1
|
Lima MCDAM, Zazula MF, Martins LF, Carvalhal SR, Guimarães ATB, Fernandes LC, Naliwaiko K. How soon do metabolic alterations and oxidative distress precede the reduction of muscle mass and strength in Wistar rats in aging process? Biogerontology 2024; 25:491-506. [PMID: 38064115 DOI: 10.1007/s10522-023-10078-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/30/2023] [Indexed: 06/01/2024]
Abstract
Here we investigate metabolic changes, the antioxidant system and the accumulation of oxidative damage in muscles with different fiber types during the aging process in Wistar rats and try to map how sooner the changes occur. To do so, 30 male Wistar rats were submitted to behavioral evaluation to determine voluntary strength in the 11, 15, and 19 month old rats, measuring the energy metabolism, antioxidant system, oxidative damage and structure in the soleus and extensor digitorum longus muscles. We detected structural and metabolic changes in both muscles, especially in the EDL of 15 month old rats and in the soleus of 19 month old rats. In the 15 month old rats, there was a reduction in the cross-sectional area of the fibers, and a reduction in the proportion of type I fibers, accompanied by an increase in fiber density and the amount of type IIA fibers. This change in the fiber profile was followed by an increase in the activity of anaerobic metabolism enzymes, suggesting a reduction in the oxidative capacity of the muscle. In addition, there was an increase in the rate of lipid peroxidation, accompanied by a reduced antioxidant capacity. In the 19 month old rats, these disturbances got stronger. In summary, the present study demonstrated that before functional disturbances, there was an accumulation of oxidative damage and structural changes in the skeletal muscle beginning at 15 months old in the EDL and the soleus only in the biochemical parameters. Therefore, the metabolic alterations occurred at 15 months old and not before.
Collapse
Affiliation(s)
- Malu Cristina de Araújo Montoro Lima
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81530-900, Brazil
| | - Matheus Felipe Zazula
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81530-900, Brazil
| | - Luiz Fernando Martins
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81530-900, Brazil
| | - Stephanie Rubiane Carvalhal
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81530-900, Brazil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Investigações Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 1619, Jardim Universitário, Cascavel, PR, 85819-110, Brazil
| | - Luiz Claudio Fernandes
- Laboratório de Metabolismo Celular, Departamento de Fisiologia, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81530-900, Brazil
| | - Katya Naliwaiko
- Laboratório de Plasticidade Morfofuncional, Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Jardim das Américas, Curitiba, PR, 81530-900, Brazil.
| |
Collapse
|
2
|
Wang Q, Cui C, Zhang N, Lin W, Chai S, Chow SKH, Wong RMY, Hu Y, Law SW, Cheung WH. Effects of physical exercise on neuromuscular junction degeneration during ageing: A systematic review. J Orthop Translat 2024; 46:91-102. [PMID: 38817243 PMCID: PMC11137388 DOI: 10.1016/j.jot.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/01/2024] Open
Abstract
The neuromuscular junction (NMJ) is a specialized chemical synapse that converts neural impulses into muscle action. Age-associated NMJ degeneration, which involves nerve terminal and postsynaptic decline, denervation, and loss of motor units, significantly contributes to muscle weakness and dysfunction. Although physical training has been shown to make substantial modifications in NMJ of both young and aged animals, the results are often influenced by methodological variables in existing studies. Moreover, there is still lack of strong consensus on the specific effects of exercise on improving the morphology and function of the ageing NMJ. Consequently, the purpose of this study was to conduct a systematic review to elucidate the effects of exercise training on NMJ compartments in the elderly. We conducted a systematic review using PubMed, Embase, and Web of Science databases, employing relevant keywords. Two independent reviewers selected studies that detailed NMJ changes during exercise in ageing, written in English, and available in full text. In total, 20 papers were included. We examined the altered adaptation of the NMJ to exercise, focusing on presynaptic and postsynaptic structures and myofibers in older animals or humans. Our findings indicated that aged NMJs exhibited different adaptive responses to physical exercise compared to younger counterparts. Endurance training, compared with resistance and voluntary exercise regimens, was found to have a more pronounced effect on NMJ structural remodeling, particularly in fast twitch muscle fibers. Physical exercise was observed to promote the formation and maintenance of acetylcholine receptor (AChR) clusters by increasing the recombinant docking protein 7 (Dok7) expression and stabilizing Agrin and lipoprotein receptor-related protein 4 (LRP4). These insights suggest that research on exercise-related therapies could potentially attenuate the progression of neuromuscular degeneration. Translational potential of this article: This systematic review provides a detailed overview of the effects of different types of physical exercise on improving NMJ in the elderly, providing scientific support for the timely intervention of muscle degeneration in the elderly by physical exercise, and providing help for the development of new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sheung Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
3
|
Sharma B, Roy A, Sengupta T, Vishwakarma LC, Singh A, Netam R, Nag TC, Akhtar N, Mallick HN. Acute sleep deprivation induces synaptic remodeling at the soleus muscle neuromuscular junction in rats. Sleep 2023; 46:zsac229. [PMID: 36130235 DOI: 10.1093/sleep/zsac229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Indexed: 07/26/2023] Open
Abstract
Sleep is important for cognitive and physical performance. Sleep deprivation not only affects neural functions but also results in muscular fatigue. A good night's sleep reverses these functional derangements caused by sleep deprivation. The role of sleep in brain function has been extensively studied. However, its role in neuromuscular junction (NMJ) or skeletal muscle morphology is sparsely addressed although skeletal muscle atonia and suspended thermoregulation during rapid eye movement sleep possibly provide a conducive environment for the muscle to rest and repair; somewhat similar to slow-wave sleep for synaptic downscaling. In the present study, we have investigated the effect of 24 h sleep deprivation on the NMJ morphology and neurochemistry using electron microscopy and immunohistochemistry in the rat soleus muscle. Acute sleep deprivation altered synaptic ultra-structure viz. mitochondria, synaptic vesicle, synaptic proteins, basal lamina, and junctional folds needed for neuromuscular transmission. Further acute sleep deprivation showed the depletion of the neurotransmitter acetylcholine and the overactivity of its degrading enzyme acetylcholine esterase at the NMJ. The impact of sleep deprivation on synaptic homeostasis in the brain has been extensively reported recently. The present evidence from our studies shows new information on the role of sleep on the NMJ homeostasis and its functioning.
Collapse
Affiliation(s)
- Binney Sharma
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Avishek Roy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Trina Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Physiology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Anuraag Singh
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ritesh Netam
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurugram, Haryana, India
| | - Nasreen Akhtar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Hruda Nanda Mallick
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
- Department of Physiology, Faculty of Medicine & Health Sciences, SGT University, Gurugram, Haryana, India
| |
Collapse
|
4
|
Paul TA, Macpherson PC, Janetzke TL, Davis CS, Jackson MJ, McArdle A, Brooks SV. Older mice show decreased regeneration of neuromuscular junctions following lengthening contraction-induced injury. GeroScience 2023; 45:1899-1912. [PMID: 36952126 PMCID: PMC10400502 DOI: 10.1007/s11357-023-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Progressive muscle atrophy and loss of muscle strength associated with old age have been well documented. Although age-associated impairments in skeletal muscle regeneration following injury have been demonstrated, less is known about whether aging impacts the regenerative response of neuromuscular junctions (NMJ) following contraction-induced injury. Reduced ability of NMJs to regenerate could lead to increased numbers of denervated muscle fibers and therefore play a contributing role to age-related sarcopenia. To investigate the relationship between age and NMJ regeneration following injury, extensor digitorum longus (EDL) muscles of middle-aged (18-19 months) and old mice (27-28 months) were subjected to a protocol of lengthening contractions (LC) that resulted in an acute force deficit of ~55% as well as functional and histological evidence of a similar magnitude of injury 3 days post LCs that was not different between age groups. After 28 days, the architecture and innervation of the NMJs were evaluated. The numbers of fragmented endplates increased and of fully innervated NMJs decreased post-injury for the muscle of both middle-aged and old mice and for contralateral uninjured muscles of old compared with uninjured muscles of middle-aged controls. Thus, the diminished ability of the skeletal muscle of old mice to recover following injury may be due in part to an age-related decrease in the ability to regenerate NMJs in injured muscles. The impaired ability to regenerate NMJs may be a triggering factor for degenerative changes at the NMJ contributing to muscle fiber weakness and loss in old age.
