1
|
Barry KM, Jimena JCJ, Tarawneh HY, Johnsen W, Osmanbasic A, Rodger J, Mulders WHAM. Conductive hearing loss does not affect spatial learning and memory in middle-aged guinea pigs. Sci Rep 2024; 14:31103. [PMID: 39730908 DOI: 10.1038/s41598-024-82408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024] Open
Abstract
Hearing loss (HL) in mid-life has been suggested as a risk factor for cognitive decline. It is unclear whether this relationship is due to deprivation of auditory input alone, degenerative processes, or a combination. Animal models are useful to investigate underlying neural mechanisms as human studies can be confounded by various factors. However, most animal studies use young animals and often exclude females. We used middle-aged guinea pigs of both sexes to investigate whether 8 weeks of auditory deprivation due to conductive HL caused spatial learning and memory impairments. Forty guinea pigs (20 M, 20 F, ~ 12 months) were tested in the Morris Water Maze (MWM) to assess baseline spatial learning and memory. In 20 of these animals (10 M, 10 F) the ear canal was plugged and 8 weeks later, animals were again assessed in MWM. No deficits in spatial learning or memory were observed in either sex. HL caused a small decline in body weight suggesting some stress associated with conductive HL, although adrenal weight, corrected for body weight, did not change. Our data suggest that auditory input deprivation alone does not affect spatial cognition in middle-age, in line with recent human data suggesting that additional risk factors need to be present.
Collapse
Affiliation(s)
- K M Barry
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Ear Science Institute Australia, Subiaco, WA, Australia
| | - J C J Jimena
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - H Y Tarawneh
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - W Johnsen
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - A Osmanbasic
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - J Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
- Perron Institute for Neurological and Translational Research, Crawley, WA, 6009, Australia
| | - W H A M Mulders
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
2
|
Yuan S, Tan HT, Smith PF, Zheng Y. Lack of Amino Acid Alterations Within the Cochlear Nucleus and the Auditory Cortex in Acoustic Trauma-Induced Tinnitus Rats Using In Vivo Microdialysis. Audiol Res 2024; 14:1000-1013. [PMID: 39585005 PMCID: PMC11587119 DOI: 10.3390/audiolres14060083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background/Objectives: Tinnitus is a debilitating auditory disorder commonly described as a ringing in the ears in the absence of an external sound source. Sound trauma is considered a primary cause. Neuronal hyperactivity is one potential mechanism for the genesis of tinnitus and has been identified in the cochlear nucleus (CN) and the auditory cortex (AC), where there may be an imbalance of excitatory and inhibitory neurotransmissions. However, no study has directly correlated tinnitus with the extracellular levels of amino acids in the CN and the AC using microdialysis, which reflects the functions of these neurochemicals. In the present study, rats were exposed to acoustic trauma and then subjected to behavioural confirmation of tinnitus after one month, followed by microdialysis. Methods: Rats were divided into sham (aged, n = 6; young, n = 6); tinnitus-positive (aged, n = 7; young, n = 7); and tinnitus-negative (aged, n = 3; young, n = 3) groups. In vivo microdialysis was utilized to collect samples from the CN and the AC, simultaneously, in the same rat. Extracellular levels of amino acids were quantified using high-performance liquid chromatography (HPLC) coupled with an electrochemical detector (ECD). The effects of sound stimulation and age on neurochemical changes associated with tinnitus were also examined. Results: There were no significant differences in either the basal levels or the sound stimulation-evoked changes of any of the amino acids examined in the CN and the AC between the sham and tinnitus animals. However, the basal levels of serine and threonine exhibited age-related alterations in the AC, and significant differences in threonine and glycine levels were observed in the responses to 4 kHz and 16 kHz stimuli in the CN. Conclusions: These results demonstrate the lack of a direct link between extracellular levels of amino acids in the CN and the AC and tinnitus perception in a rat model of tinnitus.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| | - Huey Tieng Tan
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| | - Paul F. Smith
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, Faculty of Biomedical and Molecular Sciences, University of Otago, Dunedin 9054, New Zealand (H.T.T.)
- Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand
- The Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Tan HT, Smith PF, Zheng Y. Time-dependent effects of acoustic trauma and tinnitus on extracellular levels of amino acids in the inferior colliculus of rats. Hear Res 2024; 443:108948. [PMID: 38219615 DOI: 10.1016/j.heares.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Chronic tinnitus is a debilitating condition with very few management options. Acoustic trauma that causes tinnitus has been shown to induce neuronal hyperactivity in multiple brain areas in the auditory pathway, including the inferior colliculus. This neuronal hyperactivity could be attributed to an imbalance between excitatory and inhibitory neurotransmission. However, it is not clear how the levels of neurotransmitters, especially neurotransmitters in the extracellular space, change over time following acoustic trauma and the development of tinnitus. In the present study, a range of amino acids were measured in the inferior colliculus of rats during acoustic trauma as well as at 1 week and 5 months post-trauma using in vivo microdialysis and high-performance liquid chromatography. Amino acid levels in response to sound stimulation were also measured at 1 week and 5 months post-trauma. It was found that unilateral exposure to a 16 kHz pure tone at 115 dB SPL for 1 h caused immediate hearing loss in all the animals and chronic tinnitus in 58 % of the animals. Comparing to the sham condition, extracellular levels of GABA were significantly increased at both the acute and 1 week time points after acoustic trauma. However, there was no significant difference in any of the amino acid levels measured between sham, tinnitus positive and tinnitus negative animals at 5 months post-trauma. There was also no clear pattern in the relationship between neurochemical changes and sound frequency/acoustic trauma/tinnitus status, which might be due to the relatively poorer temporal resolution of the microdialysis compared to electrophysiological responses.
