1
|
Tapias V, González-Andrés P, Peña LF, Barbero A, Núñez L, Villalobos C. Therapeutic Potential of Heterocyclic Compounds Targeting Mitochondrial Calcium Homeostasis and Signaling in Alzheimer's Disease and Parkinson's Disease. Antioxidants (Basel) 2023; 12:1282. [PMID: 37372013 DOI: 10.3390/antiox12061282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the elderly. The key histopathological features of these diseases are the presence of abnormal protein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is extensive evidence indicating that excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with a depleted antioxidant system, mitochondrial dysfunction, and intracellular Ca2+ dyshomeostasis, plays a vital role in the pathophysiology of these neurological disorders. Due to an improvement in life expectancy, the incidence of age-related neurodegenerative diseases has significantly increased. However, there is no effective protective treatment or therapy available but rather only very limited palliative treatment. Therefore, there is an urgent need for the development of preventive strategies and disease-modifying therapies to treat AD/PD. Because dysregulated Ca2+ metabolism drives oxidative damage and neuropathology in these diseases, the identification or development of compounds capable of restoring Ca2+ homeostasis and signaling may provide a neuroprotective avenue for the treatment of neurodegenerative diseases. In addition, a set of strategies to control mitochondrial Ca2+ homeostasis and signaling has been reported, including decreased Ca2+ uptake through voltage-operated Ca2+ channels (VOCCs). In this article, we review the modulatory effects of several heterocyclic compounds on Ca2+ homeostasis and trafficking, as well as their ability to regulate compromised mitochondrial function and associated free-radical production during the onset and progression of AD or PD. This comprehensive review also describes the chemical synthesis of the heterocycles and summarizes the clinical trial outcomes.
Collapse
Affiliation(s)
- Victor Tapias
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paula González-Andrés
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura F Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Asunción Barbero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
2
|
Stockburger C, Eckert S, Eckert GP, Friedland K, Müller WE. Mitochondrial Function, Dynamics, and Permeability Transition: A Complex Love Triangle as A Possible Target for the Treatment of Brain Aging and Alzheimer's Disease. J Alzheimers Dis 2019; 64:S455-S467. [PMID: 29504539 DOI: 10.3233/jad-179915] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Because of the failure of all amyloid-β directed treatment strategies for Alzheimer's disease (AD), the concept of mitochondrial dysfunction as a major pathomechanism of the cognitive decline in aging and AD has received substantial support. Accordingly, improving mitochondrial function as an alternative strategy for new drug development became of increasing interest and many different compounds have been identified which improve mitochondrial function in preclinical in vitro and in vivo experiments. However, very few if any have been investigated in clinical trials, representing a major drawback of the mitochondria directed drug development. To overcome these problems, we used a top-down approach by investigating several older antidementia drugs with clinical evidence of therapeutic efficacy. These include EGb761® (standardized ginkgo biloba extract), piracetam, and Dimebon. All improve experimentally many aspects of mitochondrial dysfunction including mitochondrial dynamics and also improve cognition and impaired neuronal plasticity, the functionally most relevant consequences of mitochondrial dysfunction. All partially inhibit opening events of the mitochondrial permeability transition pore (mPTP) which previously has mainly been discussed as a mechanism relevant for the induction of apoptosis. However, as more recent work suggests the mPTP as a master regulator of many mitochondrial functions, our data suggest the mPTP as a possible relevant drug target within the love triangle between mPTP regulation, mitochondrial dynamics, and mitochondrial function including regulation of neuronal plasticity. Drugs interfering with mPTP function will improve not only mitochondrial impairment in aging and AD but also will have beneficial effects on impaired neuronal plasticity, the pathomechanism which correlates best with functional deficits (cognition, behavior) in aging and AD.
