress Disorder but Not Traumatic Brain Injury. PLoS One 2017; 12:e0170564. [PMID: 28114393 PMCID: PMC5256941 DOI: 10.1371/journal.pone.0170564] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 01/08/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Given the high prevalence and comorbidity of combat-related PTSD and TBI in Veterans, it is often difficult to disentangle the contributions of each disorder. Examining these pathologies separately may help to understand the neurobiological basis of memory impairment in PTSD and TBI independently of each other. Thus, we investigated whether a) PTSD and TBI are characterized by subcortical structural abnormalities by examining diffusion tensor imaging (DTI) metrics and volume and b) if these abnormalities were specific to PTSD versus TBI. METHOD We investigated whether individuals with PTSD or TBI display subcortical structural abnormalities in memory regions by examining DTI metrics and volume of the hippocampus and caudate in three groups of Veterans: Veterans with PTSD, Veterans with TBI, and Veterans with neither PTSD nor TBI (Veteran controls). RESULTS While our results demonstrated no macrostructural differences among the groups in these regions, there were significant alterations in microstructural DTI indices in the caudate for the PTSD group but not the TBI group compared to Veteran controls. CONCLUSIONS The result of increased mean, radial, and axial diffusivity, and decreased fractional anisotropy in the caudate in absence of significant volume atrophy in the PTSD group suggests the presence of subtle abnormalities evident only at a microstructural level. The caudate is thought to play a role in the physiopathology of PTSD, and the habit-like behavioral features of the disorder could be due to striatal-dependent habit learning mechanisms. Thus, DTI appears to be a vital tool to investigate subcortical pathology, greatly enhancing the ability to detect subtle brain changes in complex disorders.
Collapse
Affiliation(s)
- Dana Waltzman
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
| | - Salil Soman
- Department of Radiology, Harvard University, Cambridge, United States of America
| | - Nathan C. Hantke
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
| | - J. Kaci Fairchild
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
- Sierra Pacific Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
| | - Lisa M. Kinoshita
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
- Psychology Service, Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
| | - Max Wintermark
- Department of Radiology, Stanford University School of Medicine, Palo Alto, United States of America
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, United States of America
| | - J. Wesson Ashford
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
| | - Jerome Yesavage
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
| | - Leanne Williams
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
| | - Maheen M. Adamson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
- Defense Veterans Brain Injury Center (DVBIC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
| | - Ansgar J. Furst
- War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, United States of America
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, United States of America
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, United States of America
| |
Collapse
|
15
|
Waltzman D, Knowlton BJ, Cohen JR, Bookheimer SY, Bilder RM, Asarnow RF. DTI microstructural abnormalities in adolescent siblings of patients with childhood-onset schizophrenia. Psychiatry Res Neuroimaging 2016; 258:23-29. [PMID: 27829189 DOI: 10.1016/j.pscychresns.2016.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Dana Waltzman
- War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System (VAPAHCS), United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States.
| | | | - Jessica Rachel Cohen
- Department of Psychology and Neurosciences, University of North Carolina at Chapel Hill, United States
| | - Susan Yost Bookheimer
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Robert Martin Bilder
- David Geffen School of Medicine at University of California Los Angeles, United States
| | - Robert Franklin Asarnow
- Department of Psychology, University of California Los Angeles, United States; David Geffen School of Medicine at University of California Los Angeles, United States
| |
Collapse
|
16
|
Takeuchi H, Taki Y, Sekiguchi A, Nouchi R, Kotozaki Y, Nakagawa S, Miyauchi CM, Iizuka K, Yokoyama R, Shinada T, Yamamoto Y, Hanawa S, Araki T, Kunitoki K, Sassa Y, Kawashima R. Mean diffusivity of basal ganglia and thalamus specifically associated with motivational states among mood states. Brain Struct Funct 2016; 222:1027-1037. [PMID: 27364694 DOI: 10.1007/s00429-016-1262-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
Abstract