Collapse
Affiliation(s)
- Huey Tieng Tan
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand.
| |
Collapse
|
4
|
Berger JI, Billig AJ, Sedley W, Kumar S, Griffiths TD, Gander PE. What is the role of the hippocampus and parahippocampal gyrus in the persistence of tinnitus? Hum Brain Mapp 2024; 45:e26627. [PMID: 38376166 PMCID: PMC10878198 DOI: 10.1002/hbm.26627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
The hippocampus and parahippocampal gyrus have been implicated as part of a tinnitus network by a number of studies. These structures are usually considered in the context of a "limbic system," a concept typically invoked to explain the emotional response to tinnitus. Despite this common framing, it is not apparent from current literature that this is necessarily the main functional role of these structures in persistent tinnitus. Here, we highlight a different role that encompasses their most commonly implicated functional position within the brain-that is, as a memory system. We consider tinnitus as an auditory object that is held in memory, which may be made persistent by associated activity from the hippocampus and parahippocampal gyrus. Evidence from animal and human studies implicating these structures in tinnitus is reviewed and used as an anchor for this hypothesis. We highlight the potential for the hippocampus/parahippocampal gyrus to facilitate maintenance of the memory of the tinnitus percept via communication with auditory cortex, rather than (or in addition to) mediating emotional responses to this percept.
Collapse
Affiliation(s)
- Joel I. Berger
- Department of NeurosurgeryUniversity of IowaIowa CityIowaUSA
| | | | | | | | | | - Phillip E. Gander
- Department of NeurosurgeryUniversity of IowaIowa CityIowaUSA
- Department of RadiologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
5
|
Zhang L, Wang J, Sun H, Feng G, Gao Z. Interactions between the hippocampus and the auditory pathway. Neurobiol Learn Mem 2022; 189:107589. [DOI: 10.1016/j.nlm.2022.107589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/22/2022]
|
6
|
Metabolic changes in the brain and blood of rats following acoustic trauma, tinnitus and hyperacusis. PROGRESS IN BRAIN RESEARCH 2021; 262:399-430. [PMID: 33931189 DOI: 10.1016/bs.pbr.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been increasingly recognized that tinnitus is likely to be generated by complex network changes. Acoustic trauma that causes tinnitus induces significant changes in multiple metabolic pathways in the brain. However, it is not clear whether those metabolic changes in the brain could also be reflected in blood samples and whether metabolic changes could discriminate acoustic trauma, hyperacusis and tinnitus. We analyzed brain and serum metabolic changes in rats following acoustic trauma or a sham procedure using metabolomics. Hearing levels were recorded before and after acoustic trauma and behavioral measures to quantify tinnitus and hyperacusis were conducted at 4 weeks following acoustic trauma. Tissues from 11 different brain regions and serum samples were collected at about 3 months following acoustic trauma. Among the acoustic trauma animals, eight exhibited hyperacusis-like behavior and three exhibited tinnitus-like behavior. Using Gas chromatography-mass spectrometry and multivariate statistical analysis, significant metabolic changes were found in acoustic trauma animals in both the brain and serum samples with a number of metabolic pathways significantly perturbated. Furthermore, metabolic changes in the serum were able to differentiate sham from acoustic trauma animals, as well as sham from hyperacusis animals, with high accuracy. Our results suggest that serum metabolic profiling in combination with machine learning analysis may be a promising approach for identifying biomarkers for acoustic trauma, hyperacusis and potentially, tinnitus.
Collapse
|
7
|
Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plast 2021; 2021:8833087. [PMID: 33510780 PMCID: PMC7822664 DOI: 10.1155/2021/8833087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence implicates a role for brain structures outside the ascending auditory pathway in tinnitus, the phantom perception of sound. In addition to other factors such as age-dependent hearing loss, high-level sound exposure is a prominent cause of tinnitus. Here, we examined how noise exposure altered the distribution of excitatory and inhibitory synaptic inputs in the guinea pig hippocampus and determined whether these changes were associated with tinnitus. In experiment one, guinea pigs were overexposed to unilateral narrow-band noise (98 dB SPL, 2 h). Two weeks later, the density of excitatory (VGLUT-1/2) and inhibitory (VGAT) synaptic terminals in CA1, CA3, and dentate gyrus hippocampal subregions was assessed by immunohistochemistry. Overall, VGLUT-1 density primarily increased, while VGAT density decreased significantly in many regions. Then, to assess whether the noise-induced alterations were persistent and related to tinnitus, experiment two utilized a noise-exposure paradigm shown to induce tinnitus and assessed tinnitus development which was assessed using gap-prepulse inhibition of the acoustic startle (GPIAS). Twelve weeks after sound overexposure, changes in excitatory synaptic terminal density had largely recovered regardless of tinnitus status, but the recovery of GABAergic terminal density was dramatically different in animals expressing tinnitus relative to animals resistant to tinnitus. In resistant animals, inhibitory synapse density recovered to preexposure levels, but in animals expressing tinnitus, inhibitory synapse density remained chronically diminished. Taken together, our results suggest that noise exposure induces striking changes in the balance of excitatory and inhibitory synaptic inputs throughout the hippocampus and reveal a potential role for rebounding inhibition in the hippocampus as a protective factor leading to tinnitus resilience.