Collapse
Affiliation(s)
- Thomas A. Paul
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, 2029 Biomedical Sciences Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Peter C. Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Tara L. Janetzke
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Carol S. Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Malcolm J. Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Life Course and Ageing Science, University of Liverpool, Liverpool, UK
| | - Anne McArdle
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Life Course and Ageing Science, University of Liverpool, Liverpool, UK
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, 2029 Biomedical Sciences Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
5
|
Franchi MV, Badiali F, Sarto F, Müller P, Müller NG, Rehfeld K, Monti E, Rankin D, Longo S, Lund J, Hökelmann A, Narici M. Neuromuscular Aging: A Case for the Neuroprotective Effects of Dancing. Gerontology 2023; 69:73-81. [PMID: 35605581 DOI: 10.1159/000524843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/16/2022] [Indexed: 01/06/2023] Open
Abstract
AIM We planned a cross-sectional investigation (study 1) and a longitudinal training intervention (study 2) to investigate whether recreational dancing affords greater neuroprotective effects against age-related neuromuscular junction (NMJ) degeneration compared to general fitness exercise training. METHODS In study 1, we recruited 19 older volunteers regularly practising dancing (older dancers [OD]) and 15 recreationally physically active older individuals (OA) and physical performance, muscle morphology, muscle function, and NMJ stability (from serum C-terminal agrin fragment [CAF] concentration) were assessed. In study 2, employing a longitudinal study design in a different cohort (composed of 37 older adults), we aimed to study whether a 6-month dancing intervention decreased CAF concentration compared to general fitness exercise training in older adults. RESULTS Our findings show that OD had a lower CAF concentration (suggesting an increased NMJ stability) compared to OA. This result was accompanied by superior functional performance despite no differences in muscle size. In study 2, we observed a reduction in CAF concentration only in the dancing group. CONCLUSION Overall, these findings suggest that dancing is an effective training modality to promote neuroprotection and increase muscle function in healthy older individuals.
Collapse
Affiliation(s)
- Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padua, Italy, .,MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK, .,CIR-MYO Myology Center, University of Padova, Padua, Italy,
| | - Francesca Badiali
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Patrick Müller
- German Center for Neurodegenrative Disseases (DZNE), Magdeburg, Germany.,Department of Internal Medicine, Division of Cardiology, Angiology and Intensive Medical Care, Otto-von-Guericke University, Magdeburg, Germany
| | - Notger G Müller
- German Center for Neurodegenrative Disseases (DZNE), Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Kathrin Rehfeld
- Institute for Sport Science, Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Monti
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK.,Department of Neurosciences, Imaging and Clinical Science, University of Chieti "G. D'annunzio", Chieti, Italy
| | - Debbie Rankin
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK
| | - Stefano Longo
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Jon Lund
- MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK
| | - Anita Hökelmann
- Department of Internal Medicine, Division of Cardiology, Angiology and Intensive Medical Care, Otto-von-Guericke University, Magdeburg, Germany
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,MRC-ARUK Centre for Musculoskeletal Ageing, University of Nottingham, Derby, UK.,CIR-MYO Myology Center, University of Padova, Padua, Italy
| |
Collapse
|
6
|
Jones EJ, Chiou S, Atherton PJ, Phillips BE, Piasecki M. Ageing and exercise-induced motor unit remodelling. J Physiol 2022; 600:1839-1849. [PMID: 35278221 PMCID: PMC9314090 DOI: 10.1113/jp281726] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
A motor unit (MU) comprises the neuron cell body, its corresponding axon and each of the muscle fibres it innervates. Many studies highlight age-related reductions in the number of MUs, yet the ability of a MU to undergo remodelling and to expand to rescue denervated muscle fibres is also a defining feature of MU plasticity. Remodelling of MUs involves two coordinated processes: (i) axonal sprouting and new branching growth from adjacent surviving neurons, and (ii) the formation of key structures around the neuromuscular junction to resume muscle-nerve communication. These processes rely on neurotrophins and coordinated signalling in muscle-nerve interactions. To date, several neurotrophins have attracted focus in animal models, including brain-derived neurotrophic factor and insulin-like growth factors I and II. Exercise in older age has demonstrated benefits in multiple physiological systems including skeletal muscle, yet evidence suggests this may also extend to peripheral MU remodelling. There is, however, a lack of research in humans due to methodological limitations which are easily surmountable in animal models. To improve mechanistic insight of the effects of exercise on MU remodelling with advancing age, future research should focus on combining methodological approaches to explore the in vivo physiological function of the MU alongside alterations of the localised molecular environment.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Shin‐Yi Chiou
- School of SportExercise, and Rehabilitation Sciences, MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
7
|
Bannow LI, Bonaterra GA, Bertoune M, Maus S, Schulz R, Weissmann N, Kraut S, Kinscherf R, Hildebrandt W. Effect of chronic intermittent hypoxia (CIH) on neuromuscular junctions and mitochondria in slow- and fast-twitch skeletal muscles of mice—the role of iNOS. Skelet Muscle 2022; 12:6. [PMID: 35151349 PMCID: PMC8841105 DOI: 10.1186/s13395-022-00288-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/10/2022] [Indexed: 01/17/2023] Open
Abstract
Background Obstructive sleep apnea (OSA) imposes vascular and metabolic risks through chronic intermittent hypoxia (CIH) and impairs skeletal muscle performance. As studies addressing limb muscles are rare, the reasons for the lower exercise capacity are unknown. We hypothesize that CIH-related morphological alterations in neuromuscular junctions (NMJ) and mitochondrial integrity might be the cause of functional disorders in skeletal muscles. Methods Mice were kept under 6 weeks of CIH (alternating 7% and 21% O2 fractions every 30 s, 8 h/day, 5 days/week) compared to normoxia (NOX). Analyses included neuromuscular junctions (NMJ) postsynaptic morphology and integrity, fiber cross-sectional area (CSA) and composition (ATPase), mitochondrial ultrastructure (transmission-electron-microscopy), and relevant transcripts (RT-qPCR). Besides wildtype (WT), we included inducible nitric oxide synthase knockout mice (iNOS−/−) to evaluate whether iNOS is protective or risk-mediating. Results In WT soleus muscle, CIH vs. NOX reduced NMJ size (− 37.0%, p < 0.001) and length (− 25.0%, p < 0.05) together with fiber CSA of type IIa fibers (− 14%, p < 0.05) and increased centronucleated fiber fraction (p < 0.001). Moreover, CIH vs. NOX increased the fraction of damaged mitochondria (1.8-fold, p < 0.001). Compared to WT, iNOS−/− similarly decreased NMJ area and length with NOX (− 55%, p < 0.001 and − 33%, p < 0.05, respectively) or with CIH (− 37%, p < 0.05 and − 29%, p < 0.05), however, prompted no fiber atrophy. Moreover, increased fractions of damaged (2.1-fold, p < 0.001) or swollen (> 6-fold, p < 0.001) mitochondria were observed with iNOS−/− vs. WT under NOX and similarly under CIH. Both, CIH- and iNOS−/− massively upregulated suppressor-of-cytokine-signaling-3 (SOCS3) > 10-fold without changes in IL6 mRNA expression. Furthermore, inflammatory markers like CD68 (macrophages) and IL1β were significantly lower in CIH vs. NOX. None of these morphological alterations with CIH- or iNOS−/− were detected in the gastrocnemius muscle. Notably, iNOS expression was undetectable in WT muscle, unlike the liver, where it was massively decreased with CIH. Conclusion CIH leads to NMJ and mitochondrial damage associated with fiber atrophy/centronucleation selectively in slow-twitch muscle of WT. This effect is largely mimicked by iNOS−/− at NOX (except for atrophy). Both conditions involve massive SOCS3 upregulation likely through denervation without Il6 upregulation but accompanied by a decrease of macrophage density especially next to denervated endplates. In the absence of muscular iNOS expression in WT, this damage may arise from extramuscular, e.g., motoneuronal iNOS deficiency (through CIH or knockout) awaiting functional evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-022-00288-7.
