1
|
Samson WK, Salvemini D, Yosten GLC. Overcoming Stress, Hunger, and Pain: Cocaine- and Amphetamine-Regulated Transcript Peptide's Promise. Endocrinology 2021; 162:6287092. [PMID: 34043767 PMCID: PMC8210821 DOI: 10.1210/endocr/bqab108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 01/17/2023]
Abstract
Cocaine- and amphetamine-regulated transcript encodes an eponymous peptide, CARTp, which exerts diverse pharmacologic actions in the central and peripheral nervous systems, as well as in several endocrine organs, including pancreas. Here we review those diverse actions, the physiological relevance of which had remained unestablished until recently. With the identification of a CARTp receptor, GPR160, the physiologic importance and therapeutic potential of CARTp or analogs are being revealed. Not only is the CARTp-GPR160 interaction essential for the circadian regulation of appetite and thirst but also for the transmission of nerve injury-induced pain. Molecular approaches now are uncovering additional physiologically relevant actions and the development of acute tissue-specific gene compromise approaches may reveal even more physiologically relevant actions of this pluripotent ligand/receptor pair.
Collapse
Affiliation(s)
- Willis K Samson
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Correspondence: Willis K. Samson, PhD DSc, Professor of Pharmacology and Physiology, Saint Louis University School of Medicine, Caroline Building, Room 2-207A, 1402 South Grand Boulevard, St Louis, MO 63104, USA.
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience Saint Louis University School of Medicine, St Louis, MO 63104, USA
| | - Gina L C Yosten
- Department of Pharmacology and Physiology and Henry and Amelia Nasrallah Center for Neuroscience Saint Louis University School of Medicine, St Louis, MO 63104, USA
| |
Collapse
|
2
|
Ahmadian-Moghadam H, Sadat-Shirazi MS, Zarrindast MR. Cocaine- and amphetamine-regulated transcript (CART): A multifaceted neuropeptide. Peptides 2018; 110:56-77. [PMID: 30391426 DOI: 10.1016/j.peptides.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
Over the last 35 years, the continuous discovery of novel neuropeptides has been the key to the better understanding of how the central nervous system has integrated with neuronal signals and behavioral responses. Cocaine and amphetamine-regulated transcript (CART) was discovered in 1995 in the rat striatum but later was found to be highly expressed in the hypothalamus. The widespread distribution of CART peptide in the brain complicated the understanding of the role played by this neurotransmitter. The main objective of the current compact review is to piece together the fragments of available information about origin, expression, distribution, projection, and function of CART peptides. Accumulative evidence suggests CART as a neurotransmitter and neuroprotective agent that is mainly involved in regulation of feeding, addiction, stress, anxiety, innate fear, neurological disease, neuropathic pain, depression, osteoporosis, insulin secretion, learning, memory, reproduction, vision, sleep, thirst and body temperature. In spite of the vast number of studies about the CART, the overall pictures about the CART functions are sketchy. First, there is a lack of information about cloned receptor, specific agonist and antagonist. Second, CART peptides are detected in discrete sets of neurons that can modulate countless activities and third; CART peptides exist in several fragments due to post-translational processing. For these reasons the overall picture about the CART peptides are sketchy and confounding.