Collapse
|
8
|
Narwani V, Bourdillon A, Nalamada K, Manes RP, Hildrew DM. Does cannabis alleviate tinnitus? A review of the current literature. Laryngoscope Investig Otolaryngol 2020; 5:1147-1155. [PMID: 33364406 PMCID: PMC7752070 DOI: 10.1002/lio2.479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Endocannabinoid pathways have been proposed to affect the underlying pathophysiology of tinnitus. The aim of this study is to evaluate the scope and findings of existing literature on the relationship between cannabis and cannabinoid pathways and tinnitus. METHODS We conducted a review of animal, clinical and survey studies investigating the relationship between the use of cannabis-derived agents and tinnitus. Using pertinent keywords and MeSH terms on PubMed, relevant studies were identified, yielding four animal studies, two large cross-sectional survey studies, one clinical cross-over study, and one case report. RESULTS Animal studies revealed that cannabinoid receptor expression in the cochlear nucleus varied with tinnitus symptomatology and the use of cannabinoid agents either increased or had no effect on tinnitus-related behavior. Survey studies yielded conflicting results between cannabis use and tinnitus in the general population. Clinical data is largely lacking, although a small cohort study showed a dose-dependent relationship between tetrahydrocannabinol consumption and frequency of tinnitus episodes in patients receiving treatment for cancer. CONCLUSION While animal studies have revealed that cannabinoid receptors likely have a role in modulating auditory signaling, there is no compelling data either from animal or human studies for the use of cannabinoids to alleviate tinnitus. Further research is necessary to elucidate their precise role to guide development of therapeutic interventions. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Vishal Narwani
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
| | | | - Keerthana Nalamada
- Department of NeurologyUniversity of ConnecticutFarmingtonConnecticutUSA
| | - R. Peter Manes
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
| | - Douglas M. Hildrew
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
9
|
Domarecka E, Olze H, Szczepek AJ. Auditory Brainstem Responses (ABR) of Rats during Experimentally Induced Tinnitus: Literature Review. Brain Sci 2020; 10:brainsci10120901. [PMID: 33255266 PMCID: PMC7760291 DOI: 10.3390/brainsci10120901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tinnitus is a subjective phantom sound perceived only by the affected person and a symptom of various auditory and non-auditory conditions. The majority of methods used in clinical and basic research for tinnitus diagnosis are subjective. To better understand tinnitus-associated changes in the auditory system, an objective technique measuring auditory sensitivity-the auditory brainstem responses (ABR)-has been suggested. Therefore, the present review aimed to summarize ABR's features in a rat model during experimentally induced tinnitus. PubMed, Web of Science, Science Direct, and Scopus databanks were searched using Medical Subject Heading (MeSH) terms: auditory brainstem response, tinnitus, rat. The search identified 344 articles, and 36 of them were selected for the full-text analyses. The experimental protocols and results were evaluated, and the gained knowledge was synthesized. A high level of heterogeneity between the studies was found regarding all assessed areas. The most consistent finding of all studies was a reduction in the ABR wave I amplitude following exposure to noise and salicylate. Simultaneously, animals with salicylate-induced but not noise-induced tinnitus had an increased amplitude of wave IV. Furthermore, the present study identified a need to develop a consensus experimental ABR protocol applied in future tinnitus studies using the rat model.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence:
| |
Collapse
|
10
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
11
|
Winne J, Boerner BC, Malfatti T, Brisa E, Doerl J, Nogueira I, Leão KE, Leão RN. Anxiety-like behavior induced by salicylate depends on age and can be prevented by a single dose of 5-MeO-DMT. Exp Neurol 2020; 326:113175. [PMID: 31923390 DOI: 10.1016/j.expneurol.2020.113175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
Salicylate intoxication is a cause of tinnitus and comorbidly associated with anxiety in humans. In a previous work, we showed that salicylate induces anxiety-like behavior and hippocampal type 2 theta oscillations (theta2) in mice. Here we investigate if the anxiogenic effect of salicylate is dependent on age and previous tinnitus experience. We also tested whether a single dose of DMT can prevent this effect. Using microwire electrode arrays, we recorded local field potential in young (4-5- month-old) and old (11-13-month-old) mice to study the electrophysiological effect of tinnitus in the ventral hippocampus (vHipp) and medial prefrontal cortex (mPFC) in an open field arena and elevated plus maze 1h after salicylate (300mg/kg) injection. We found that anxiety-like behavior and increase in theta2 oscillations (4-6 Hz), following salicylate pre-treatment, only occurs in young (normal hearing) mice. We also show that theta2 and slow gamma oscillations increase in the vHipp and mPFC in a complementary manner during anxiety tests in the presence of salicylate. Finally, we show that pre-treating mice with a single dose of the hallucinogenic 5-MeO-DMT prevents anxiety-like behavior and the increase in theta2 and slow gamma oscillations after salicylate injection in normal hearing young mice. This work further support the hypothesis that anxiety-like behavior after salicylate injection is triggered by tinnitus and require normal hearing. Moreover, our results show that hallucinogenic compounds can be effective in treating tinnitus-related anxiety.