Previously, we proposed that the mean diffusivity (MD), a measure of diffusion tensor imaging (DTI) in areas of the dopaminergic system (MDDS), is associated with motivation. In this study, we tested if and how the motivational state is associated with MD in comparison with other mood states. We also tested the associations of these mood states with multiple cognitive functions. We examined these issues in 766 right-handed healthy young adults. We employed analyses of MD and a psychological measure of the profile of mood states (POMS) as well as multiple cognitive functions. We detected associations between the higher Vigor subscale of POMS and lower MD in the right globus pallidum, right putamen to right posterior insula, right caudate body, and right thalamus, and these associations were highly specific to the Vigor subscale. Similarly, the association of the motivational state with creativity measured by divergent thinking (CMDT) was rather specific and prominent compared with that of the other mood states and cognitive functions. In conclusion, when affective states are finely divided, only the motivational state is associated with MD in the areas related to the dopaminergic system, and psychological mechanisms that had been associated with dopaminergic system (CMDT). These results suggest that these mechanisms specifically contribute to the motivational state and not to the other states, such as depression and anxiety.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Human and Social Response Research Division, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yuka Kotozaki
- Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takamitsu Shinada
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yuki Yamamoto
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Smart Aging International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | - Yuko Sassa
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Clinical research, Medical-Industry Translational Research Center, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
17
|
Fall S, Querne L, Le Moing AG, Berquin P. Individual differences in subcortical microstructure organization reflect reaction time performances during a flanker task: a diffusion tensor imaging study in children with and without ADHD. Psychiatry Res 2015; 233:50-6. [PMID: 26025013 DOI: 10.1016/j.pscychresns.2015.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 03/30/2015] [Accepted: 05/01/2015] [Indexed: 11/25/2022]
Abstract
The results of several previous magnetic resonance imaging studies suggest that the fronto-striato-thalamic circuitry is involved in the pathophysiology of attention-deficit/hyperactivity disorder (ADHD). However, few studies have investigated the putative association between quantitative diffusion tensor imaging measurements of subcortical gray matter and subject task performances in children with ADHD. Here, we examined whether reaction time (RT) parameters during a flanker task were correlated with mean diffusivity (MD) measurements in the basal ganglia and thalamus in children with ADHD and in controls. For the study group as a whole, both the mean RT and the intra-individual variability in RTs were found to be significantly correlated with MD measurements in the right and left caudate, putamen and thalamus. In contrast, the correlation between the interference effect and MD failed to reach statistical significance. The present results may advance our understanding of the anatomical substrates of ADHD.
Collapse
Affiliation(s)
- Sidy Fall
- Department of Pediatric Neurology. INSERM U-1105, Amiens University Medical Center, F-80054, France.
| | - Laurent Querne
- Department of Pediatric Neurology. INSERM U-1105, Amiens University Medical Center, F-80054, France
| | - Anne-Gaëlle Le Moing
- Department of Pediatric Neurology. INSERM U-1105, Amiens University Medical Center, F-80054, France
| | - Patrick Berquin
- Department of Pediatric Neurology. INSERM U-1105, Amiens University Medical Center, F-80054, France
| |
Collapse
|
18
|
Manna A, Piras F, Caltagirone C, Bossù P, Sensi SL, Spalletta G. Left hippocampus-amygdala complex macro- and microstructural variation is associated with BDNF plasma levels in healthy elderly individuals. Brain Behav 2015. [PMID: 26221568 PMCID: PMC4511284 DOI: 10.1002/brb3.334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Deep brain gray matter (GM) structures are involved in several neurodegenerative disorders and are affected by aging. In this study, we investigated the potential relationship between levels of brain-derived neurotrophic factor (BDNF), a putative biomarker of age- and clinically relevant brain dysfunctions, and the presence of structural modifications that were evaluated by magnetic resonance imaging in six deep GM structures. METHODS Volume changes and diffusion tensor imaging (DTI) scalars were studied in the thalamus, putamen, hippocampus, caudate nucleus, amygdala and pallidum of a cohort of 120 healthy subjects. The cohort included young (18-39 years old), adult (40-59 years old) and elderly (60-76 years old) subjects. RESULTS No correlations were seen in the young and adult cohorts. In the elderly group, we observed reduced BDNF levels that correlated with increased DTI-based mean diffusivity occurring in the left hippocampus along with decreased normalized volume in the left amygdala. CONCLUSIONS These findings suggest that, in elderly subjects, BDNF may exert regional and lateralized effects that allow the integrity of two strategic deep GM areas such as the hippocampus and the amygdala.