Collapse
Affiliation(s)
- Hamid Ahmadian-Moghadam
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
3
|
Balkan B, Pogun S. Nicotinic Cholinergic System in the Hypothalamus Modulates the Activity of the Hypothalamic Neuropeptides During the Stress Response. Curr Neuropharmacol 2018; 16:371-387. [PMID: 28730966 PMCID: PMC6018196 DOI: 10.2174/1570159x15666170720092442] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The hypothalamus harbors high levels of cholinergic neurons and axon terminals. Nicotinic acetylcholine receptors, which play an important role in cholinergic neurotransmission, are expressed abundantly in the hypothalamus. Accumulating evidence reveals a regulatory role for nicotine in the regulation of the stress responses. The present review will discuss the hypothalamic neuropeptides and their interaction with the nicotinic cholinergic system. The anatomical distribution of the cholinergic neurons, axon terminals and nicotinic receptors in discrete hypothalamic nuclei will be described. The effect of nicotinic cholinergic neurotransmission and nicotine exposure on hypothalamic-pituitaryadrenal (HPA) axis regulation at the hypothalamic level will be analyzed in view of the different neuropeptides involved. METHODS Published research related to nicotinic cholinergic regulation of the HPA axis activity at the hypothalamic level is reviewed. RESULTS The nicotinic cholinergic system is one of the major modulators of the HPA axis activity. There is substantial evidence supporting the regulation of hypothalamic neuropeptides by nicotinic acetylcholine receptors. However, most of the studies showing the nicotinic regulation of hypothalamic neuropeptides have employed systemic administration of nicotine. Additionally, we know little about the nicotinic receptor distribution on neuropeptide-synthesizing neurons in the hypothalamus and the physiological responses they trigger in these neurons. CONCLUSION Disturbed functioning of the HPA axis and hypothalamic neuropeptides results in pathologies such as depression, anxiety disorders and obesity, which are common and significant health problems. A better understanding of the nicotinic regulation of hypothalamic neuropeptides will aid in drug development and provide means to cope with these diseases. Considering that nicotine is also an abused substance, a better understanding of the role of the nicotinic cholinergic system on the HPA axis will aid in developing improved therapeutic strategies for smoking cessation.
Collapse
Affiliation(s)
- Burcu Balkan
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey.,Department of Physiology, School of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Sakire Pogun
- Center for Brain Research, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
4
|
Vilhena-Franco T, Valentim-Lima E, Reis LC, Elias LLK, Antunes-Rodrigues J, Mecawi AS. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J Neuroendocrinol 2018; 30:e12633. [PMID: 29998612 DOI: 10.1111/jne.12633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/08/2018] [Indexed: 01/06/2023]
Abstract
Vasopressin (AVP) and oxytocin (OT) are essential for the control of extracellular fluid osmolality and volume. Secretion of these hormones is modulated by several mechanisms, including NMDA and AMPA L-glutamate receptors in magnocellular cells of paraventricular (PVN) and supraoptic (SON) hypothalamic nuclei. Thus, to better understand the participation of L-glutamate on the neuroendocrine control of AVP and OT, this work evaluated the effects of intracerebroventricular (icv) NMDA and AMPA receptor antagonists on plasma AVP and OT levels induced by extracellular volume expansion (EVE). Cannulated rats received icv NMDA (AP5) and AMPA (NBQX) antagonists in 10 and 30nmol/5μl/rat doses and were subjected to either isotonic (0.15 M NaCl, 2ml/100g) or hypertonic (0.30 M NaCl, 2ml/100g) EVE. Blood samples were collected for plasma AVP and OT determination. Isotonic EVE did not change plasma AVP and OT levels, but hypertonic EVE increased both AVP and OT plasma levels. AP5 reduced plasma AVP, but it did not change the OT level induced by hypertonic EVE. On the other hand, NBQX reduced plasma OT, but did not alter the AVP plasma level. Our data shows that L-glutamate controls the secretion of neurohypophyseal hormones through the NMDA receptor for AVP release, and through the AMPA receptor for OT release, both in response to hypertonic EVE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Evandro Valentim-Lima
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Luís C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| | - Lucila L K Elias
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology Ribeirão, Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - André S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Alvarez-Salas E, Mengod G, García-Luna C, Soberanes-Chávez P, Matamoros-Trejo G, de Gortari P. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats. Neuropeptides 2016; 56:33-40. [PMID: 26626087 DOI: 10.1016/j.npep.2015.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 10/21/2015] [Accepted: 11/08/2015] [Indexed: 11/30/2022]
Abstract
Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.