Collapse
Affiliation(s)
- Jessica Winne
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil; Developmental Genetics Unit, Department of Neuroscience, Uppsala University, Husarg 3, Uppsala 75234, Sweden
| | - Barbara C Boerner
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Thawann Malfatti
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Elis Brisa
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Jhulimar Doerl
- Neural Development and Environment Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal, RN, Brazil
| | - Ingrid Nogueira
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Katarina E Leão
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal/RN, Brazil; Neural Development and Environment Lab, Brain Institute, Federal University of the Rio Grande do Norte, Av. Nascimento de Castro 2155, 59560-450 Natal, RN, Brazil.
| |
Collapse
|
12
|
Zhang J. Blast-induced tinnitus: Animal models. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3811. [PMID: 31795642 DOI: 10.1121/1.5132551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blast-induced tinnitus is a prevalent problem among military personnel and veterans, as blast-related trauma damages the vulnerable microstructures within the cochlea, impacts auditory and non-auditory brain structures, and causes tinnitus and other disorders. Thus far, there is no effective treatment of blast-induced tinnitus due to an incomplete understanding of its underlying mechanisms, necessitating development of reliable animal models. This article focuses on recent animal studies using behavioral, electrophysiological, imaging, and pharmacological tools. The mechanisms underlying blast-induced tinnitus are largely similar to those underlying noise-induced tinnitus: increased spontaneous firing rates, bursting, and neurosynchrony, Mn++ accumulation, and elevated excitatory synaptic transmission. The differences mainly lie in the data variability and time course. Noise trauma-induced tinnitus mainly originates from direct peripheral deafferentation at the cochlea, and its etiology subsequently develops along the ascending auditory pathways. Blast trauma-induced tinnitus, on the other hand, results from simultaneous impact on both the peripheral and central auditory systems, and the resultant maladaptive neuroplasticity may also be related to the additional traumatic brain injury. Consequently, the neural correlates of blast-induced tinnitus have different time courses and less uniform manifestations of its neural correlates.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, USA
| |
Collapse
|
13
|
Zhang L, Wu C, Martel DT, West M, Sutton MA, Shore SE. Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus 2019; 29:669-682. [PMID: 30471164 PMCID: PMC7357289 DOI: 10.1002/hipo.23058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 01/12/2023]
Abstract
Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap-prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude-intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2-weeks following noise-exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20-60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus-specific changes were particularly prominent in hippocampal synapse-rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus-specific changes occurred in synapse-rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.
Collapse
Affiliation(s)
- Liqin Zhang
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - David T. Martel
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael West
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Sutton
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence to: Michael A. Sutton, Molecular and Behavioral Neuroscience Institute, 5067, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-2445; ; Susan E. Shore, Kresge Hearing Research Institute, 5434, Medical Science Building, 1100 W. Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: 734-647-2116;
| | - Susan E. Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence to: Michael A. Sutton, Molecular and Behavioral Neuroscience Institute, 5067, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-2445; ; Susan E. Shore, Kresge Hearing Research Institute, 5434, Medical Science Building, 1100 W. Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: 734-647-2116;
| |
Collapse
|
14
|
Ouyang J, Pace E, Lepczyk L, Kaufman M, Zhang J, Perrine SA, Zhang J. Blast-Induced Tinnitus and Elevated Central Auditory and Limbic Activity in Rats: A Manganese-Enhanced MRI and Behavioral Study. Sci Rep 2017; 7:4852. [PMID: 28687812 PMCID: PMC5501813 DOI: 10.1038/s41598-017-04941-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Collapse
Affiliation(s)
- Jessica Ouyang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Edward Pace
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Laura Lepczyk
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Michael Kaufman
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jessica Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jinsheng Zhang
- Department of Otolaryngology and Head and Neck Surgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts and Sciences, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Liu L, Shen P, He T, Chang Y, Shi L, Tao S, Li X, Xun Q, Guo X, Yu Z, Wang J. Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Sci Rep 2016; 6:20374. [PMID: 26842803 PMCID: PMC4740884 DOI: 10.1038/srep20374] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
Hearing loss has been associated with cognitive decline in the elderly and is considered to be an independent risk factor for dementia. One of the most common causes for acquired sensorineural hearing loss is exposure to excessive noise, which has been found to impair learning ability and cognitive performance in human subjects and animal models. Noise exposure has also been found to depress neurogenesis in the hippocampus. However, the effect is mainly attributed to the oxidant stress of noise on the cognitive brain. In the present study, young adult CBA/CAJ mice (between 1.5 and 2 months of age) were briefly exposed a high sound level to produce moderate-to-severe hearing loss. In both the blood and hippocampus, only transient oxidative stress was observed after noise exposure. However, a deficit in spatial learning/memory was revealed 3 months after noise exposure. Moreover, the deficit was correlated with the degree of hearing loss and was associated with a decrease in neurogenesis in the hippocampus. We believe that the observed effects were likely due to hearing loss rather than the initial oxidant stress, which only lasted for a short period of time.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Pei Shen
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Tingting He
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Ying Chang
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Lijuan Shi
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Shan Tao
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Xiaowei Li
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Qingying Xun
- Department of Physiology, Medical College of Southeast University, Nanjing China
| | - Xiaojing Guo
- Department of Physiology, Medical College of Southeast University, Nanjing China.,Children's medical center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Yu
- School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| | - Jian Wang