Collapse
|
8
|
Pimentel Neto J, Rocha LC, Dos Santos Jacob C, Klein Barbosa G, Ciena AP. Postsynaptic cleft density changes with combined exercise protocols in an experimental model of muscular hypertrophy. Eur J Histochem 2021; 65. [PMID: 34346666 PMCID: PMC8404527 DOI: 10.4081/ejh.2021.3274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
The vertical ladder-based protocols contribute to the NMJ junction's adaptations, and when combined with and without load, can be potentiated. The present study aimed to investigate postsynaptic regions of the biceps brachii muscle in adult male Wistar rats submitted to different vertical ladder-based protocols (Sedentary - S; Climbing - C; Climbing with Load - LC and Combined Climbing - CC). The protocols (C, LC, CC) were performed in 24 sessions, 3 x/week, for 8 weeks. The myofibrillar ATPase analysis showed an increase in cross-sectional area (CSA) of the muscle fibers Type I in all trained Groups; Type II in C and LC and reduction in CC; Type IIx higher in all trained Groups. In the postsynaptic cleft, the stained area presents smaller in Groups C, LC, and CC; the total area showed smaller than LC and higher in C and CC. The stained and total perimeter, and dispersion showed a reduction in C, LC, and CC, higher maximum diameter in Groups C and CC, and decreased in LC. Regarding the postsynaptic cleft distribution, the stained area presented a decrease in all trained Groups. The integrated density presented higher principally in CC. The NMJ count showed an increase in all trained Groups. We concluded that the vertical ladder-based protocols combined contributed to the postsynaptic region adaptations.
Collapse
Affiliation(s)
- Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences (IB), São Paulo State University (UNESP), Rio Claro-SP.
| |
Collapse
|
9
|
Pratt J, De Vito G, Narici M, Boreham C. Neuromuscular Junction Aging: A Role for Biomarkers and Exercise. J Gerontol A Biol Sci Med Sci 2021; 76:576-585. [PMID: 32832976 DOI: 10.1093/gerona/glaa207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related skeletal muscle degradation known as "sarcopenia" exerts considerable strain on public health systems globally. While the pathogenesis of such atrophy is undoubtedly multifactorial, disruption at the neuromuscular junction (NMJ) has recently gained traction as a key explanatory factor. The NMJ, an essential communicatory link between nerve and muscle, undergoes profound changes with advancing age. Ascertaining whether such changes potentiate the onset of sarcopenia would be paramount in facilitating a timely implementation of targeted therapeutic strategies. Hence, there is a growing level of importance to further substantiate the effects of age on NMJs, in parallel with developing measures to attenuate such changes. As such, this review aimed to establish the current standpoint on age-related NMJ deterioration and consequences for skeletal muscle, while illuminating a role for biomarkers and exercise in ameliorating these alterations. Recent insights into the importance of key biomarkers for NMJ stability are provided, while the stimulative benefits of exercise in preserving NMJ function are demonstrated. Further elucidation of the diagnostic and prognostic relevance of biomarkers, coupled with the therapeutic benefits of regular exercise may be crucial in combating age-related NMJ and skeletal muscle degradation.
Collapse
Affiliation(s)
- Jedd Pratt
- Institute for Sport and Health, University College Dublin, Ireland.,Genuity Science, Dublin, Ireland
| | - Giuseppe De Vito
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padua, Italy
| | - Marco Narici
- Department of Biomedical Sciences, CIR-Myo Myology Centre, Neuromuscular Physiology Laboratory, University of Padua, Italy
| | - Colin Boreham
- Institute for Sport and Health, University College Dublin, Ireland
| |
Collapse
|
10
|
The Neuromuscular Junction: Roles in Aging and Neuromuscular Disease. Int J Mol Sci 2021; 22:ijms22158058. [PMID: 34360831 PMCID: PMC8347593 DOI: 10.3390/ijms22158058] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized synapse that bridges the motor neuron and the skeletal muscle fiber and is crucial for conversion of electrical impulses originating in the motor neuron to action potentials in the muscle fiber. The consideration of contributing factors to skeletal muscle injury, muscular dystrophy and sarcopenia cannot be restricted only to processes intrinsic to the muscle, as data show that these conditions incur denervation-like findings, such as fragmented NMJ morphology and corresponding functional changes in neuromuscular transmission. Primary defects in the NMJ also influence functional loss in motor neuron disease, congenital myasthenic syndromes and myasthenia gravis, resulting in skeletal muscle weakness and heightened fatigue. Such findings underscore the role that the NMJ plays in neuromuscular performance. Regardless of cause or effect, functional denervation is now an accepted consequence of sarcopenia and muscle disease. In this short review, we provide an overview of the pathologic etiology, symptoms, and therapeutic strategies related to the NMJ. In particular, we examine the role of the NMJ as a disease modifier and a potential therapeutic target in neuromuscular injury and disease.
Collapse
|
11
|
Just-Borràs L, Cilleros-Mañé V, Hurtado E, Biondi O, Charbonnier F, Tomàs M, Garcia N, Tomàs J, Lanuza MA. Running and Swimming Differently Adapt the BDNF/TrkB Pathway to a Slow Molecular Pattern at the NMJ. Int J Mol Sci 2021; 22:4577. [PMID: 33925507 PMCID: PMC8123836 DOI: 10.3390/ijms22094577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Physical exercise improves motor control and related cognitive abilities and reinforces neuroprotective mechanisms in the nervous system. As peripheral nerves interact with skeletal muscles at the neuromuscular junction, modifications of this bidirectional communication by physical activity are positive to preserve this synapse as it increases quantal content and resistance to fatigue, acetylcholine receptors expansion, and myocytes' fast-to-slow functional transition. Here, we provide the intermediate step between physical activity and functional and morphological changes by analyzing the molecular adaptations in the skeletal muscle of the full BDNF/TrkB downstream signaling pathway, directly involved in acetylcholine release and synapse maintenance. After 45 days of training at different intensities, the BDNF/TrkB molecular phenotype of trained muscles from male B6SJLF1/J mice undergo a fast-to-slow transition without affecting motor neuron size. We provide further knowledge to understand how exercise induces muscle molecular adaptations towards a slower phenotype, resistant to prolonged trains of stimulation or activity that can be useful as therapeutic tools.
Collapse
Affiliation(s)
- Laia Just-Borràs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Víctor Cilleros-Mañé
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Erica Hurtado
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Olivier Biondi
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Frédéric Charbonnier
- INSERM UMRS 1124, Université de Paris, CEDEX 06, F-75270 Paris, France; (O.B.); (F.C.)
| | - Marta Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Neus Garcia
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Josep Tomàs
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| | - Maria A. Lanuza
- Unitat d’Histologia i Neurobiologia (UHNEUROB), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.J.-B.); (V.C.-M.); (E.H.); (M.T.); (N.G.)
| |
Collapse
|
12
|
James E, Nichols S, Goodall S, Hicks KM, O'Doherty AF. The influence of resistance training on neuromuscular function in middle-aged and older adults: A systematic review and meta-analysis of randomised controlled trials. Exp Gerontol 2021; 149:111320. [PMID: 33774145 DOI: 10.1016/j.exger.2021.111320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Deterioration of neuromuscular function is a major mechanism of age-related strength loss. Resistance training (RT) improves muscle strength and mass. However, the effects of RT on neuromuscular adaptations in middle-aged and older adults are unclear. METHODS Randomised controlled RT interventions (≥2 weeks) involving adults aged ≥50 years were identified. Primary outcome measures were voluntary activation (VA), electromyographic (EMG) activity during maximal voluntary contraction (MVC), and antagonist coactivation. Data were pooled using a weighted random-effect model. Sub-analyses were conducted by muscle or muscle group and health status of participants. Sensitivity analysis was based on study quality. P < 0.05 indicated statistical significance. RESULTS Twenty-seven studies were included. An effect was found for VA (standardised mean difference [SMD] 0.54, 0.01 to 1.07, P = 0.04), This result remained significant following sensitivity analysis involving only studies that were low risk of bias. Subgroup analyses showed an effect for plantar flexor VA (SMD 1.13, 0.20 to 2.06, P = 0.02) and VA in healthy participants (SMD 1.04, 0.32 to 1.76, P = 0.004). There was no effect for EMG activity or antagonist coactivation of any muscle group (P > 0.05). DISCUSSION Resistance training did not alter EMG activity or antagonist coactivation in older adults. Sensitivity analysis resulted in the effect for VA remaining significant, indicating that this finding was not dependent on study quality. Studies predominantly involved healthy older adults (78%), limiting the generalisability of these findings to clinical cohorts. Future research should determine the effects of RT on neuromuscular function in people with sarcopenia and age-related syndromes.
