1
|
Nagahama K, Jung VH, Kwon HB. Cutting-edge methodologies for tagging and tracing active neuronal coding in the brain. Curr Opin Neurobiol 2025; 92:102997. [PMID: 40056794 DOI: 10.1016/j.conb.2025.102997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/09/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025]
Abstract
Decoding the neural substrates that underlie learning and behavior is a fundamental goal in neuroscience. Identifying "key players" at the molecular, cellular, and circuit levels has become possible with recent advancements in molecular technologies offering high spatiotemporal resolution. Immediate-early genes are effective markers of neural activity and plasticity, allowing for the identification of active cells involved in memory-based behavior. A calcium-dependent labeling system coupled with light or biochemical proximity labeling allows characterization of active cell ensembles and circuitry across broader brain regions within short time windows, particularly during transient behaviors. The integration of these systems expands the ability to address diverse research questions across behavioral paradigms. This review examines current molecular systems for activity-dependent labeling, highlighting their applications in identifying specific cell ensembles and circuits relevant to various scientific questions and further discuss their significance, along with future directions for the development of innovative methodologies.
Collapse
Affiliation(s)
- Kenichiro Nagahama
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Veronica Hyeyoon Jung
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
2
|
Sterin I, Santos AC, Park S. Neuronal Activity Reporters as Drug Screening Platforms. MICROMACHINES 2022; 13:1500. [PMID: 36144123 PMCID: PMC9504476 DOI: 10.3390/mi13091500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Understanding how neuronal activity changes and detecting such changes in both normal and disease conditions is of fundamental importance to the field of neuroscience. Neuronal activity plays important roles in the formation and function of both synapses and circuits, and dysregulation of these processes has been linked to a number of debilitating diseases such as autism, schizophrenia, and epilepsy. Despite advances in our understanding of synapse biology and in how it is altered in disease, the development of therapeutics for these diseases has not advanced apace. Many neuronal activity assays have been developed over the years using a variety of platforms and approaches, but major limitations persist. Current assays, such as fluorescence indicators are not designed to monitor neuronal activity over a long time, they are typically low-throughput or lack sensitivity. These are major barriers to the development of new therapies, as drug screening needs to be both high-throughput to screen through libraries of compounds, and longitudinal to detect any effects that may emerge after continued application of the drug. This review will cover existing assays for measuring neuronal activity and highlight a live-cell assay recently developed. This assay can be performed with easily accessible lab equipment, is both scalable and longitudinal, and can be combined with most other established methods.
Collapse
Affiliation(s)
- Igal Sterin
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Ana C. Santos
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Sungjin Park
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
3
|
Noe E, Bonneau N, Fournier ML, Caillé S, Cador M, Le Moine C. Arc reactivity in accumbens nucleus, amygdala and hippocampus differentiates cue over context responses during reactivation of opiate withdrawal memory. Neurobiol Learn Mem 2019; 159:24-35. [PMID: 30771462 DOI: 10.1016/j.nlm.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 10/27/2022]
Abstract
Opiate withdrawal induces an early aversive state which can be associated to contexts and/or cues, and re-exposure to either these contexts or cues may participate in craving and relapse. Nucleus accumbens (NAC), hippocampus (HPC) and basolateral amygdala (BLA) are crucial substrates for acute opiate withdrawal, and for withdrawal memory retrieval. Also HPC and BLA interacting with the NAC are suggested to respectively mediate the processing of context and cue representations of drug-related memories. Here we used a paradigm of conditioned suppression of operant food seeking, allowing to differentiate context and cue related responses, to study the influence of withdrawal memories on operant behavior and the underlying neural substrates. catFISH for Arc mRNA expression was used to discriminate cellular responses during context and cue (flashing light) periods in this paradigm. We show that reactivation of the memory of the negative affective state of withdrawal suppresses active lever pressing for food, and this conditioned suppression is generalized to the context. Interestingly the behavioral responses during the context and cue light periods are associated with differential Arc mRNA activations within the NAC, BLA, and HPC. Indeed both periods led to NAC shell activation whereas the NAC core was responsive only following the cue light period. Moreover, BLA and HPC were more responsive during cue-light and context period respectively. These data further support the already reported differential role of these brain structures on cue vs context-induced reinstatement of operant behaviors, and highlight the existence of common mechanisms for the processing of positive and aversive emotional memories.