- Department of Physiology, Medical College of Southeast University, Nanjing China.,School of Human Communication Disorders, Dalhousie University, Halifax, Canada
| |
Collapse
|
16
|
Zhang J, Luo H, Pace E, Li L, Liu B. Psychophysical and neural correlates of noised-induced tinnitus in animals: Intra- and inter-auditory and non-auditory brain structure studies. Hear Res 2015; 334:7-19. [PMID: 26299842 DOI: 10.1016/j.heares.2015.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/04/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
Tinnitus, a ringing in the ear or head without an external sound source, is a prevalent health problem. It is often associated with a number of limbic-associated disorders such as anxiety, sleep disturbance, and emotional distress. Thus, to investigate tinnitus, it is important to consider both auditory and non-auditory brain structures. This paper summarizes the psychophysical, immunocytochemical and electrophysiological evidence found in rats or hamsters with behavioral evidence of tinnitus. Behaviorally, we tested for tinnitus using a conditioned suppression/avoidance paradigm, gap detection acoustic reflex behavioral paradigm, and our newly developed conditioned licking suppression paradigm. Our new tinnitus behavioral paradigm requires relatively short baseline training, examines frequency specification of tinnitus perception, and achieves sensitive tinnitus testing at an individual level. To test for tinnitus-related anxiety and cognitive impairment, we used the elevated plus maze and Morris water maze. Our results showed that not all animals with tinnitus demonstrate anxiety and cognitive impairment. Immunocytochemically, we found that animals with tinnitus manifested increased Fos-like immunoreactivity (FLI) in both auditory and non-auditory structures. The manner in which FLI appeared suggests that lower brainstem structures may be involved in acute tinnitus whereas the midbrain and cortex are involved in more chronic tinnitus. Meanwhile, animals with tinnitus also manifested increased FLI in non-auditory brain structures that are involved in autonomic reactions, stress, arousal and attention. Electrophysiologically, we found that rats with tinnitus developed increased spontaneous firing in the auditory cortex (AC) and amygdala (AMG), as well as intra- and inter-AC and AMG neurosynchrony, which demonstrate that tinnitus may be actively produced and maintained by the interactions between the AC and AMG.
Collapse
Affiliation(s)
- Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA; Department of Communication Sciences & Disorders, Wayne State University, College of Liberal Arts & Sciences, 60 Farnsworth St., Detroit, MI 48202, USA.
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| | - Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| | - Liang Li
- Department of Psychology, McGovern Institute for Brain Research at PKU, Key Laboratory on Machine Perception (Ministry of Education), Peking University, Beijing, 100080, China
| | - Bin Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, School of Medicine, 4201 Saint Antoine, Detroit, MI 48201, USA
| |
Collapse
|
17
|
Zheng Y, Smithies H, Aitken P, Gliddon C, Stiles L, Darlington CL, Smith PF. Cell proliferation in the cochlear nucleus following acoustic trauma in rat. Neuroscience 2015; 303:524-34. [PMID: 26192094 DOI: 10.1016/j.neuroscience.2015.07.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 01/21/2023]
Abstract
Our previous studies have suggested that surgical lesions of the rat cochlea induce cell proliferation in the cochlear nucleus (CN) that may be related to neurogenesis. The aim of the present study was to further investigate the nature of cell proliferation in the CN, following acoustic trauma that has previously been shown to induce tinnitus in rats. Rats were subjected either to a unilateral acoustic trauma (16-kHz pure tone, 115dB for 1h under anesthesia) or a sham procedure. Bromodeoxyuridine (BrdU) immunohistochemistry was used to measure cell proliferation and newborn cell survival; an antibody to interleukin-6 was used to investigate inflammatory responses; and double immunolabeling for BrdU and Ki-67, BrdU and CD-11b, and BrdU and doublecortin (DCX), was used to investigate the origin of the proliferating cells. There was a time-dependent increase in the number of BrdU(+ve) cells in the CN following acoustic trauma; however, the number of BrdU(+ve) cells that survived was comparable to that of control animals at 4 weeks post-trauma. Cell proliferation was unlikely to be due to proliferating inflammatory cells as a result of a trauma-induced inflammatory response as the IL-6 expression level was comparable between sham and exposed groups. Immunolabeling revealed the BrdU(+ve) cells to co-express Ki-67 and DCX, but not CD-11b. However, there was no difference in DCX expression between sham and exposed animals. The results suggest that DCX-expressing cells in the CN may proliferate in response to acoustic trauma; however, the proportion of cells proliferating and the survival rate of the newborn cells may not support functional neurogenesis in the CN.
Collapse
Affiliation(s)
- Y Zheng
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - H Smithies
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - P Aitken
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - C Gliddon
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - L Stiles
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - C L Darlington
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - P F Smith
- Dept. of Pharmacology and Toxicology, School of Medical Sciences and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
18
|
Zheng Y, McPherson K, Reid P, Smith PF. The anti-inflammatory selective melanocortin receptor subtype 4 agonist, RO27-3225, fails to prevent acoustic trauma-induced tinnitus in rats. Eur J Pharmacol 2015; 761:206-10. [PMID: 25977231 DOI: 10.1016/j.ejphar.2015.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
Abstract
In preliminary studies we have observed a massive microglial activation in the cochlear nucleus following acoustic trauma-induced tinnitus in rats, which suggests that inflammatory responses within the central auditory system may be involved in the development and maintenance of tinnitus. Recently, the anti-inflammatory properties of melanocortins (MCs), have gained increasing interest in pharmacology due to their promising therapeutic potential in the treatment of inflammatory-mediated diseases. Among the five subtypes of the MC receptor, MC3 and MC4 receptors are the predominant brain receptors and are thought to play an important role in brain inflammation and neuroprotection. Importantly, MC4 receptors have been found in the mouse and rat central auditory systems. In this study we investigated whether the MC4 receptor agonist, RO27-3225, injected s.c at a dose of 90 or 180µg/kg, 30min before acoustic trauma and then every 12h for 10 days, could prevent the development of acoustic trauma-induced tinnitus in rats, using a conditioned behavioural suppression model. Although evidence of tinnitus developed in the exposed-vehicle group compared to the sham-vehicle group (P≤0.03), in response to a 32kHz tone, there were no significant drug effects from treatment with RO27-3225, indicating that it did not confer any protection against the development of tinnitus in this animal model. This result suggests that the anti-inflammatory effects of MC4 receptor agonists may not be sufficient to prevent tinnitus.