Collapse
Affiliation(s)
- Antonietta Manna
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI) Chieti, Italy
| | - Fabrizio Piras
- Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Carlo Caltagirone
- Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia Rome, Italy ; Department of Neuroscience, "Tor Vergata" University Rome, Italy
| | - Paola Bossù
- Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia Rome, Italy
| | - Stefano L Sensi
- Molecular Neurology Unit, Center of Excellence on Aging (CeSI) Chieti, Italy ; Department of Neuroscience and Imaging, 'G. d'Annunzio' University Chieti, Italy ; Institute for Memory Impairments and Neurological Disorders, University of California-Irvine Irvine, California
| | - Gianfranco Spalletta
- Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia Rome, Italy ; Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine Houston, Texas
| |
Collapse
|
19
|
Parra MA, Fabi K, Luzzi S, Cubelli R, Hernandez Valdez M, Della Sala S. Relational and conjunctive binding functions dissociate in short-term memory. Neurocase 2015; 21:56-66. [PMID: 24313316 DOI: 10.1080/13554794.2013.860177] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Remembering complex events requires binding features within unified objects (conjunctions) and holding associations between objects (relations). Recent studies suggest that the two functions dissociate in long-term memory (LTM). Less is known about their functional organization in short-term memory (STM). The present study investigated this issue in patient AE affected by a stroke which caused damage to brain regions known to be relevant for relational functions both in LTM and in STM (i.e., the hippocampus). The assessment involved a battery of standard neuropsychological tasks and STM binding tasks. One STM binding task (Experiment 1) presented common objects and common colors forming either pairs (relations) or integrated objects (conjunctions). Free recall of relations or conjunctions was assessed. A second STM binding task used random polygons and non-primary colors instead (Experiment 2). Memory was assessed by selecting the features that made up the relations or the conjunctions from a set of single polygons and a set of single colors. The neuropsychological assessment revealed impaired delayed memory in AE. AE's pronounced relational STM binding deficits contrasted with his completely preserved conjunctive binding functions in both Experiments 1 and 2. Only 2.35% and 1.14% of the population were expected to have a discrepancy more extreme than that presented by AE in Experiments 1 and 2, respectively. Processing relations and conjunctions of very elementary nonspatial features in STM led to dissociating performances in AE. These findings may inform current theories of memory decline such as those linked to cognitive aging.
Collapse
Affiliation(s)
- Mario A Parra
- a Human Cognitive Neuroscience and Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology , University of Edinburgh , 7 George Square, Edinburgh EH8 9JZ UK
| | | | | | | | | | | |
Collapse
|
20
|
Takeuchi H, Taki Y, Sekiguchi A, Hashizume H, Nouchi R, Sassa Y, Kotozaki Y, Miyauchi CM, Yokoyama R, Iizuka K, Nakagawa S, Nagase T, Kunitoki K, Kawashima R. Mean diffusivity of globus pallidus associated with verbal creativity measured by divergent thinking and creativity-related temperaments in young healthy adults. Hum Brain Mapp 2015; 36:1808-27. [PMID: 25627674 PMCID: PMC5024049 DOI: 10.1002/hbm.22739] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 11/22/2014] [Accepted: 01/06/2015] [Indexed: 12/03/2022] Open
Abstract
Recent investigations revealed mean diffusivity (MD) in gray matter and white matter areas is correlated with individual cognitive differences in healthy subjects and show unique properties and sensitivity that other neuroimaging tools donot have. In this study, we tested the hypothesis that the MD in the dopaminergic system is associated with individual differences in verbal creativity measured by divergent thinking (VCDT) and novelty seeking based on prior studies suggesting associations between these and dopaminergic functions. We examined this issue in a large sample of right‐handed healthy young adults. We used analyses of MD and a psychological measure of VCDT, as well as personality measures of the Temperament and Character Inventory (TCI). Our results revealed associations between higher VCDT and lower MD in the bilateral globus pallidus. Furthermore, not only higher novelty seeking, but also lower harm avoidance, higher self‐directedness, and higher self‐transcendence were robustly associated with lower MD in the right globus pallidus, whereas higher persistence was associated with lower MD in the left globus pallidus. These personality variables were also associated with VCDT. The globus pallidus receives the dopaminergic input from the substantia nigra and plays a key role in motivation which is critically linked to dopamine. These results suggested the MD in the globus pallidus, underlie the association between VCDT and multiple personalities in TCI including novelty seeking. Hum Brain Mapp 36:1808–1827, 2015. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Laricchiuta D, Petrosini L. Individual differences in response to positive and negative stimuli: endocannabinoid-based insight on approach and avoidance behaviors. Front Syst Neurosci 2014; 8:238. [PMID: 25565991 PMCID: PMC4273613 DOI: 10.3389/fnsys.2014.00238] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/28/2014] [Indexed: 01/12/2023] Open