Collapse
Affiliation(s)
- Carola Stockburger
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Schamim Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| | - Gunter P Eckert
- Department of Nutritional Sciences, University of Giessen, Giessen, Germany
| | - Kristina Friedland
- Department of Molecular and Clinical Pharmacy, University of Erlangen, Erlangen, Germany
| | - Walter E Müller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, Frankfurt/Main, Germany
| |
Collapse
|
3
|
Eckert SH, Gaca J, Kolesova N, Friedland K, Eckert GP, Muller WE. Mitochondrial Pharmacology of Dimebon (Latrepirdine) Calls for a New Look at its Possible Therapeutic Potential in Alzheimer's Disease. Aging Dis 2018; 9:729-744. [PMID: 30090660 PMCID: PMC6065284 DOI: 10.14336/ad.2017.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Dimebon (latrepirdine), an old antihistaminic drug, showed divergent results in two large clinical trials in Alzheimer disease (AD), which according to our review might be related to the specific pharmacological properties of the drug and the different patient populations included in both studies. Out of the many pharmacological effects of Dimebon, improvement of impaired mitochondrial function seeems to be most relevant for the substantial effects on cognition and behaviour reported in one of the studies, as these effects are already present at the low concentrations of dimebon measured in plasma and tissues of patients and experimental animals. Since impaired mitochondrial function seems to be the major driving force for the progression of the clinical symptoms and since most of the clinical benefits of dimebon originate from an effect on the symptomatic deterioration, mitochondrial improvement can also explain the lack of efficacy of this drug in another clinical trial where symptoms of the patiets remained stable for the time of the study. Accordingly, it seems worthwhile to reevaluate the clinical data to proof that clinical response is correlated with high levels of Neuropsychiatric Symptoms as these show a good relationship to the individual speed of symptomatic decline in AD patients related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Schamim H Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Janett Gaca
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Nathalie Kolesova
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Kristina Friedland
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Deparment of Molecular and Clinical Pharmacy, University of Erlangen, D-91058 Erlangen, Germany
| | - Gunter P Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Department of Nutricional Sciences, University of Giessen, D-35392 Giessen, Germany
| | - Walter E Muller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| |
Collapse
|
4
|
Ustyugov A, Shevtsova E, Bachurin S. Novel Sites of Neuroprotective Action of Dimebon (Latrepirdine). Mol Neurobiol 2015; 52:970-8. [DOI: 10.1007/s12035-015-9249-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 12/14/2022]
|
5
|
Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer's and other neurodegenerative diseases. Transl Psychiatry 2013; 3:e332. [PMID: 24301650 PMCID: PMC4030329 DOI: 10.1038/tp.2013.97] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 02/06/2023] Open
Abstract
Latrepirdine (Dimebon(TM)) was originally marketed as a non-selective antihistamine in Russia. It was repurposed as an effective treatment for patients suffering from Alzheimer's disease (AD) and Huntington's disease (HD) following preliminary reports showing its neuroprotective functions and ability to enhance cognition in AD and HD models. However, latrepirdine failed to show efficacy in phase III trials in AD and HD patients following encouraging phase II trials. The failure of latrepirdine in the clinical trials has highlighted the importance of understanding the precise mechanism underlying its cognitive benefits in neurodegenerative diseases before clinical evaluation. Latrepirdine has shown to affect a number of cellular functions including multireceptor activity, mitochondrial function, calcium influx and intracellular catabolic pathways; however, it is unclear how these properties contribute to its clinical benefits. Here, we review the studies investigating latrepirdine in cellular and animal models to provide a complete evaluation of its mechanisms of action in the central nervous system. In addition, we review recent studies that demonstrate neuroprotective functions for latrepirdine-related class of molecules including the β-carbolines and aminopropyl carbazoles in AD, Parkinson's disease and amyotrophic lateral sclerosis models. Assessment of their neuroprotective effects and underlying biological functions presents obvious value for developing structural analogues of latrepirdine for dementia treatment.
Collapse
|
6
|
Weisová P, Alvarez SP, Kilbride SM, Anilkumar U, Baumann B, Jordán J, Bernas T, Huber HJ, Düssmann H, Prehn JHM. Latrepirdine is a potent activator of AMP-activated protein kinase and reduces neuronal excitability. Transl Psychiatry 2013; 3:e317. [PMID: 24150226 PMCID: PMC3818013 DOI: 10.1038/tp.2013.92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 12/18/2022] Open
Abstract
Latrepirdine/Dimebon is a small-molecule compound with attributed neurocognitive-enhancing activities, which has recently been tested in clinical trials for the treatment of Alzheimer's and Huntington's disease. Latrepirdine has been suggested to be a neuroprotective agent that increases mitochondrial function, however the molecular mechanisms underlying these activities have remained elusive. We here demonstrate that latrepirdine, at (sub)nanomolar concentrations (0.1 nM), activates the energy sensor AMP-activated protein kinase (AMPK). Treatment of primary neurons with latrepirdine increased intracellular ATP levels and glucose transporter 3 translocation to the plasma membrane. Latrepirdine also increased mitochondrial uptake of the voltage-sensitive probe TMRM. Gene silencing of AMPKα or its upstream kinases, LKB1 and CaMKKβ, inhibited this effect. However, studies using the plasma membrane potential indicator DisBAC2(3) demonstrated that the effects of latrepirdine on TMRM uptake were largely mediated by plasma membrane hyperpolarization, precluding a purely 'mitochondrial' mechanism of action. In line with a stabilizing effect of latrepirdine on plasma membrane potential, pretreatment with latrepirdine reduced spontaneous Ca(2+) oscillations as well as glutamate-induced Ca(2+) increases in primary neurons, and protected neurons against glutamate toxicity. In conclusion, our experiments demonstrate that latrepirdine is a potent activator of AMPK, and suggest that one of the main pharmacological activities of latrepirdine is a reduction in neuronal excitability.