Collapse
Affiliation(s)
- Emilie Noe
- Univ. Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France
| | - Nicolas Bonneau
- Univ. Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France
| | - Marie-Line Fournier
- Univ. Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France
| | - Stéphanie Caillé
- Univ. Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France
| | - Martine Cador
- Univ. Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France
| | - Catherine Le Moine
- Univ. Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| |
Collapse
|
4
|
Subbanna S, Joshi V, Basavarajappa BS. Activity-dependent Signaling and Epigenetic Abnormalities in Mice Exposed to Postnatal Ethanol. Neuroscience 2018; 392:230-240. [PMID: 30031835 DOI: 10.1016/j.neuroscience.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
Postnatal ethanol exposure has been shown to cause persistent defects in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms responsible for these abnormalities are less well studied. We evaluated the influence of postnatal ethanol exposure on several signaling and epigenetic changes and on expression of the activity-regulated cytoskeletal (Arc) protein in the hippocampus of adult offspring under baseline conditions and after a Y-maze spatial memory (SP) behavior (activity). Postnatal ethanol treatment impaired pCaMKIV and pCREB in naïve mice without affecting H4K8ac, H3K14ac and H3K9me2 levels. The Y-maze increased pCaMKIV, pCREB, H4K8ac and H3K14ac levels in saline-treated mice but not in ethanol-treated mice; while H3K9me2 levels were enhanced in ethanol-exposed animals compared to saline groups. Like previous observations, ethanol not only reduced Arc expression in naïve mice but also behaviorally induced Arc expression. ChIP results suggested that reduced H3K14ac and H4K8ac in the Arc gene promoter is because of impaired CBP, and increased H3K9me2 is due to the enhanced recruitment of G9a. The CB1R antagonist and a G9a/GLP inhibitor, which were shown to rescue postnatal ethanol-triggered synaptic plasticity and learning and memory deficits, were able to prevent the negative effects of ethanol on activity-dependent signaling, epigenetics and Arc expression. Together, these findings provide a molecular mechanism involving signaling and epigenetic cascades that collectively are responsible for the neurobehavioral deficits associated with an animal model of fetal alcohol spectrum disorders (FASD).
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Kramer EE, Steadman PE, Epp JR, Frankland PW, Josselyn SA. Assessing Individual Neuronal Activity Across the Intact Brain: Using Hybridization Chain Reaction (HCR) to DetectArcmRNA Localized to the Nucleus in Volumes of Cleared Brain Tissue. ACTA ACUST UNITED AC 2018; 84:e49. [DOI: 10.1002/cpns.49] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Emily E. Kramer
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
| | - Patrick E. Steadman
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
| | - Jonathan R. Epp
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Department of Cell Biology and Anatomy, University of Calgary; Calgary Alberta Canada
- Current address: Hotchkiss Brain Institute, Cumming School of Medicine; Calgary Alberta Canada
| | - Paul W. Frankland
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
- Department of Psychology, University of Toronto; Toronto Ontario Canada
- Department of Physiology, University of Toronto; Toronto Ontario Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research; Toronto Ontario Canada. Child & Brain Development Program, Canadian Institute for Advanced Research; Toronto Ontario Canada
| | - Sheena A. Josselyn
- Program in Neurosciences and Mental Health, Hospital for Sick Children; Toronto Ontario Canada
- Institute of Medical Sciences, University of Toronto; Toronto Ontario Canada
- Department of Psychology, University of Toronto; Toronto Ontario Canada
- Department of Physiology, University of Toronto; Toronto Ontario Canada
- Brain, Mind & Consciousness Program, Canadian Institute for Advanced Research; Toronto Ontario Canada. Child & Brain Development Program, Canadian Institute for Advanced Research; Toronto Ontario Canada
| |
Collapse
|
6
|
Ivanova TN, Gross C, Mappus RC, Kwon YJ, Bassell GJ, Liu RC. Familiarity with a vocal category biases the compartmental expression of Arc/Arg3.1 in core auditory cortex. Learn Mem 2017; 24:612-621. [PMID: 29142056 PMCID: PMC5688959 DOI: 10.1101/lm.046086.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/01/2017] [Indexed: 01/18/2023]
Abstract
Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1, which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience.