Abstract
Approach and avoidance behaviors-the primary responses to the environmental stimuli of danger, novelty and reward-are associated with the brain structures that mediate cognitive functionality, reward sensitivity and emotional expression. Individual differences in approach and avoidance behaviors are modulated by the functioning of amygdaloid-hypothalamic-striatal and striatal-cerebellar networks implicated in action and reaction to salient stimuli. The nodes of these networks are strongly interconnected and by acting on them the endocannabinoid and dopaminergic systems increase the intensity of appetitive or defensive motivation. This review analyzes the approach and avoidance behaviors in humans and rodents, addresses neurobiological and neurochemical aspects of these behaviors, and proposes a possible synaptic plasticity mechanism, related to endocannabinoid-dependent long-term potentiation (LTP) and depression that allows responding to salient positive and negative stimuli.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Dynamic and Clinical Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- IRCCS Fondazione Santa LuciaRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| |
Collapse
|
22
|
Chechko N, Vocke S, Habel U, Toygar T, Kuckartz L, Berthold-Losleben M, Laoutidis ZG, Orfanos S, Wassenberg A, Karges W, Schneider F, Kohn N. Effects of overnight fasting on working memory-related brain network: an fMRI study. Hum Brain Mapp 2014; 36:839-51. [PMID: 25393934 DOI: 10.1002/hbm.22668] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/05/2014] [Accepted: 10/14/2014] [Indexed: 12/21/2022] Open
Abstract
Glucose metabolism serves as the central source of energy for the human brain. Little is known about the effects of blood glucose level (BGL) on higher-order cognitive functions within a physiological range (e.g., after overnight fasting). In this randomized, placebo-controlled, double blind study, we assessed the impact of overnight fasting (14 h) on brain activation during a working memory task. We sought to mimic BGLs that occur naturally in healthy humans after overnight fasting. After standardized periods of food restriction, 40 (20 male) healthy participants were randomly assigned to receive either glucagon to balance the BGL or placebo (NaCl). A parametric fMRI paradigm, including 2-back and 0-back tasks, was used. Subclinically low BGL following overnight fasting was found to be linked to reduced involvement of the bilateral dorsal midline thalamus and the bilateral basal ganglia, suggesting high sensitivity of those regions to minimal changes in BGLs. Our results indicate that overnight fasting leads to physiologically low levels of glucose, impacting brain activation during working memory tasks even when there are no differences in cognitive performance.
Collapse
Affiliation(s)
- Natalia Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, RWTH Aachen University, Aachen, Germany; JARA Brain - Translational Brain Medicine, Jülich - Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Laricchiuta D, Petrosini L, Picerni E, Cutuli D, Iorio M, Chiapponi C, Caltagirone C, Piras F, Spalletta G. The embodied emotion in cerebellum: a neuroimaging study of alexithymia. Brain Struct Funct 2014; 220:2275-87. [DOI: 10.1007/s00429-014-0790-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
|
24
|
Spalletta G, Piras F, Caltagirone C, Fagioli S. Hippocampal multimodal structural changes and subclinical depression in healthy individuals. J Affect Disord 2014; 152-154:105-12. [PMID: 23800444 DOI: 10.1016/j.jad.2013.05.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/25/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Several neuroimaging studies report reduced hippocampal volume in depressed patients. However, it is still unclear if hippocampal changes in healthy individuals can be considered a risk factor for progression to clinical depression. Here, we investigated subclinical depression and its hippocampal correlates in a non-clinical sample of healthy individuals, with particular regard to gender differences. METHODS One-hundred-two participants underwent a comprehensive clinical assessment, a high-resolution T1-weighted magnetic resonance imaging and diffusion tensor imaging protocol using a 3T MRI scanner. Data of macro-(volume) and micro-(mean diffusivity, MD) structural changes of the hippocampus were analyzed with reference to the Beck Depression Inventory score. RESULTS Results of multivariate regression analyses revealed reduced bilateral volume, along with increased bilateral MD in hippocampal formation predicting subclinical depressive phenomenology only in healthy males. Conversely, subclinical depressive phenomenology in healthy female was accounted for by only lower educational level, in the absence of any hippocampal structure variations. LIMITATIONS To date, this is the only evidence reporting a relationship between subclinical depressive phenomenology and changes in hippocampal formation in healthy individuals. CONCLUSIONS Our findings demonstrated that reduced volume, along with increased MD in hippocampal formation, is significantly associated with subclinical depressive phenomenology in healthy males. This encourages to study the hypothesis that early macro- and microstructural changes in hippocampi associated with subclinical depression may constitute a risk factor of developing depressive disorders in males.