Collapse
Affiliation(s)
- Elena Alvarez-Salas
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México; School of Dietetics and Nutrition, ISSSTE, Callejón Vía San Fernando 12, México City, Mexico.
| | - Guadalupe Mengod
- Department of Neurochemistry and Neuropharmachology, Institut d'Investigacions, Biomèdiques de Barcelona, CSIC-IDIBAPS, CIBERNED, c/Rosselló 161, 6a, E-08036 Barcelona, Spain.
| | - Cinthia García-Luna
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| | - Paulina Soberanes-Chávez
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| | - Gilberto Matamoros-Trejo
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| | - Patricia de Gortari
- Molecular Neurophysiology, Department of Neuroscience Research, National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), México.
| |
Collapse
|
6
|
Ruginsk SG, Vechiato FMV, Uchoa ET, Elias LLK, Antunes-Rodrigues J. Type 1 cannabinoid receptor modulates water deprivation-induced homeostatic responses. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1358-68. [PMID: 26468265 DOI: 10.1152/ajpregu.00536.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 10/14/2015] [Indexed: 01/02/2023]
Abstract
The present study investigated the type 1 cannabinoid receptor (CB1R) as a potential candidate to mediate the homeostatic responses triggered by 24 h of water deprivation, which constitutes primarily a hydroelectrolytic challenge and also significantly impacts energy homeostasis. The present results demonstrated for the first time that CB1R mRNA expression is increased in the hypothalamus of water-deprived (WD) rats. Furthermore, the administration of ACEA, a CB1R selective agonist, potentiated WD-induced dipsogenic effect, whereas AM251, a CB1R antagonist, attenuated not only water but also salt intake in response to WD. In parallel with the modulation of thirst and salt appetite, we confirmed that CB1Rs are essential for the development of appropriated neuroendocrine responses. Although the administration of ACEA or AM251 did not produce any effects on WD-induced arginine vasopressin (AVP) secretion, oxytocin (OXT) plasma concentrations were significantly decreased in WD rats treated with ACEA. At the genomic level, ACEA significantly decreased AVP and OXT mRNA expression in the hypothalamus of WD rats, whereas AM251 potentiated both basal and WD-induced stimulatory effects on the transcription of AVP and OXT genes. In addition, we showed that water deprivation alone upregulated proopiomelanocortin, Agouti-related peptide, melanin-concentrating hormone, and orexin A mRNA levels in the hypothalamus, and that CB1Rs regulate main central peptidergic pathways controlling food intake, being that most of these effects were also significantly influenced by the hydration status. In conclusion, the present study demonstrated that CB1Rs participate in the homeostatic responses regulating fluid balance and energy homeostasis during water deprivation.
Collapse
Affiliation(s)
- Silvia G Ruginsk
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; Department of Physiological Sciences, Biomedical Sciences Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil; and
| | - Fernanda M V Vechiato
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Ernane T Uchoa
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil; Department of Physiological Sciences, State University of Londrina, Londrina, Parana, Brazil
| | - Lucila L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Jose Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, São Paulo, Brazil;
| |
Collapse
|
7
|
Janiuk I, Kasacka I. Quantitative evaluation of CART-containing cells in urinary bladder of rats with renovascular hypertension. Eur J Histochem 2015; 59:2446. [PMID: 26150151 PMCID: PMC4503964 DOI: 10.4081/ejh.2015.2446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 11/23/2022] Open
Abstract