Collapse
Affiliation(s)
- Emily James
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom.
| | - Simon Nichols
- Sport and Physical Activity Research Group, Sheffield Hallam University, Sheffield, United Kingdom; Advanced Wellbeing Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Kirsty M Hicks
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| | - Alasdair F O'Doherty
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle-Upon-Tyne, United Kingdom
| |
Collapse
|
13
|
Badawi Y, Nishimune H. Impairment Mechanisms and Intervention Approaches for Aged Human Neuromuscular Junctions. Front Mol Neurosci 2020; 13:568426. [PMID: 33328881 PMCID: PMC7717980 DOI: 10.3389/fnmol.2020.568426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
The neuromuscular junction (NMJ) is a chemical synapse formed between a presynaptic motor neuron and a postsynaptic muscle cell. NMJs in most vertebrate species share many essential features; however, some differences distinguish human NMJs from others. This review will describe the pre- and postsynaptic structures of human NMJs and compare them to NMJs of laboratory animals. We will focus on age-dependent declines in function and changes in the structure of human NMJs. Furthermore, we will describe insights into the aging process revealed from mouse models of accelerated aging. In addition, we will compare aging phenotypes to other human pathologies that cause impairments of pre- and postsynaptic structures at NMJs. Finally, we will discuss potential intervention approaches for attenuating age-related NMJ dysfunction and sarcopenia in humans.
Collapse
Affiliation(s)
- Yomna Badawi
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, United States.,Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Japan
| |
Collapse
|
14
|
Lovering RM, Iyer SR, Edwards B, Davies KE. Alterations of neuromuscular junctions in Duchenne muscular dystrophy. Neurosci Lett 2020; 737:135304. [PMID: 32818587 DOI: 10.1016/j.neulet.2020.135304] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
The focus of this review is on Duchenne muscular dystrophy (DMD), which is caused by the absence of the protein dystrophin and is characterized as a neuromuscular disease in which muscle weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. Considerable attention has been dedicated to studying muscle fiber damage, but data show that both human patients and animal models for DMD present with fragmented neuromuscular junction (NMJ) morphology. In addition to pre- and post-synaptic abnormalities, studies indicate increased susceptibility of the NMJ to contraction-induced injury, with corresponding functional changes in neuromuscular transmission and nerve-evoked electromyographic activity. Such findings suggest that alterations in the NMJ of dystrophic muscle may play a role in muscle weakness via impairment of neuromuscular transmission. Further work is needed to fully understand the role of the NMJ in the weakness, susceptibility to injury, and progressive wasting associated with DMD.
Collapse
Affiliation(s)
- Richard M Lovering
- Departments of Orthopaedics and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA; University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Shama R Iyer
- Departments of Orthopaedics and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin Edwards
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kay E Davies
- MDUK Oxford Neuromuscular Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Deschenes MR, Tufts HL, Oh J, Li S, Noronha AL, Adan MA. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol Aging 2020; 95:1-8. [PMID: 32739557 DOI: 10.1016/j.neurobiolaging.2020.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
The neuromuscular junction (NMJ) connects the motor neuron with myofibers allowing muscle contraction. Both aging and increased activity result in NMJ remodeling. Here, the effects of exercise were examined in young and aged soleus muscles. Using immunofluorescent staining procedures, cellular and active zone components of the NMJ were quantified following a treadmill running program. Immunofluorescence was employed to determine myofiber profiles (size and type). Two-way analysis of variance procedures with main effects of age and treatment showed that when analyzing NMJs at the cellular level, significant (p ≤ 0.05) effects were identified for age, but not treatment. However, when examining subcellular active zones, effects for exercise, but not for age, were detected. Myofiber cross-sectional area showed that aging elicited atrophy and that among younger muscles endurance exercise training yielded decrements in myofiber size. Conversely, among aged muscles training elicited whole muscle and myofiber trends (p < 0.10) toward hypertrophy. Thus, different components of the neuromuscular system harbor unique sensitivities to various stimuli enabling proper adaptations to attain optimal function under differing conditions.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA.
| | - Hannah L Tufts
- Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA
| | - Jeongeun Oh
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Shuhan Li
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Alexa L Noronha
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Matthew A Adan
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
16
|
Boaretto ML, de Andrade BZ, Maciel JIHN, Oliveira MDC, de Oliveira CMT, Guimarães ATB, Torrejais MM, Schneider SCS, Ribeiro LDFC, Bertolini GRF. Alterations in neuromuscular junctions and oxidative stress of the soleus muscle of obese Wistar rats caused by vibratory platform training. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:570-578. [PMID: 33265086 PMCID: PMC7716688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES evaluate the effects that whole-body vibration (WBV) causes on the neuromuscular junctions and oxidative stress of the soleus muscle of obese Wistar rats. METHODS 32 male Wistar rats were used, 16 of which were obesity induced by monosodium glutamate, randomized into four groups: control (GC), control with WBV (GCP), obese (GO) and obese with WBV (GOP). At the 70 days old, the training on WBV was started, performed 3 times a week, during 8 consecutive weeks. At the 130 days old, the animals were euthanized and the soleus muscles were collected. RESULTS Regarding the analysis of the neuromuscular junctions, the obese groups had lower mean size when compared to the control groups. On the other hand, the WBV presented higher averages when compared to the groups that did not perform the training. Regarding the oxidative stress, for the lipid peroxidation there was a significant difference between obese and non-obese animals, however, there was no difference between the animals WBV and those who did not. CONCLUSION WBV promotes beneficial changes such as increased measurements of the structures of the neuromuscular junctions, but is not able to promote changes in the concentration of the cholinesterase enzyme in the synaptic cleft.
Collapse
Affiliation(s)
- Mariana Laís Boaretto
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Bárbara Zanardini de Andrade
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Jhyslayne Ignácia Hoff Nunes Maciel
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Mylena de Campos Oliveira
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Camila Maria Toigo de Oliveira
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Márcia Miranda Torrejais
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Sara Cristina Sagae Schneider
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Lucinéia de Fátima Chasko Ribeiro
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Gladson Ricardo Flor Bertolini
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil,Corresponding author: Gladson Ricardo Flor Bertolini, Universidade Estadual do Oeste do Paraná, Campus Cascavel, Centro de Ciências Biológicas e da Saúde, Universitária St, 2069 – 85819110 Cascavel, PR – Brasil E-mail:
| |
Collapse
|
17
|
|
18
|
Abstract
As the final output of the somatic nervous system, the neuromuscular junction (NMJ) is essential for all voluntary movements. The NMJ is also necessary for connected cells to function and survive. Because of this central role, much effort has been devoted to understanding the effects of aging, diseases, and injuries on the NMJ. These efforts have revealed a close relationship between aberrant changes at NMJs and its three cellular components - the presynaptic site on motor axons, the postsynaptic region on muscle fibers and perisynaptic Schwann cells. Here, we review the morphological and molecular changes associated with aging NMJs in rodents and humans. We also provide an overview of factors with potential roles in maintaining and repairing adult and aged NMJs.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA
| | - Gregorio Valdez
- Virginia Tech Carilion Research Institute, Roanoke, Virginia, USA.,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
19
|
Raji-amirhasani A, Joukar S, Naderi-Boldaji V, Bejeshk MA. Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:558-563. [PMID: 29942444 PMCID: PMC6015241 DOI: 10.22038/ijbms.2018.24796.6165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Considering the lack of information, the effects of mild endurance exercise plus blood flow restriction (BFR) on electrocardiographic parameters, hypertrophy index, and expression of angiotensin II receptors type 1 (AT1R) and type 2 (AT2R) and apelin receptor (APJ) were assessed in hearts of old male rats. MATERIALS AND METHODS Animal were grouped as control (CTL), Sham (Sh), lower extremities blood flow restriction (BFR), exercise (Ex), Sham + exercise (Sh + Ex), and blood flow restriction + exercise (BFR + Ex). RESULTS Exercise plus BFR significantly decreased the corrected QT (QTc) interval (P<0.01 vs CTL and Sh groups) and increased the heart hypertrophy index (P<0.05 vs CTL and BFR groups). Exercise alone increased expression of the APJ (P<0.01, vs CTL, Sh, and BFR groups) and AT2 receptors (P<0.001, vs Sh, CTL, BFR, and BFR + exercise groups), whereas it reduced expression of AT1R (P<0.01 in comparison with CTL, Sh, and BFR groups). Exercise plus BFR caused a significant increase in APJ (P<0.05 vs Ex, Sh+Ex and P<0.001 vs CTL, Sh, and BFR groups) and also expression of AT1R (P<0.001 vs Ex, Sh + Ex, CTL, Sh, and P<0.01 vs BFR groups). Accompaniment of exercise with BFR destroyed the effect of exercise on the expression of AT2R. CONCLUSION Mild endurance exercise plus BFR can alter the expression of angiotensin II and apelin receptors that leads to cardiac hypertrophy and improves the ventricular conductivity of aging rats.