Collapse
Affiliation(s)
- Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Department of Clinical and Behavioral Neurology, Rome, Italy.
| | | | | | | |
Collapse
|
25
|
Ira E, Zanoni M, Ruggeri M, Dazzan P, Tosato S. COMT, neuropsychological function and brain structure in schizophrenia: a systematic review and neurobiological interpretation. J Psychiatry Neurosci 2013; 38:366-80. [PMID: 23527885 PMCID: PMC3819150 DOI: 10.1503/jpn.120178] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Endophenotypes in genetic psychiatry may increase our understanding of the molecular mechanisms underlying disease risk and its manifestations. We sought to investigate the link between neuropsychological impairments and brain structural abnormalities associated with the COMT Val(158)Met polymorphism in patients with schizophrenia to improve understanding of the pathophysiology of this disorder. METHODS We performed a systematic review using studies identified in PubMed and MEDLINE (from the date of the first available article to July 2012). Our review examined evidence of an association between the COMT Val(158)Met polymorphism and both neuropsychological performance and brain structure in patients with psychosis, in their relatives and in healthy individuals (step 1). The review also explored whether the neuropsychological tasks and brain structures identified in step 1 met the criteria for an endophenotype (step 2). Then we evaluated evidence that the neuropsychological endophenotypes identified in step 2 are associated with the brain structure endophenotypes identified in that step (step 3). Finally, we propose a neurobiological interpretation for this evidence. RESULTS A poorer performance on the n-back task and the Continuous Performance Test (CPT) and smaller temporal and frontal brain areas were associated with the COMT Val allele in patients with schizophrenia and their relatives and met most of the criteria for an endophenotype. It is possible that the COMT Val(158)Met polymorphism therefore contributes to the development of these neuropsychological and brain structural endophenotypes of schizophrenia, in which the prefrontal cortex may represent the neural substrate underlying both n-back and CPT performances. LIMITATIONS The association between a single genetic variant and an endophenotype does not necessarily imply a causal relationship between them. CONCLUSION This evidence and the proposed interpretation contribute to explain, at least in part, the biological substrate of 4 important endophenotypes that characterize schizophrenia.
Collapse
Affiliation(s)
- Elisa Ira
- Correspondence to: E. Ira, Department of Public Health and Community Medicine, Section of Psychiatry, University of Verona, Policlinico G.B. Rossi, P.le L.A. Scuro 10, 37134 Verona, Italy;
| | | | | | | | | |
Collapse
|
26
|
Picerni E, Petrosini L, Piras F, Laricchiuta D, Cutuli D, Chiapponi C, Fagioli S, Girardi P, Caltagirone C, Spalletta G. New evidence for the cerebellar involvement in personality traits. Front Behav Neurosci 2013; 7:133. [PMID: 24106465 PMCID: PMC3788336 DOI: 10.3389/fnbeh.2013.00133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/13/2013] [Indexed: 12/29/2022] Open
Abstract
Following the recognition of its role in sensory-motor coordination and learning, the cerebellum has been involved in cognitive, emotional, and even personality domains. This study investigated the relationships between cerebellar macro- and micro-structural variations and temperamental traits measured by Temperament and Character Inventory (TCI). High resolution T1-weighted, and Diffusion Tensor Images of 100 healthy subjects aged 18-59 years were acquired by 3 Tesla Magnetic Resonance scanner. In multiple regression analyses, cerebellar Gray Matter (GM) or White Matter (WM) volumes, GM Mean Diffusivity (MD), and WM Fractional Anisotropy (FA) were used as dependent variables, TCI scores as regressors, gender, age, and education years as covariates. Novelty Seeking scores were associated positively with the cerebellar GM volumes and FA, and negatively with MD. No significant association between Harm Avoidance, Reward Dependence or Persistence scores and cerebellar structural measures was found. The present data put toward a cerebellar involvement in the management of novelty.