Collapse
Affiliation(s)
- Yiwen Zheng
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| | - Kate McPherson
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Peter Reid
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Paul F Smith
- Dept. of Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Zheng Y, Reid P, Smith PF. Cannabinoid CB1 Receptor Agonists Do Not Decrease, but may Increase Acoustic Trauma-Induced Tinnitus in Rats. Front Neurol 2015; 6:60. [PMID: 25852639 PMCID: PMC4364172 DOI: 10.3389/fneur.2015.00060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
Tinnitus has been suggested to arise from neuronal hyperactivity in auditory areas of the brain, and anti-epileptic drugs are sometimes used to provide relief from tinnitus. Recently, the anti-epileptic properties of the cannabinoid drugs have gained increasing interest; however, the use of cannabinoids as a form of treatment for tinnitus is controversial. In this study, we tested whether a combination of delta-9-tetrahydrocannabinol (delta-9-THC) and cannabidiol (CBD), delivered in a 1:1 ratio, could affect tinnitus perception in a rat model of acoustic trauma-induced tinnitus. Following sham treatment or acoustic trauma, the animals were divided into the following groups: (1) sham (i.e., no acoustic trauma) with vehicle treatment; (2) sham with drug treatment (i.e., delta-9-THC + CBD); (3) acoustic trauma-exposed exhibiting tinnitus, with drug treatment; and (4) acoustic trauma-exposed exhibiting no tinnitus, with drug treatment. The animals received either the vehicle or the cannabinoid drugs every day, 30 min before the tinnitus behavioral testing. Acoustic trauma caused a significant increase in the auditory brainstem response (ABR) thresholds in the exposed animals, indicating hearing loss; however, there was a partial recovery over 6 months. Acoustic trauma did not always result in tinnitus; however, among those that did exhibit tinnitus, some of them had tinnitus at multiple frequencies while others had it only at a single frequency. The cannabinoids significantly increased the number of tinnitus animals in the exposed-tinnitus group, but not in the sham group. The results suggest that cannabinoids may promote the development of tinnitus, especially when there is pre-existing hearing damage.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago , Dunedin , New Zealand ; Brain Health Research Centre, School of Medical Sciences, University of Otago , Dunedin , New Zealand
| | - Peter Reid
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago , Dunedin , New Zealand ; Brain Health Research Centre, School of Medical Sciences, University of Otago , Dunedin , New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago , Dunedin , New Zealand ; Brain Health Research Centre, School of Medical Sciences, University of Otago , Dunedin , New Zealand
| |
Collapse
|
20
|
Smith P, Darlington C, Zheng Y. The Effects of Complete Vestibular Deafferentation on Spatial Memory and the Hippocampus in the Rat: The Dunedin Experience. Multisens Res 2015; 28:461-85. [DOI: 10.1163/22134808-00002469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our studies conducted over the last 14 years have demonstrated that a complete bilateral vestibular deafferentation (BVD) in rats results in spatial memory deficits in a variety of behavioural tasks, such as the radial arm maze, the foraging task and the spatial T maze, as well as deficits in other tasks such as the five-choice serial reaction time task (5-CSRT task) and object recognition memory task. These deficits persist long after the BVD, and are not simply attributable to ataxia, anxiety, hearing loss or hyperactivity. In tasks such as the foraging task, the spatial memory deficits are evident in darkness when vision is not required to perform the task. The deficits in the radial arm maze, the foraging task and the spatial T maze, in particular, suggest hippocampal dysfunction following BVD, and this is supported by the finding that both hippocampal place cells and theta rhythm are dysfunctional in BVD rats. Now that it is clear that the hippocampus is adversely affected by BVD, the next challenge is to determine what vestibular information is transmitted to it and how that information is used by the hippocampus and the other brain structures with which it interacts.
Collapse
Affiliation(s)
- Paul F. Smith
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Cynthia L. Darlington
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
21
|
The effects of acute stress-induced sleep disturbance on acoustic trauma-induced tinnitus in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:724195. [PMID: 25162023 PMCID: PMC4137606 DOI: 10.1155/2014/724195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/03/2014] [Indexed: 11/18/2022]
Abstract
Chronic tinnitus is a debilitating condition and often accompanied by anxiety, depression, and sleep disturbance. It has been suggested that sleep disturbance, such as insomnia, may be a risk factor/predictor for tinnitus-related distress and the two conditions may share common neurobiological mechanisms. This study investigated whether acute stress-induced sleep disturbance could increase the susceptibility to acoustic trauma-induced tinnitus in rats. The animals were exposed to unilateral acoustic trauma 24 h before sleep disturbance being induced using the cage exchange method. Tinnitus perception was assessed behaviourally using a conditioned lick suppression paradigm 3 weeks after the acoustic trauma. Changes in the orexin system in the hypothalamus, which plays an important role in maintaining long-lasting arousal, were also examined using immunohistochemistry. Cage exchange resulted in a significant reduction in the number of sleep episodes and acoustic trauma-induced tinnitus with acoustic features similar to a 32 kHz tone at 100 dB. However, sleep disturbance did not exacerbate the perception of tinnitus in rats. Neither tinnitus alone nor tinnitus plus sleep disturbance altered the number of orexin-expressing neurons. The results suggest that acute sleep disturbance does not cause long-term changes in the number of orexin neurons and does not change the perception of tinnitus induced by acoustic trauma in rats.