Collapse
Affiliation(s)
- Alireza Raji-amirhasani
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Vida Naderi-Boldaji
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad-Abbas Bejeshk
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Bahreinipour MA, Joukar S, Hovanloo F, Najafipour H, Naderi V, Rajiamirhasani A, Esmaeili-Mahani S. Mild aerobic training with blood flow restriction increases the hypertrophy index and MuSK in both slow and fast muscles of old rats: Role of PGC-1α. Life Sci 2018; 202:103-109. [PMID: 29604268 DOI: 10.1016/j.lfs.2018.03.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/24/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
Abstract
AIMS Existing evidence emphasize the role of mitochondrial dysfunction in sarcopenia which is revealed as loss of skeletal muscle mass and neuromuscular junction remodeling. We assessed the effect of low-intensity aerobic training along with blood flow restriction on muscle hypertrophy index, muscle-specific kinase (MuSK), a pivotal protein of the neuromuscular junction and Peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC-1α) in aged male rats. MAIN METHODS Animals groups were control (CTL), sham (Sh), leg blood flow restriction (BFR), exercise (Ex), sham + exercise (Sh + Ex), and BFR plus exercise (BFR + Ex) groups. The exercise groups were trained with low intensity exercise for 10 weeks. 48 h after the last training session, animals were sacrificed under anesthesia. Soleus and EDL muscles were isolated, hypertrophy index was estimated and MuSK and PGC-1α were measured by western blot method. KEY FINDINGS Hypertrophy index enhanced in soleus and Extensor digitorum longus (EDL) muscles of BFR + Ex group (P < 0.01 versus CTL and Sh groups, and P < 0.001 versus other groups). The MuSK protein of soleus and EDL muscles increased in BFR + Ex group (P < 0.01 and P < 0.001, respectively) in comparison with CTL and Sh groups. In BFR + Ex group, the PGC-1α protein increased in both soleus and EDL (P < 0.001 compared to other groups). Also the PGC-1α of soleus muscle was higher in Ex and Sh + Ex groups versus CTL and Sh groups (P < 0.05). SIGNIFICANCE Findings suggest that low endurance exercise plus BFR improves the MuSK and hypertrophy index of both slow and fast muscles of elderly rats probably through the rise of PGC-1α expression.
Collapse
Affiliation(s)
- Mohammad-Ali Bahreinipour
- Department of Physical Education, Faculty of Shahid Chamran, Kerman Branch, Technical and Vocational University (YVU), Tehran, Iran
| | - Siyavash Joukar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran; Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Fariborz Hovanloo
- Physical Education and Sport Science College, Shahid Beheshti University, Tehran, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran; Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Vida Naderi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Rajiamirhasani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
21
|
Santana A, Debastiani JC, Kunz RI, Buratti P, Brancalhão RMC, de Fátima Chasko Ribeiro L, Torrejais MM, Bertolini GRF. Association of sericin and swimming on the phenotype, motor plate, and functionality of the denervated plantar muscle of Wistar rats. J Exerc Rehabil 2018; 14:24-31. [PMID: 29511649 PMCID: PMC5833964 DOI: 10.12965/jer.1835138.569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023] Open
Abstract
Physical exercise may help maintain muscle properties and functional improvement after peripheral nerve lesion, which may be enhanced by using biocompatible substances, such as sericin. The aim of this study was analyse the effect of sericin associated with swimming exercise on the phenotype, innervation, and functionality of the plantar muscle of Wistar rats. Forty randomly divided adult rats were used in five groups of eight animals: control, injury, sericin, exercise, exercise and sericin. The application of sericin was done on the spot, 100 μL, shortly after nerve compression. Three days after sciatic nerve compression, the swimming and swimming and sericin groups were submitted to physical swimming exercise for 21 days. Afterwards, the animals were euthanised and the plantar muscle was dissected and submitted to histochemical and histoenzymological techniques. The grip strength test did not show alterations in muscular functionality, and the control presented greater muscle mass in relation to the other groups, the same did not occur for muscle length. Polymorphic neuromuscular junctions were detected in the groups, although without significant morphometric alterations of the area, major and minor diameters. The percentage of type I fibres was lower in the lesion group and there was no difference in fibres IIa and IIb between groups. The area of fibres I, IIa and IIb remained constant between groups. Sericin biopolymer combined with swimming exercise did not affect plantar muscle function, submitted to experimental axonotmosis, whose contractile properties were altered by nerve injury.
Collapse
Affiliation(s)
- André Santana
- Programa de Pós-Graduação em Biociências e Saúde da, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Brazil
| | - Jean Carlos Debastiani
- Programa de Pós-Graduação em Biociências e Saúde da, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Brazil
| | - Regina Inês Kunz
- Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Brazil
| | - Pamela Buratti
- Programa de Pós-Graduação em Biociências e Saúde da, Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Brazil
| | | | | | | | | |
Collapse
|
22
|
Krause Neto W, Silva WDA, Ciena AP, de Souza RR, Anaruma CA, Gama EF. Aging Induces Changes in the Somatic Nerve and Postsynaptic Component without Any Alterations in Skeletal Muscles Morphology and Capacity to Carry Load of Wistar Rats. Front Neurosci 2017; 11:688. [PMID: 29326543 PMCID: PMC5741656 DOI: 10.3389/fnins.2017.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats.
Collapse
Affiliation(s)
- Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Wellington de Assis Silva
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Romeu R de Souza
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Carlos A Anaruma
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Eliane F Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|
23
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
24
|
Long-term Low-Intensity Endurance Exercise along with Blood-Flow Restriction Improves Muscle Mass and Neuromuscular Junction Compartments in Old Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2017; 42:569-576. [PMID: 29184265 PMCID: PMC5684378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND During the aging process, muscle atrophy and neuromuscular junction remodeling are inevitable. The present study aimed to clarify whether low-intensity aerobic exercise along with limb blood-flow restriction (BFR) could improve aging-induced muscle atrophy and nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. METHODS Forty-eight male Wistar rats, aged 23-24 months, were randomly divided into control, sham (Sh: subjected to surgery without BFR), BFR (subjected to BFR), exercise (Ex: subjected to 10 weeks of low-intensity exercise), Sh+Ex, and BFR+Ex groups. Forty-eight hours after the last training session, the animals were sacrificed and their soleus and extensor digitorum longus (EDL) muscles were removed. The hypertrophy index was calculated, and molecular parameters were measured using western blotting. Statistical analysis was done with ANOVA using SPSS (version 20), with a P<0.05 as the level of significance. RESULTS The control and Sh groups showed weight gain (P=0.001), whereas the Ex, Sh+Ex, and BFR+Ex groups had significant weight loss (P<0.001). The hypertrophy index of the soleus was significantly higher in the BFR+Ex group than in the control, Sh, and BFR groups (P<0.001). BFR+Ex induced significant hypertrophic effects on the EDL (P<0.001 vs. the control, Sh, Ex, and Sh+Ex groups, and P=0.006 vs. the BFR group). BFR+Ex also increased nAChRs in the soleus (P=0.02 vs. the control and Sh groups) and the EDL (P=0.008 vs. the control and Sh groups). CONCLUSION BFR plus mild exercise is a safe method with potential beneficial effects in protecting and augmenting muscle mass and nAChR clustering at the neuromuscular junction in old rats.
Collapse
|
25
|
Krause Neto W, de Assis Silva W, Ciena AP, Anaruma CA, Gama EF. Divergent effects of resistance training and anabolic steroid on the postsynaptic region of different skeletal muscles of aged rats. Exp Gerontol 2017; 98:80-90. [PMID: 28811140 DOI: 10.1016/j.exger.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
This study aimed to analyze the effects of resistance training associated with testosterone administration in the neuromuscular junction (NMJ) postsynaptic region of different skeletal muscle types of aged rats. Wistar rats were divided into: SEI - 20-months-old control, SEF - 24-months-old control, T - 20-months-old with testosterone, S - 20-months-old resistance trained and ST - 20-months-old with resistance training associated with testosterone propionate. All groups were submitted to familiarization and maximum load carrying testing (MLCT). The MLCT was applied before and after the resistance training (RT) period. RT (6-8×/session with progressive loads of 50 to 100%, 3×/week and 120s interval) was performed in ladder climbing for 15weeks. The administration of testosterone propionate was performed 2×/week (10mg/kg/body weight). After euthanize, soleus and plantaris muscles were removed and prepared for histochemistry and cytofluorescence. T, S and ST significantly increased their maximum carrying load capacity compared to SEI and SEF (p<0.05). For soleus postsynaptic region, ST had lower total and stained area than SEF (p<0.05). For plantaris, the postsynaptic component of T was statistically larger than SEI (p<0.05). For soleus histochemistry, T, S and ST groups showed the same magnitude of type I myofibers hypertrophy, thus statistically different from SEI and SEF (p<0.05). The cross-sectional area of the type IIa myofibers of the ST was larger than SEF (p<0.05). The volume density of type I myofibers show to be lower in ST than SEI (p<0.05). As for type IIa myofibers, ST increased Vv [type IIa] compared to SEI and SEF (p<0.05). For plantaris, T significantly hypertrophied type I myofibers compared to SEI and SEF (p<0.05). S and ST demonstrated significant increases of type I myofibers compared to SEI and SEF (p<0.05). As for type IIx myofibers, both S and ST showed myofibers larger than SEI (p<0.05). However, only the ST had significant difference compared to SEF (p<0.05). In conclusion, both therapies, alone or combined, have little effect on the morphology of the NMJ postsynaptic region of distinct muscles. Moreover, the three therapies are potentially stimulating for strength gains and muscle hypertrophy.