Collapse
Affiliation(s)
- Eleonora Picerni
- I.R.C.C.S. Santa Lucia FoundationRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Laura Petrosini
- I.R.C.C.S. Santa Lucia FoundationRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | | | - Daniela Laricchiuta
- I.R.C.C.S. Santa Lucia FoundationRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Debora Cutuli
- I.R.C.C.S. Santa Lucia FoundationRome, Italy
- Department of Psychology, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | | | | | - Paolo Girardi
- NESMOS Department, Faculty of Medicine and Psychology, University “Sapienza” of RomeRome, Italy
| | - Carlo Caltagirone
- I.R.C.C.S. Santa Lucia FoundationRome, Italy
- Department of Neuroscience, Tor Vergata UniversityRome, Italy
| | | |
Collapse
|
27
|
Passaro AD, Elmore LC, Ellmore TM, Leising KJ, Papanicolaou AC, Wright AA. Explorations of object and location memory using fMRI. Front Behav Neurosci 2013; 7:105. [PMID: 23966916 PMCID: PMC3744007 DOI: 10.3389/fnbeh.2013.00105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022] Open
Abstract
Content-specific sub-systems of visual working memory (VWM) have been explored in many neuroimaging studies with inconsistent findings and procedures across experiments. The present study employed functional magnetic resonance imaging (fMRI) and a change detection task using a high number of trials and matched stimulus displays across object and location change (what vs. where) conditions. Furthermore, individual task periods were studied independently across conditions to identify differences corresponding to each task period. Importantly, this combination of task controls has not previously been described in the fMRI literature. Composite results revealed differential frontoparietal activation during each task period. A separation of object and location conditions yielded a distributed system of dorsal and ventral streams during the encoding of information corresponding to bilateral inferior parietal lobule (IPL) and lingual gyrus activation, respectively. Differential activity was also shown during the maintenance of information in middle frontal structures bilaterally for objects and the right IPL and left insula for locations. Together, these results reflect a domain-specific dissociation spanning several cortices and task periods. Furthermore, differential activations suggest a general caudal-rostral separation corresponding to object and location memory, respectively.
Collapse
|
28
|
Linking novelty seeking and harm avoidance personality traits to basal ganglia: volumetry and mean diffusivity. Brain Struct Funct 2013; 219:793-803. [DOI: 10.1007/s00429-013-0535-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/26/2013] [Indexed: 01/14/2023]
|
29
|
Li J, Chen C, Lei X, Wang Y, Chen C, He Q, Moyzis RK, Xue G, Zhu B, Cao Z, Dong Q. The NTSR1 gene modulates the association between hippocampal structure and working memory performance. Neuroimage 2012; 75:79-86. [PMID: 23110888 DOI: 10.1016/j.neuroimage.2012.09.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic and neural basis of working memory (WM) has been extensively studied. Many dopamine (DA) related genes, including the NTSR1 gene (a DA modulator gene), have been reported to be associated with WM performance. The NTSR1 protein is predominantly expressed in the cerebral cortex and the hippocampus, the latter of which is closely involved in WM processing based on both lesion and fMRI studies. Thus far, however, no study has examined the joint effects of NTSR1 gene polymorphism and hippocampal morphology on WM performance. Participants of the current study were 330 healthy Chinese college students. WM performance was measured with a 2-back WM paradigm. Structural MRI data were acquired and then analyzed using an automated procedure with atlas-based FreeSurfer segmentation software (v 4.5.0) package. Linear regression analyses were conducted with a NTSR1 C/T polymorphism which was previously reported to be associated with WM (rs4334545), hippocampal volume, and their interaction as predictors of WM performance, with gender and intracranial volume (ICV) as covariates. Results showed a significant interaction between NTSR1 genotype and hippocampal volume (p<.05 for both the left and right hippocampi). Further analysis showed that the correlation between hippocampal volume and WM scores was significant for carriers of the NTSR1 T-allele (p<.05 for both hippocampi), but not for CC homozygotes. These results indicate that the association between hippocampal structure and WM performance was modulated by variation in the NTSR1 gene, and suggest that further studies of brain-behavior associations should take genetic background information into account.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA.