Recent biological advances make it possible to discover new peptides associated with hypertension. The cocaine- and amphetamine-regulated transcript (CART) is a known factor in appetite and feeding behaviour. Various lines of evidence suggest that this peptide participates not only in control of feeding behaviour but also in the regulation of the cardiovascular and sympathetic systems and blood pressure. The role of CART in blood pressure regulation led us to undertake a study aimed at analysing quantitative changes in CART-containing cells in urinary bladders (UB) of rats with renovascular hypertension. We used the Goldblatt model of arterial hypertension (two-kidney, one clip) to evaluate quantitative changes. This model provides researchers with a commonly used tool to analyse the renin-angiotensin system of blood pressure control and, eventually, to develop drugs for the treatment of chronic hypertension. The study was performed on sections of urinary bladders of rats after 3-, 14-, 28-, 42 and 91 days from hypertension induction. Immunohistochemical identification of CART cells was performed on paraffin for the UBs of all the study animals. CART was detected in the endocrine cells, especially numerous in the submucosa and muscularis layers, with a few found in the transitional epithelium and only occasionally in serosa. Hypertension significantly increased the number of CART-positive cells in the rat UBs. After 3 and 42 days following the procedure, statistically significantly higher numbers of CART-positive cells were identified in comparison with the control animals. The differences between the hypertensive rats and the control animals concerned not only the number density of CART-immunoreactive cells but also their localization. After a 6-week period, each of the rats subjected to the renal artery clipping procedure developed stable hypertension. CART appeared in numerous transitional epithelium cells. As this study provides novel findings, the question appears about the type of connection between hypertension and the functioning and activity of CART in the urinary tract (UT). The study gives rise to the assumption that high blood pressure can be a factor that intensifies CART secretion. In conclusion, the endocrine system of the urinary tract is modified by renovascular hypertension. This may affect the production of hormones and biologically active substances and contribute to the development of possible hypertension complications. In order to fully comprehend the role of the CART peptide in blood pressure regulation, further analyses are necessary.
Collapse
Affiliation(s)
- I Janiuk
- University of Natural Sciences and Humanities.
| | | |
Collapse
|
8
|
Kasacka I, Piotrowska Z, Janiuk I, Zbucki R. Dynamics of cocaine- and amphetamine-regulated transcript containing cell changes in the adrenal glands of two kidney, one clip rats. Exp Biol Med (Maywood) 2014; 239:1292-9. [PMID: 24939825 DOI: 10.1177/1535370214538593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Taking into consideration the homeostatic disorders resulting from renal hypertension and the essential role of cocaine- and amphetamine-regulated transcript (CART) in maintaining homeostasis by regulating many functions of the body, the question arises as to what extent the renovascular hypertension affects the morphology and dynamics of changes of CART-containing cells in the adrenal glands. The aim of the present study was to examine the distribution, morphology, and dynamics of changes of CART-containing cells in the adrenal glands of "two kidney, one clip" (2K1C) renovascular hypertension model in rats. The studies were carried out on the adrenal glands of rats after 3, 14, 28, 42, and 91 days from the renal artery clipping procedure. To identify neuroendocrine cells, immunohistochemical reaction was performed with the use of a specific antibody against CART. It was revealed that renovascular hypertension causes changes in the endocrine cells containing CART in the adrenal glands of rats. The changes observed in the endocrine cells depend on the time when the rats with experimentally induced hypertension were examined. In the first period of hypertension, the number and immunoreactivity of CART-containing cells were decreased, while from the 28-day test, it significantly increased, as compared to the control rats. CART is relevant to the regulation of homeostasis in the cardiovascular system and seems to be involved in renovascular hypertension. The results of the present work open the possibility of new therapeutic perspectives for the treatment of arterial hypertension, since CART function is involved in their pathophysiology.