Collapse
Affiliation(s)
- P Weisová
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - S P Alvarez
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Dpto Ciencias Médicas-Farmacología, Faculdad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - S M Kilbride
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - U Anilkumar
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B Baumann
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Jordán
- Dpto Ciencias Médicas-Farmacología, Faculdad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - T Bernas
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Institute of Experimental Biology PAS, Warsaw, Poland
| | - H J Huber
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Düssmann
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, Dublin, Ireland,Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 Saint Stephen's Green, Dublin, 2, Ireland. E-mail:
| |
Collapse
|
7
|
Welch A, Mingarelli M, Riedel G, Platt B. Mapping changes in mouse brain metabolism with PET/CT. J Nucl Med 2013; 54:1946-53. [PMID: 24009277 DOI: 10.2967/jnumed.113.121509] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Because preclinical imaging offers challenges and opportunities, we set out to investigate and optimize image processing techniques to measure changes in mouse brain metabolism with preclinical (18)F-FDG PET/CT. In particular, we considered the effects of scan length, image registration methods, image quantification methods, and smoothing during statistical parametric mapping (SPM). METHODS A cohort of 12 wild-type mice was scanned on 3 occasions at an average age of 6, 10, and 14 mo. The impact of the scan length (10, 20, 30, or 40 min) was determined, and images were registered to a template based on either the PET or the CT image. Analysis was performed using SPM or predefined regions of interest (ROIs). Data were expressed in units of standardized uptake value or percentage injected dose per gram of tissue for absolute values; images were also normalized to whole-brain activity. RESULTS Significant variability was observed in global brain (18)F-FDG uptake between animals. Normalizing images to the whole-brain activity significantly improved detection of regional changes in metabolism. Registration based on CT images provided greater power for detecting changes in metabolism than did registration based on PET images only. In line with an age-dependent decline in brain metabolism, both ROI and SPM-based methods revealed significant changes; SPM, however, was generally more sensitive and region-specific. For example, small clusters of voxels within an ROI differed significantly between ages even in the absence of significant changes in average uptake over the whole region. Finally, and contrary to expectation, we found little benefit from longer scan times yet a marked reduction in uptake from 45 to 85 min after injection and regional variations in the rate of washout. CONCLUSION With appropriate processing, preclinical PET/CT provides a highly sensitive method for reliable identification of metabolic changes in the mouse brain.
Collapse
Affiliation(s)
- Andy Welch
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen, United Kingdom; and
| | | | | | | |
Collapse
|
8
|
Abstract
Currently, all treatment of mitochondrial disorders is performed with dietary supplements or by off-label use of drugs approved for other indications. The present challenge is translation of our collective knowledge of the molecular details underlying the pathophysiology of mitochondrial disorders into safe and effective therapies that are approved by the regulatory authorities. Molecular details permit precise diagnoses, but homogeneity is gained at the expense of limiting numbers of subjects for clinical trials and of small markets from which to recoup the considerable expense of drug discovery and development. The Food and Drug Administration recognizes that trial designs suitable for common diseases are often not feasible for rare disorders. They have developed a number of programs to facilitate development of novel therapies for such rare diseases, without compromise of regulatory standards. With advances in technology, including the use of biomarkers, replacement therapies and sophisticated trial designs, both biotechnology firms and, increasingly, large integrated pharmaceutical companies, are taking advantage of the opportunities in rare disorders. Precise molecular delineation of pathophysiology and of responsive patients has led to success rates with rare diseases that are significantly greater than those for common disorders. It appears likely, but not yet proven, that this may now be the case for rare mitochondrial disorders as well.
Collapse
Affiliation(s)
- Orest Hurko
- Clinical Translational Medicine, 19 Sugar Knoll Drive, Suite 203, Devon, PA 19333-1558, USA.
| |
Collapse
|
9
|
Xiong G, Paul C, Todica A, Hacker M, Bartenstein P, Böning G. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies. Phys Med Biol 2012; 57:8041-59. [PMID: 23160517 DOI: 10.1088/0031-9155/57/23/8041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [(18)F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach.
Collapse
Affiliation(s)
- Guoming Xiong
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
10
|
Bales KR. The value and limitations of transgenic mouse models used in drug discovery for Alzheimer's disease: an update. Expert Opin Drug Discov 2012; 7:281-97. [DOI: 10.1517/17460441.2012.666234] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|