Collapse
Affiliation(s)
- Tamara N Ivanova
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Christina Gross
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Rudolph C Mappus
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Yong Jun Kwon
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Graduate Program in Neuroscience, Laney Graduate School, Emory University, Atlanta, Georgia 30322, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| | - Robert C Liu
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
7
|
Abstract
Lattice-like structures known as perineuronal nets (PNNs) are key components of the extracellular matrix (ECM). Once fully crystallized by adulthood, they are largely stable throughout life. Contrary to previous reports that PNNs inhibit processes involving plasticity, here we report that the dynamic regulation of PNN expression in the adult auditory cortex is vital for fear learning and consolidation in response to pure tones. Specifically, after first confirming the necessity of auditory cortical activity for fear learning and consolidation, we observed that mRNA levels of key proteoglycan components of PNNs were enhanced 4 hr after fear conditioning but were no longer different from the control groups 24 hr later. A similar pattern of regulation was observed in numbers of cells surrounded by PNNs and area occupied by them in the auditory cortex. Finally, the removal of auditory cortex PNNs resulted in a deficit in fear learning and consolidation.
Collapse
|
8
|
New Insights on Retrieval-Induced and Ongoing Memory Consolidation: Lessons from Arc. Neural Plast 2015; 2015:184083. [PMID: 26380114 PMCID: PMC4561316 DOI: 10.1155/2015/184083] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/26/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023] Open
Abstract
The mainstream view on the neurobiological mechanisms underlying memory formation states that memory traces reside on the network of cells activated during initial acquisition that becomes active again upon retrieval (reactivation). These activation and reactivation processes have been called "conjunctive trace." This process implies that singular molecular events must occur during acquisition, strengthening the connection between the implicated cells whose synchronous activity must underlie subsequent reactivations. The strongest experimental support for the conjunctive trace model comes from the study of immediate early genes such as c-fos, zif268, and activity-regulated cytoskeletal-associated protein. The expressions of these genes are reliably induced by behaviorally relevant neuronal activity and their products often play a central role in long-term memory formation. In this review, we propose that the peculiar characteristics of Arc protein, such as its optimal expression after ongoing experience or familiar behavior, together with its versatile and central functions in synaptic plasticity could explain how familiarization and recognition memories are stored and preserved in the mammalian brain.
Collapse
|
9
|
Khodadad A, Adelson PD, Lifshitz J, Thomas TC. The time course of activity-regulated cytoskeletal (ARC) gene and protein expression in the whisker-barrel circuit using two paradigms of whisker stimulation. Behav Brain Res 2015; 284:249-56. [PMID: 25682931 DOI: 10.1016/j.bbr.2015.01.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 11/25/2022]
Abstract
Immediate early genes have previously demonstrated a rapid increase in gene expression after various behavioral paradigms. The main focus of this article is to identify a molecular marker of circuit activation after manual whisker stimulation or exploration of a novel environment. To this end, we investigated the dynamics of ARC transcription in adult male rats during whisker somatosensation throughout the whisker barrel circuit. At various time points, tissue was biopsied from the ventral posterior medial nucleus (VPM) of the thalamus, primary somatosensory barrel field (S1BF) cortex and hippocampus for quantification using real-time PCR and western blot. Our results show that there were no significant differences in ARC gene or protein expression in the VPM after both types of stimulation. However, manual whisker stimulation resulted in increased ARC gene expression at 15, 30, 60 and 300 min in the S1BF, and 15 min in the hippocampus (p<0.05). Also, exploration of a novel environment resulted in increased ARC mRNA expression at 15 and 30 min in the S1BF and at 15 min in the hippocampus (p<0.05). The type of stimulation (manual versus exploration of a novel environment) influenced the magnitude of ARC gene expression in the S1BF (p<0.05). These data are the first to demonstrate that ARC is a specific, quantifiable and input dependent molecular marker of circuit activation which can serve to quantify the impact of brain injury and subsequent rehabilitation on whisker sensation.