Collapse
Affiliation(s)
- Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil.
| | - Wellington de Assis Silva
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Carlos Alberto Anaruma
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Eliane Florencio Gama
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil
| |
Collapse
|
26
|
Seene T, Umnova M, Kaasik P. Morphological peculiarities of neuromuscular junctions among different fiber types: Effect of exercise. Eur J Transl Myol 2017; 27:6708. [PMID: 29118957 PMCID: PMC5656810 DOI: 10.4081/ejtm.2017.6708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 11/23/2022] Open
Abstract
The aim of our research was to examine whether there are differences in the morphology of neuromuscular junctions of different types of muscle fibers in rodents, and after their adaptation to six weeks endurance exercise training. After 5-day acclimation, Wistar rats were subjected to run with the speed 35 m/min during 6 week, 5 days per week and the training volume reached 60 min per day. Muscle samples for ultrastructural studies were fixed, dehydrated and embedded in Epon-812. Ultra-thin sections were cut from longitudinally and transversely oriented blocs, using 4 blocks from each animal. The area of axon terminals on fast- twitch fibers is 1.5 time large (p<0.001) and the perimeter of terminals is 1.7 time large in comparison with slow- twitch oxidative fibers (p<0.001) in control group. There are correlation between cross-sectional area of different muscle fibers and length of axon terminals (r=0.72), between cross-sectional area and with of axon terminal (r=-0.62), and between turnover rate of contractile proteins and length of axon terminal (r=0.75). Fast remodeling of synapse on oxidative and oxidative-glycolytic muscle fibers during endurance training seems to guarantees the intensive renewal of the structures of muscle fibers with higher oxidative capacity.
Collapse
Affiliation(s)
- Teet Seene
- Institute of Exercise Biology and Physiotherapy, University of Tartu, Estonia
| | - Maria Umnova
- Institute of Exercise Biology and Physiotherapy, University of Tartu, Estonia
| | - Priit Kaasik
- Institute of Exercise Biology and Physiotherapy, University of Tartu, Estonia
| |
Collapse
|
27
|
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985) 2016; 121:982-995. [PMID: 27516536 PMCID: PMC5142309 DOI: 10.1152/japplphysiol.00475.2016] [Citation(s) in RCA: 261] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022] Open
Abstract
Age-related changes in the basic functional unit of the neuromuscular system, the motor unit, and its neural inputs have a profound effect on motor function, especially among the expanding number of old (older than ∼60 yr) and very old (older than ∼80 yr) adults. This review presents evidence that age-related changes in motor unit morphology and properties lead to impaired motor performance that includes 1) reduced maximal strength and power, slower contractile velocity, and increased fatigability; and 2) increased variability during and between motor tasks, including decreased force steadiness and increased variability of contraction velocity and torque over repeat contractions. The age-related increase in variability of motor performance with aging appears to involve reduced and more variable synaptic inputs that drive motor neuron activation, fewer and larger motor units, less stable neuromuscular junctions, lower and more variable motor unit action potential discharge rates, and smaller and slower skeletal muscle fibers that coexpress different myosin heavy chain isoforms in the muscle of older adults. Physical activity may modify motor unit properties and function in old men and women, although the effects on variability of motor performance are largely unknown. Many studies are of cross-sectional design, so there is a tremendous opportunity to perform high-impact and longitudinal studies along the continuum of aging that determine 1) the influence and cause of the increased variability with aging on functional performance tasks, and 2) whether lifestyle factors such as physical exercise can minimize this age-related variability in motor performance in the rapidly expanding numbers of very old adults.
Collapse
Affiliation(s)
- Sandra K Hunter
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Hugo M Pereira
- Exercise Science Program, Department of Physical Therapy, Marquette University, Milwaukee, Wisconsin; and
| | - Kevin G Keenan
- Department of Kinesiology, College of Health Sciences, University of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
28
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
29
|
Bird SB, Krajacic P, Sawamoto K, Bunya N, Loro E, Khurana TS. Pharmacotherapy to protect the neuromuscular junction after acute organophosphorus pesticide poisoning. Ann N Y Acad Sci 2016; 1374:86-93. [PMID: 27258847 DOI: 10.1111/nyas.13111] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/29/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
Organophosphorus (OP) pesticide poisoning is a leading cause of morbidity and mortality in the developing world, affecting an estimated three million people annually. Much of the morbidity is directly related to muscle weakness, which develops 1-4 days after poisoning. This muscle weakness, termed the intermediate syndrome (IMS), leads to respiratory, bulbar, and proximal limb weakness and frequently necessitates the use of mechanical ventilation. While not entirely understood, the IMS is most likely due to persistently elevated acetylcholine (ACh), which activates nicotinic ACh receptors at the neuromuscular junction (NMJ). Thus, the NMJ is potentially a target-rich area for the development of new therapies for acute OP poisoning. In this manuscript, we discuss what is known about the IMS and studies investigating the use of nicotinic ACh receptor antagonists to prevent or mitigate NMJ dysfunction after acute OP poisoning.
Collapse
Affiliation(s)
- Steven B Bird
- Department of Emergency Medicine, Division of Medical Toxicology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Predrag Krajacic
- West Virginia School of Osteopathic Medicine, Lewisburg, West Virginia
| | | | | | - Emanuele Loro
- University of Pennsylvania, Perelman School of Medicine, Department of Physiology, Philadelphia, Pennsylvania.,University of Pennsylvania, Pennsylvania Muscle Institute, Philadelphia, Pennsylvania
| | - Tejvir S Khurana
- University of Pennsylvania, Perelman School of Medicine, Department of Physiology, Philadelphia, Pennsylvania.,University of Pennsylvania, Pennsylvania Muscle Institute, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Deschenes MR, Kressin KA, Garratt RN, Leathrum CM, Shaffrey EC. Effects of exercise training on neuromuscular junction morphology and pre- to post-synaptic coupling in young and aged rats. Neuroscience 2016; 316:167-77. [PMID: 26711679 PMCID: PMC4724510 DOI: 10.1016/j.neuroscience.2015.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/13/2015] [Accepted: 12/02/2015] [Indexed: 11/17/2022]
Abstract
The objective of this study was to determine whether pre- to post-synaptic coupling of the neuromuscular junction (NMJ) could be maintained in the face of significant morphological remodeling brought about by exercise training, and whether aging altered this capacity. Eighteen young adult (8 mo) and eighteen aged (24 mo) Fischer 344 rats were randomly assigned to either endurance trained (treadmill running) or untrained control conditions resulting in four groups (N=9/group). After the 10-week intervention rats were euthanized and hindlimb muscles were surgically removed, quickly frozen at approximate resting length and stored at -85°C. The plantaris and EDL muscles were selected for study as they have different functions (ankle extensor and ankle flexor, respectively) but both are similarly and overwhelmingly comprised of fast-twitch myofibers. NMJs were stained with immunofluorescent procedures and images were collected with confocal microscopy. Each variable of interest was analyzed with a 2-way ANOVA with main effects of age and endurance training; in all cases significance was set at P⩽0.05. Results showed that no main effects of aging were detected in NMJs of either the plantaris or the EDL. Similarly, endurance training failed to alter any synaptic parameters of EDL muscles. The same exercise stimulus in the plantaris however, resulted in significant pre- and post-synaptic remodeling, but without altering pre- to post-synaptic coupling of the NMJs. Myofiber profiles of the same plantaris and EDL muscles were also analyzed. Unlike NMJs, myofibers displayed significant age-related atrophy in both the plantaris and EDL muscles. Overall, these results confirm that despite significant training-induced reconfiguration of NMJs, pre- to post-synaptic coupling remains intact underscoring the importance of maintaining proper apposition of neurotransmitter release and binding sites so that effective nerve to muscle communication is assured.