Collapse
|
22
|
Zheng Y, Geddes L, Sato G, Stiles L, Darlington CL, Smith PF. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory. Hippocampus 2014; 24:541-52. [DOI: 10.1002/hipo.22247] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology; School of Medical Sciences; and the Brain Health Research Centre; University of Otago; New Zealand
| | - Lisa Geddes
- Department of Pharmacology and Toxicology; School of Medical Sciences; and the Brain Health Research Centre; University of Otago; New Zealand
| | - Go Sato
- Department of Pharmacology and Toxicology; School of Medical Sciences; and the Brain Health Research Centre; University of Otago; New Zealand
- Department of Otolaryngology; University of Tokushima; Tokushima Japan
| | - Lucy Stiles
- Department of Pharmacology and Toxicology; School of Medical Sciences; and the Brain Health Research Centre; University of Otago; New Zealand
| | - Cynthia L. Darlington
- Department of Pharmacology and Toxicology; School of Medical Sciences; and the Brain Health Research Centre; University of Otago; New Zealand
| | - Paul F. Smith
- Department of Pharmacology and Toxicology; School of Medical Sciences; and the Brain Health Research Centre; University of Otago; New Zealand
| |
Collapse
|
23
|
Desland FA, Afzal A, Warraich Z, Mocco J. Manual versus Automated Rodent Behavioral Assessment: Comparing Efficacy and Ease of Bederson and Garcia Neurological Deficit Scores to an Open Field Video-Tracking System. J Cent Nerv Syst Dis 2014; 6:7-14. [PMID: 24526841 PMCID: PMC3921024 DOI: 10.4137/jcnsd.s13194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/03/2013] [Accepted: 12/14/2013] [Indexed: 11/05/2022] Open
Abstract
Animal models of stroke have been crucial in advancing our understanding of the pathophysiology of cerebral ischemia. Currently, the standards for determining neurological deficit in rodents are the Bederson and Garcia scales, manual assessments scoring animals based on parameters ranked on a narrow scale of severity. Automated open field analysis of a live-video tracking system that analyzes animal behavior may provide a more sensitive test. Results obtained from the manual Bederson and Garcia scales did not show significant differences between pre- and post-stroke animals in a small cohort. When using the same cohort, however, post-stroke data obtained from automated open field analysis showed significant differences in several parameters. Furthermore, large cohort analysis also demonstrated increased sensitivity with automated open field analysis versus the Bederson and Garcia scales. These early data indicate use of automated open field analysis software may provide a more sensitive assessment when compared to traditional Bederson and Garcia scales.
Collapse
Affiliation(s)
- Fiona A Desland
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Aqeela Afzal
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - Zuha Warraich
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| | - J Mocco
- Department of Neurological Surgery, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
24
|
Zheng Y, McPherson K, Smith PF. Effects of early and late treatment with L-baclofen on the development and maintenance of tinnitus caused by acoustic trauma in rats. Neuroscience 2013; 258:410-21. [PMID: 24291770 DOI: 10.1016/j.neuroscience.2013.11.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 10/26/2022]
Abstract
Subjective tinnitus is a chronic neurological disorder in which phantom sounds are perceived. Recent evidence supports the hypothesis that tinnitus is related to neuronal hyperactivity in auditory brain regions, and consequently drugs that increase GABAergic neurotransmission in the CNS, such as the GABA(B) receptor agonist L-baclofen, may be effective as a treatment. The aim of this study was to investigate the effects of early (5 mg/kg s.c., 30 min and then every 24 h for 5 days following noise exposure) and late treatment (3 mg/kg/day s.c. for 4.5 weeks starting at 17.5 weeks following noise exposure) with l-baclofen on the psychophysical attributes of tinnitus in a conditioned lick suppression model following acoustic trauma in rats. Acoustic trauma (a 16-kHz, 115-dB pure tone presented unilaterally for 1h) resulted in a significant decrease in the suppression ratio (SR) compared to sham controls in response to 20-kHz tones at 2, 10 and 17.5 weeks post-exposure (P ≤ 0.009, P ≤ 0.02 and P ≤ 0.03, respectively). However, l-baclofen failed to prevent the development of tinnitus when administered during the first 5 days following the acoustic trauma and also failed to reverse it when treatment was carried out every day for 4.5 weeks. We also found that treatment with L-baclofen did not alter the expression of the GABA(B)-R2 subunit in the cochlear nucleus of noise-exposed animals.
Collapse
Affiliation(s)
- Y Zheng
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - K McPherson
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - P F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
25
|
Smith PF, Zheng Y. From ear to uncertainty: vestibular contributions to cognitive function. Front Integr Neurosci 2013; 7:84. [PMID: 24324413 PMCID: PMC3840327 DOI: 10.3389/fnint.2013.00084] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022] Open
Abstract
In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function.