| | - Xuemei Lei
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA
| | - Yunxin Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qinghua He
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert K Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bi Zhu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Zhongyu Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
30
|
Dong G, DeVito E, Huang J, Du X. Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. J Psychiatr Res 2012; 46:1212-6. [PMID: 22727905 PMCID: PMC3650484 DOI: 10.1016/j.jpsychires.2012.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/22/2012] [Accepted: 05/30/2012] [Indexed: 11/28/2022]
Abstract
Internet gaming addiction (IGA) is increasingly recognized as a widespread disorder with serious psychological and health consequences. Diminished white matter integrity has been demonstrated in a wide range of other addictive disorders which share clinical characteristics with IGA. Abnormal white matter integrity in addictive populations has been associated with addiction severity, treatment response and cognitive impairments. This study assessed white matter integrity in individuals with internet gaming addiction (IGA) using diffusion tensor imaging (DTI). IGA subjects (N = 16) showed higher fractional anisotropy (FA), indicating greater white matter integrity, in the thalamus and left posterior cingulate cortex (PCC) relative to healthy controls (N = 15). Higher FA in the thalamus was associated with greater severity of internet addiction. Increased regional FA in individuals with internet gaming addiction may be a pre-existing vulnerability factor for IGA, or may arise secondary to IGA, perhaps as a direct result of excessive internet game playing.
Collapse
Affiliation(s)
- Guangheng Dong
- Department of Psychology, Zhejiang Normal University, 688 of Yingbin Road, Jinhua, Zhejiang Province, PR China.
| | - Elise DeVito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jie Huang
- Department of Psychology, Zhejiang Normal University, Jinhua City, Zhejiang Province, P.R.China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai. P.R.China
| |
Collapse
|
31
|
Passaro AD, Elmore LC, Ellmore TM, Leising KJ, Papanicolaou AC, Wright AA. WITHDRAWN: fMRI correlates of visual working memory: What vs. where. Neuroimage 2011:S1053-8119(11)01178-5. [PMID: 22019875 DOI: 10.1016/j.neuroimage.2011.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/04/2011] [Indexed: 11/20/2022] Open
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy. This article has been withdrawn at the request of the editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Antony D Passaro
- Department of Pediatrics, Children's Learning Institute, The University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | | | | | | | | | | |
Collapse
|
32
|
Madsen KS, Baaré WFC, Skimminge A, Vestergaard M, Siebner HR, Jernigan TL. Brain microstructural correlates of visuospatial choice reaction time in children. Neuroimage 2011; 58:1090-100. [PMID: 21791247 DOI: 10.1016/j.neuroimage.2011.07.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 06/26/2011] [Accepted: 07/09/2011] [Indexed: 11/28/2022] Open
Abstract
The corticospinal tracts and the basal ganglia continue to develop during childhood and adolescence, and indices of their maturation can be obtained using diffusion-weighted imaging. Here we show that a simple measure of visuomotor function is correlated with diffusion parameters in the corticospinal tracts and neostriatum. In a cohort of 75 typically-developing children aged 7 to 13years, mean 5-choice reaction times (RTs) were assessed. We hypothesised that children with faster choice RTs would show lower mean diffusivity (MD) in the corticospinal tracts and neostriatum and higher fractional anisotropy (FA) in the corticospinal tracts, after controlling for age, gender, and handedness. Mean MD and/or FA were extracted from the right and left corticospinal tracts, putamen, and caudate nuclei. As predicted, faster 5-choice RTs were associated with lower MD in the corticospinal tracts, putamen, and caudate. MD effects on RT were bilateral in the corticospinal tracts and putamen, whilst right caudate MD was more strongly related to performance than was left caudate MD. Our results suggest a link between motor performance variability in children and diffusivity in the motor system, which may be related to: individual differences in the phase of fibre tract and neostriatal maturation in children of similar age, individual differences in motor experience during childhood (i.e., use-dependent plasticity), and/or more stable individual differences in the architecture of the motor system.
Collapse
Affiliation(s)
- Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark.
| | | | | | | | | | | |
Collapse
|