Collapse
Affiliation(s)
- M R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA 23187-8795, USA.
| | - K A Kressin
- Program in Neuroscience, College of William & Mary, Williamsburg, VA 23187-8795, USA
| | - R N Garratt
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA
| | - C M Leathrum
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA
| | - E C Shaffrey
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA 23187-8795, USA
| |
Collapse
|
31
|
Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 2015; 594:1965-78. [PMID: 26437581 DOI: 10.1113/jp270561] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation-reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age-related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan.
Collapse
Affiliation(s)
- Russell T Hepple
- Department of Kinesiology & Physical Education, McGill University, Montreal, Québec, Canada.,McGill Research Centre for Physical Activity and Health, Montreal, Québec, Canada.,Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Canadian Centre for Activity and Aging, London, Ontario, Canada.,Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
32
|
Krause Neto W, Ciena AP, Anaruma CA, de Souza RR, Gama EF. Effects of exercise on neuromuscular junction components across age: systematic review of animal experimental studies. BMC Res Notes 2015; 8:713. [PMID: 26601719 PMCID: PMC4658757 DOI: 10.1186/s13104-015-1644-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/28/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND During almost one-third of our life, maturation of the nervous system promotes strength and muscle mass increase. However, as age advances, the nervous system begins to suffer a slow and continue reduction of its functions. Neuromuscular junction (NMJ) is one of the structures of which change due to aging process. Physical training leads to significant adjustments in NMJs of young and aged animals. Nevertheless, studies that aimed to investigate this effect have, in many cases, methodological variables that may have some influence on the result. Thus, this study aimed to carry out a systematic review about the effects of exercise training on the NMJ compartments of young, adult and aged animals. RESULTS We searched PubMed, Google Scholar, Science Direct, Scielo and Lilacs databases for animal experimental studies that studied exercise effects on the NMJs components across age. After inclusion and exclusion criteria, we included nine articles in systematic review and two for meta-analysis (young/adult NMJ). CONCLUSIONS We identified that exercise training cause NMJ hypertrophy on young animals and NMJ compression on aged ones. However, many methodological issues such as age, skeletal muscle and fibers type, and type of exercise and training protocol might influence the results. Graphical abstract: Flow gram is actually to be show at results section as Fig 1.
Collapse
Affiliation(s)
- Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Physical Education Department, São Judas Tadeu University, Unidade Mooca, Rua Taquari, 546, Mooca, P.O Box: 03166-000, São Paulo, SP, Brazil.
| | - Adriano Polican Ciena
- Laboratory of Histology and Electron Microscopy, Physical Education Department, "Julio de Mesquita Filho" São Paulo State University, Rio Claro, SP, Brazil.
| | - Carlos Alberto Anaruma
- Laboratory of Histology and Electron Microscopy, Physical Education Department, "Julio de Mesquita Filho" São Paulo State University, Rio Claro, SP, Brazil.
| | - Romeu Rodrigues de Souza
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Physical Education Department, São Judas Tadeu University, Unidade Mooca, Rua Taquari, 546, Mooca, P.O Box: 03166-000, São Paulo, SP, Brazil.
| | - Eliane Florencio Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Physical Education Department, São Judas Tadeu University, Unidade Mooca, Rua Taquari, 546, Mooca, P.O Box: 03166-000, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Pratt SJP, Valencia AP, Le GK, Shah SB, Lovering RM. Pre- and postsynaptic changes in the neuromuscular junction in dystrophic mice. Front Physiol 2015; 6:252. [PMID: 26441672 PMCID: PMC4563167 DOI: 10.3389/fphys.2015.00252] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/28/2015] [Indexed: 01/05/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated in mdx mice (murine model for DMD) significant morphologic alterations at the motor endplate of the neuromuscular junction (NMJ) and corresponding NMJ transmission failure after injury. Here we extend these initial observations at the motor endplate to gain insight into the pre- vs. postsynaptic morphology, as well as the subsynaptic nuclei in healthy (WT) vs. mdx mice. We quantified the discontinuity and branching of the terminal nerve in adult mice. We report mdx- and age-dependent changes for discontinuity and an increase in branching when compared to WT. To examine mdx- and age-dependent changes in the relative localization of pre- and postsynaptic structures, we calculated NMJ occupancy, defined as the ratio of the footprint occupied by presynaptic vesicles vs. that of the underlying motor endplate. The normally congruent coupling between presynaptic and postsynaptic morphology was altered in mdx mice, independent of age. Finally we found an almost two-fold increase in the number of nuclei and an increase in density (nuclei/area) underlying the NMJ. These outcomes suggest substantial remodeling of the NMJ during dystrophic progression. This remodeling reflects plasticity in both pre- and postsynaptic contributors to NMJ structure, and thus perhaps also NM transmission and muscle function.
Collapse
Affiliation(s)
- Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Ana P Valencia
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA ; Department of Kinesiology, University of Maryland School of Public Health College Park, MD, USA
| | - Gloribel K Le
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| | - Sameer B Shah
- Departments of Orthopaedic Surgery and Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
34
|
Deschenes MR, Sherman EG, Roby MA, Glass EK, Harris MB. Effect of resistance training on neuromuscular junctions of young and aged muscles featuring different recruitment patterns. J Neurosci Res 2014; 93:504-13. [PMID: 25287122 DOI: 10.1002/jnr.23495] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 11/08/2022]
Abstract
To examine the effects of aging on neuromuscular adaptations to resistance training (i.e., weight lifting), young (9 months of age) and aged (20 months of age) male rats either participated in a 7-week ladder climbing protocol with additional weight attached to their tails or served as controls (n = 10/group). At the conclusion, rats were euthanized and hindlimb muscles were quickly removed and frozen for later analysis. Longitudinal sections of the soleus and plantaris muscles were collected, and pre- and postsynaptic features of neuromuscular junctions (NMJs) were visualized with immunofluorescence staining procedures. Cross-sections of the same muscles were histochemically stained to determine myofiber profiles (fiber type and size). Statistical analysis was by two-way ANOVA (main effects of age and treatment) with significance set at P ≤ 0.05. Results revealed that training-induced remodeling of NMJs was evident only at the postsynaptic endplate region of soleus fast-twitch myofibers. In contrast, aging was associated with pre- and postsynaptic remodeling in fast- and slow-twitch myofibers of the plantaris. Although both the soleus and the plantaris muscles failed to display either training or aging-related alterations in myofiber size, aged plantaris muscles exhibited an increased expression of type I (slow-twitch) myofibers in conjunction with a reduced percentage of type II (fast-twitch) myofibers, suggesting early stages of sarcopenia. These data demonstrate the high degree of specificity of synaptic modifications made in response to exercise and aging and that the sparsely recruited plantaris is more vulnerable to the effects of aging than the more frequently recruited soleus muscle.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology and Health Sciences, The College of William and Mary, Williamsburg, Virginia; Program in Neuroscience, The College of William and Mary, Williamsburg, Virginia
| | | | | | | | | |
Collapse
|
35
|
Rudolf R, Khan MM, Labeit S, Deschenes MR. Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 2014; 6:99. [PMID: 24904412 PMCID: PMC4033055 DOI: 10.3389/fnagi.2014.00099] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/08/2014] [Indexed: 12/27/2022] Open
Abstract
Functional denervation is a hallmark of aging sarcopenia as well as of muscular dystrophy. It is thought to be a major factor reducing skeletal muscle mass, particularly in the case of sarcopenia. Neuromuscular junctions (NMJs) serve as the interface between the nervous and skeletal muscular systems, and thus they may receive pathophysiological input of both pre- and post-synaptic origin. Consequently, NMJs are good indicators of motor health on a systemic level. Indeed, upon sarcopenia and dystrophy, NMJs morphologically deteriorate and exhibit altered characteristics of primary signaling molecules, such as nicotinic acetylcholine receptor and agrin. Since a remarkable reversibility of these changes can be observed by exercise, there is significant interest in understanding the molecular mechanisms underlying synaptic deterioration upon aging and dystrophy and how synapses are reset by the aforementioned treatments. Here, we review the literature that describes the phenomena observed at the NMJ in sarcopenic and dystrophic muscle as well as to how these alterations can be reversed and to what extent. In a second part, the current information about molecular machineries underlying these processes is reported.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Medical Technology, University of Heidelberg and University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Muzamil Majid Khan
- Institute of Molecular and Cell Biology, University of Applied Sciences Mannheim , Mannheim , Germany ; Institute of Toxicology and Genetics, Karlsruhe Institute of Technology , Eggenstein-Leopoldshafen , Germany
| | - Siegfried Labeit
- Institute of Integrative Pathophysiology, University Medical Centre Mannheim , Mannheim , Germany
| | - Michael R Deschenes
- Department of Kinesiology and Health Sciences, The College of William and Mary , Williamsburg, VA , USA
| |
Collapse
|
36
|
Arnold AS, Gill J, Christe M, Ruiz R, McGuirk S, St-Pierre J, Tabares L, Handschin C. Morphological and functional remodelling of the neuromuscular junction by skeletal muscle PGC-1α. Nat Commun 2014; 5:3569. [PMID: 24686533 PMCID: PMC4846352 DOI: 10.1038/ncomms4569] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/06/2014] [Indexed: 11/09/2022] Open
Abstract
The neuromuscular junction (NMJ) exhibits high morphological and functional plasticity. In the mature muscle, the relative levels of physical activity are the major determinants of NMJ function. Classically, motor neuron-mediated activation patterns of skeletal muscle have been thought of as the major drivers of NMJ plasticity and the ensuing fibre-type determination in muscle. Here we use muscle-specific transgenic animals for the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) as a genetic model for trained mice to elucidate the contribution of skeletal muscle to activity-induced adaptation of the NMJ. We find that muscle-specific expression of PGC-1α promotes a remodelling of the NMJ, even in the absence of increased physical activity. Importantly, these plastic changes are not restricted to post-synaptic structures, but extended to modulation of presynaptic cell morphology and function. Therefore, our data indicate that skeletal muscle significantly contributes to the adaptation of the NMJ subsequent to physical activity.