Collapse
Affiliation(s)
- Irena Kasacka
- Department of Histology and Cytophysiology, Medical University, 15-222 Bialystok, Poland
| | - Zaneta Piotrowska
- Department of Histology and Cytophysiology, Medical University, 15-222 Bialystok, Poland
| | - Izabela Janiuk
- Department of Nutrition and Food Assessment, Institute of Health Sciences, University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Robert Zbucki
- 1 Clinical Department of General and Endocrine Surgery, University Clinical Hospital, 15-264 Bialystok, Poland
| |
Collapse
|
9
|
Subhedar NK, Nakhate KT, Upadhya MA, Kokare DM. CART in the brain of vertebrates: circuits, functions and evolution. Peptides 2014; 54:108-30. [PMID: 24468550 DOI: 10.1016/j.peptides.2014.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/10/2014] [Accepted: 01/10/2014] [Indexed: 12/12/2022]
Abstract
Cocaine- and amphetamine-regulated transcript peptide (CART) with its wide distribution in the brain of mammals has been the focus of considerable research in recent years. Last two decades have witnessed a steady rise in the information on the genes that encode this neuropeptide and regulation of its transcription and translation. CART is highly enriched in the hypothalamic nuclei and its relevance to energy homeostasis and neuroendocrine control has been understood in great details. However, the occurrence of this peptide in a range of diverse circuitries for sensory, motor, vegetative, limbic and higher cortical areas has been confounding. Evidence that CART peptide may have role in addiction, pain, reward, learning and memory, cognition, sleep, reproduction and development, modulation of behavior and regulation of autonomic nervous system are accumulating, but an integration has been missing. A steady stream of papers has been pointing at the therapeutic potentials of CART. The current review is an attempt at piecing together the fragments of available information, and seeks meaning out of the CART elements in their anatomical niche. We try to put together the CART containing neuronal circuitries that have been conclusively demonstrated as well as those which have been proposed, but need confirmation. With a view to finding out the evolutionary antecedents, we visit the CART systems in sub-mammalian vertebrates and seek the answer why the system is shaped the way it is. We enquire into the conservation of the CART system and appreciate its functional diversity across the phyla.
Collapse
Affiliation(s)
- Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Sai Trinity Building, Sutarwadi, Pashan, Pune 411 021, Maharashtra, India.
| | - Kartik T Nakhate
- Rungta College of Pharmaceutical Sciences and Research, Rungta Educational Campus, Kohka-Kurud Road, Bhilai 490 024, Chhattisgarh, India
| | - Manoj A Upadhya
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, Maharashtra, India
| |
Collapse
|
10
|
Region- and sex-specific changes in CART mRNA in rat hypothalamic nuclei induced by forced swim stress. Brain Res 2012; 1479:62-71. [PMID: 22960117 DOI: 10.1016/j.brainres.2012.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 01/22/2023]
Abstract
Cocaine and amphetamine regulated transcript (CART) mRNA and peptides are highly expressed in the paraventricular (PVN), dorsomedial (DMH) and arcuate (ARC) nuclei of the hypothalamus. It has been suggested that these nuclei regulate the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system activity, and feeding behavior. Our previous studies showed that forced swim stress augmented CART peptide expression significantly in whole hypothalamus of male rats. In another study, forced swim stress increased the number of CART-immunoreactive cells in female PVN, whereas no effect was observed in male PVN or in the ARC nucleus of either sex. In the present study, we evaluated the effect of forced swim stress on CART mRNA expression in PVN, DMH and ARC nuclei in both male and female rats. Twelve male (stressed and controls, n=6 each) and 12 female (stressed and controls, n=6 each) Sprague-Dawley rats were used. Control animals were only handled, whereas forced swim stress procedure was applied to the stressed groups. Brains were dissected and brain sections containing PVN, DMH and ARC nuclei were prepared. CART mRNA levels were determined by in situ hybridization. In male rats, forced swim stress upregulated CART mRNA expression in DMH and downregulated it in the ARC. In female rats, forced swim stress increased CART mRNA expression in PVN and DMH, whereas a decrease was observed in the ARC nucleus. Our results show that forced swim stress elicits region- and sex-specific changes in CART mRNA expression in rat hypothalamus that may help in explaining some of the effects of stress.
Collapse
|
11
|
Forced swim stress elicits region-specific changes in CART expression in the stress axis and stress regulatory brain areas. Brain Res 2012; 1432:56-65. [DOI: 10.1016/j.brainres.2011.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 11/22/2022]
|