Collapse
Affiliation(s)
- Aida Khodadad
- Barrow Neurological Institute at Phoenix Children's Hospital- Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine-Phoenix, AZ; Department of Neuroscience, University of Strasbourg, France.
| | - P David Adelson
- Barrow Neurological Institute at Phoenix Children's Hospital- Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine-Phoenix, AZ; Neuroscience Program, Arizona State University, Tempe, AZ; School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ.
| | - Jonathan Lifshitz
- Barrow Neurological Institute at Phoenix Children's Hospital- Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine-Phoenix, AZ; Phoenix VA Healthcare System- Phoenix, AZ; Neuroscience Program, Arizona State University, Tempe, AZ.
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children's Hospital- Phoenix, AZ; Department of Child Health, University of Arizona College of Medicine-Phoenix, AZ; Phoenix VA Healthcare System- Phoenix, AZ.
| |
Collapse
|
10
|
Lin FG, Galindo-Leon EE, Ivanova TN, Mappus RC, Liu RC. A role for maternal physiological state in preserving auditory cortical plasticity for salient infant calls. Neuroscience 2013; 247:102-16. [PMID: 23707982 DOI: 10.1016/j.neuroscience.2013.05.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/05/2013] [Accepted: 05/07/2013] [Indexed: 11/20/2022]
Abstract
A growing interest in sensory system plasticity in the natural context of motherhood has created the need to investigate how intrinsic physiological state (e.g., hormonal, motivational, etc.) interacts with sensory experience to drive adaptive cortical plasticity for behaviorally relevant stimuli. Using a maternal mouse model of auditory cortical inhibitory plasticity for ultrasonic pup calls, we examined the role of pup care versus maternal physiological state in the long-term retention of this plasticity. Very recent experience caring for pups by Early Cocarers, which are virgins, produced stronger call-evoked lateral-band inhibition in auditory cortex. However, this plasticity was absent when measured post-weaning in Cocarers, even though it was present at the same time point in Mothers, whose pup experience occurred under a maternal physiological state. A two-alternative choice phonotaxis task revealed that the same animal groups (Early Cocarers and Mothers) demonstrating stronger lateral-band inhibition also preferred pup calls over a neutral sound, a correlation consistent with the hypothesis that this inhibitory mechanism may play a mnemonic role and is engaged to process sounds that are particularly salient. Our electrophysiological data hint at a possible mechanism through which the maternal physiological state may act to preserve the cortical plasticity: selectively suppressing detrimental spontaneous activity in neurons that are responsive to calls, an effect observed only in Mothers. Taken together, the maternal physiological state during the care of pups may help maintain the memory trace of behaviorally salient infant cues within core auditory cortex, potentially ensuring a more rapid induction of future maternal behavior.
Collapse
Affiliation(s)
- F G Lin
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
11
|
Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci 2011; 34:591-8. [PMID: 21963089 DOI: 10.1016/j.tins.2011.08.007] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
The activity-regulated cytoskeletal (Arc) gene encodes a protein that is critical for memory consolidation. Arc is one of the most tightly regulated molecules known: neuronal activity controls Arc mRNA induction, trafficking and accumulation, and Arc protein production, localization and stability. Arc regulates synaptic strength through multiple mechanisms and is involved in essentially every known form of synaptic plasticity. It also mediates memory formation and is implicated in multiple neurological diseases. In this review, we will discuss how Arc is regulated and used as a tool to study neuronal activity. We will also attempt to clarify how its molecular functions correspond to its requirement in various forms of plasticity, discuss Arc's role in behavior and disease, and highlight critical unresolved questions.
Collapse
Affiliation(s)
- Erica Korb
- Gladstone Institute of Neurological Disease, San Francisco, CA, USA
| | | |
Collapse
|