Collapse
Affiliation(s)
- Paul F. Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | | |
Collapse
|
26
|
Pace E, Zhang J. Noise-induced tinnitus using individualized gap detection analysis and its relationship with hyperacusis, anxiety, and spatial cognition. PLoS One 2013; 8:e75011. [PMID: 24069375 PMCID: PMC3771890 DOI: 10.1371/journal.pone.0075011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023] Open
Abstract
Tinnitus has a complex etiology that involves auditory and non-auditory factors and may be accompanied by hyperacusis, anxiety and cognitive changes. Thus far, investigations of the interrelationship between tinnitus and auditory and non-auditory impairment have yielded conflicting results. To further address this issue, we noise exposed rats and assessed them for tinnitus using a gap detection behavioral paradigm combined with statistically-driven analysis to diagnose tinnitus in individual rats. We also tested rats for hearing detection, responsivity, and loss using prepulse inhibition and auditory brainstem response, and for spatial cognition and anxiety using Morris water maze and elevated plus maze. We found that our tinnitus diagnosis method reliably separated noise-exposed rats into tinnitus(+) and tinnitus(−) groups and detected no evidence of tinnitus in tinnitus(−) and control rats. In addition, the tinnitus(+) group demonstrated enhanced startle amplitude, indicating hyperacusis-like behavior. Despite these results, neither tinnitus, hyperacusis nor hearing loss yielded any significant effects on spatial learning and memory or anxiety, though a majority of rats with the highest anxiety levels had tinnitus. These findings showed that we were able to develop a clinically relevant tinnitus(+) group and that our diagnosis method is sound. At the same time, like clinical studies, we found that tinnitus does not always result in cognitive-emotional dysfunction, although tinnitus may predispose subjects to certain impairment like anxiety. Other behavioral assessments may be needed to further define the relationship between tinnitus and anxiety, cognitive deficits, and other impairments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
27
|
Zheng Y, McNamara E, Stiles L, Darlington CL, Smith PF. Evidence that Memantine Reduces Chronic Tinnitus Caused by Acoustic Trauma in Rats. Front Neurol 2012; 3:127. [PMID: 23015804 PMCID: PMC3449490 DOI: 10.3389/fneur.2012.00127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/25/2012] [Indexed: 01/24/2023] Open
Abstract
Subjective tinnitus is a chronic neurological disorder in which phantom sounds are perceived. Increasing evidence suggests that tinnitus is caused by neuronal hyperactivity in auditory brain regions, either due to a decrease in synaptic inhibition or an increase in synaptic excitation. One drug investigated for the treatment of tinnitus has been the uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, memantine, although the evidence relating to it has been unconvincing to date. We re-investigated the effects of memantine on the behavioral manifestations of tinnitus induced by acoustic trauma (a 16-kHz, 110-dB pure tone presented unilaterally for 1 h) in rats. We used a conditioned lick suppression model in which lick suppression was associated with the perception of high frequency sound resembling tinnitus and a suppression ratio (SR) was calculated by comparing the number of licks in the 15-s period preceding the stimulus presentation (A) and the 15-s period during the stimulus presentation (B), i.e., SR = B/(A + B). Acoustic trauma resulted in a significant increase in the auditory brainstem-evoked response (ABR) threshold in the affected ear (P ≤ 0.0001) and a decrease in the SR compared to sham controls in response to 32 kHz tones in five out of eight acoustic trauma-exposed animals. A 5-mg/kg dose of memantine significantly reduced the proportion of these animals which exhibited tinnitus-like behavior (2/5 compared to 5/5; P ≤ 0.006), suggesting that the drug reduced tinnitus. These results suggest that memantine may reduce tinnitus caused by acoustic trauma.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Medical Sciences, University of Otago Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
28
|
Zheng Y, Vagal S, McNamara E, Darlington CL, Smith PF. A dose-response analysis of the effects of L-baclofen on chronic tinnitus caused by acoustic trauma in rats. Neuropharmacology 2011; 62:940-6. [PMID: 22005094 DOI: 10.1016/j.neuropharm.2011.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/19/2022]
Abstract
Subjective tinnitus is a chronic neurological disorder in which phantom sounds are perceived. Drugs that increase GABAergic neurotransmission in the CNS are sometimes used as a treatment. One such drug is the GABA(B) receptor agonist L-baclofen. The aim of this study was to investigate the effects of L-baclofen on the psychophysical attributes of tinnitus in rats.The effects of 1, 3 or 5 mg/kg L-baclofen (s.c.) on the psychophysical attributes of tinnitus were investigated using a conditioned lick suppression model, following acoustic trauma (a 16 kHz, 110 dB pure tone presented unilaterally for 1 h) in rats. In pre-drug testing, acoustic trauma resulted in a significant increase in the auditory brainstem-evoked response (ABR) threshold in the affected ear (P < 0.008) and a significant decrease in the suppression ratio (SR) compared to sham controls in response to the 20 kHz tones, but not the broadband noise or the 10 kHz tones (P < 0.002). The 3 and 5 mg/kg doses of L-baclofen significantly reversed the frequency-specific decrease in the SR in the acoustic trauma group, indicating that the drug reduced tinnitus. Following washout from the 3 mg/kg dose, but not the 5 mg/kg dose, the significant decrease in the SR for the acoustic trauma group returned, suggesting a return of the tinnitus. These results suggest that L-baclofen should be reconsidered as a drug treatment for tinnitus. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, P.O. Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
29
|
Zheng Y, Hamilton E, McNamara E, Smith P, Darlington C. The effects of chronic tinnitus caused by acoustic trauma on social behaviour and anxiety in rats. Neuroscience 2011; 193:143-53. [DOI: 10.1016/j.neuroscience.2011.07.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 01/14/2023]
|