Collapse
Affiliation(s)
- Anne-Sophie Arnold
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Jonathan Gill
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Martine Christe
- 1] Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland [2]
| | - Rocío Ruiz
- Department of Medical Physiology and Biophysics, School of Medicine University of Seville, Avda. Sánchez Pizjuan 4, 41009 Sevilla, Spain
| | - Shawn McGuirk
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, 3655 promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Julie St-Pierre
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, 3655 promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Lucía Tabares
- Department of Medical Physiology and Biophysics, School of Medicine University of Seville, Avda. Sánchez Pizjuan 4, 41009 Sevilla, Spain
| | - Christoph Handschin
- Biozentrum, Division of Pharmacology/Neurobiology, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
37
|
Nishimune H, Stanford JA, Mori Y. Role of exercise in maintaining the integrity of the neuromuscular junction. Muscle Nerve 2013; 49:315-24. [PMID: 24122772 DOI: 10.1002/mus.24095] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2013] [Indexed: 01/16/2023]
Abstract
Physical activity plays an important role in preventing chronic disease in adults and the elderly. Exercise has beneficial effects on the nervous system, including at the neuromuscular junction (NMJ). Exercise causes hypertrophy of NMJs and improves recovery from peripheral nerve injuries, whereas decreased physical activity causes degenerative changes in NMJs. Recent studies have begun to elucidate molecular mechanisms underlying the beneficial effects of exercise. These mechanisms involve Bassoon, neuregulin-1, peroxisome proliferator-activated receptor gamma coactivator 1α, insulin-like growth factor-1, glial cell line-derived neurotrophic factor, neurotrophin 4, Homer, and nuclear factor of activated T cells c1. For example, NMJ denervation and active zone decreases have been observed in aged NMJs, but these age-dependent degenerative changes can be ameliorated by exercise. In this review we assess the effects of exercise on the maintenance and regeneration of NMJs and highlight recent insights into the molecular mechanisms underlying these exercise effects.
Collapse
Affiliation(s)
- Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, 3901 Rainbow Boulevard, MS 3051, HLSIC Room 2073, Kansas City, Kansas, 66160, USA
| | | | | |
Collapse
|
38
|
Deschenes MR, Hurst TE, Ramser AE, Sherman EG. Presynaptic to postsynaptic relationships of the neuromuscular junction are held constant across age and muscle fiber type. Dev Neurobiol 2013; 73:744-53. [PMID: 23696094 DOI: 10.1002/dneu.22095] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 11/10/2022]
Abstract
The neuromuscular junction (NMJ) displays considerable morphological plasticity as a result of differences in activity level, as well as aging. This is true of both presynaptic and postsynaptic components of the NMJ. Yet, despite these variations in NMJ structure, proper presynaptic to postsynaptic coupling must be maintained in order for effective cell-to-cell communication to occur. Here, we examined the NMJs of muscles with different activity profiles (soleus and EDL), on both slow- and fast-twitch fibers in those muscles, and among young adult and aged animals. We used immunofluorescent techniques to stain nerve terminal branching, presynaptic vesicles, postsynaptic receptors, as well as fast/slow myosin heavy chain. Confocal microscopy was used to capture images of NMJs for later quantitative analysis. Data were subjected to a two-way ANOVA (main effects for myofiber type and age), and in the event of a significant (p < 0.05) F ratio, a post hoc analysis was performed to identify pairwise differences. Results showed that the NMJs of different myofiber types routinely displayed differences in presynaptic and postsynaptic morphology (although the effect on NMJ size was reversed in the soleus and the EDL), but presynaptic to postsynaptic relationships were tightly maintained. Moreover, the ratio of presynaptic vesicles relative to nerve terminal branch length also was similar despite differences in muscles, their fiber type, and age. Thus, in the face of considerable overall structural differences of the NMJ, presynaptic to postsynaptic coupling remains constant, as does the relationship between presynaptic vesicles and the nerve terminal branches that support them.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology and Health Sciences, The College of William and Mary, Williamsburg, Virginia, 23187-8795; Program in Neuroscience, The College of William and Mary, Williamsburg, Virginia, 23187-8795
| | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Age-related muscle weakness causes a staggering economic, public, and personal burden. Most research has focused on internal muscular mechanisms as the root cause to strength loss. Here, we briefly discuss age-related impairments in the brain and peripheral nerve structures that may theoretically lead to muscle weakness in old age. RECENT FINDINGS Neuronal atrophy in the brain is accompanied by electrical noise tied to declines in dopaminergic neurotransmission that degrades communication between neurons. Additionally, sensorimotor feedback loops that help regulate corticospinal excitability are impaired. In the periphery, there is evidence for motor unit loss, axonal atrophy, demyelination caused by oxidative damage to proteins and lipids, and modified transmission of the electrical signal through the neuromuscular junction. SUMMARY Recent evidence clearly indicates that muscle weakness associated with aging is not entirely explained by classically postulated atrophy of muscle. In this issue, which focuses on 'Ageing: Biology and Nutrition' we will highlight new findings on how nervous system changes contribute to the aging muscle phenotype. These findings indicate that the ability to communicate neural activity to skeletal muscle is impaired with advancing age, which raises the question of whether many of these age-related neurological changes are mechanistically linked to impaired performance of human skeletal muscle. Collectively, this work suggests that future research should explore the direct link of these 'upstream' neurological adaptions and onset of muscle weakness in elders. In the long term, this new focus might lead to novel strategies to attenuate the age-related loss of muscle strength.
Collapse
Affiliation(s)
- Todd M Manini
- Institute of Aging and the Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
40
|
Arthur ST, Cooley ID. The effect of physiological stimuli on sarcopenia; impact of Notch and Wnt signaling on impaired aged skeletal muscle repair. Int J Biol Sci 2012; 8:731-60. [PMID: 22701343 PMCID: PMC3371570 DOI: 10.7150/ijbs.4262] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/06/2012] [Indexed: 12/17/2022] Open
Abstract
The age-related loss of skeletal muscle mass and function that is associated with sarcopenia can result in ultimate consequences such as decreased quality of life. The causes of sarcopenia are multifactorial and include environmental and biological factors. The purpose of this review is to synthesize what the literature reveals in regards to the cellular regulation of sarcopenia, including impaired muscle regenerative capacity in the aged, and to discuss if physiological stimuli have the potential to slow the loss of myogenic potential that is associated with sarcopenia. In addition, this review article will discuss the effect of aging on Notch and Wnt signaling, and whether physiological stimuli have the ability to restore Notch and Wnt signaling resulting in rejuvenated aged muscle repair. The intention of this summary is to bring awareness to the benefits of consistent physiological stimulus (exercise) to combating sarcopenia as well as proclaiming the usefulness of contraction-induced injury models to studying the effects of local and systemic influences on aged myogenic capability.
Collapse
Affiliation(s)
- Susan Tsivitse Arthur
- Department of Kinesiology, Laboratory of Systems Physiology, University North Carolina - Charlotte, Charlotte, NC 28223, USA.
| | | |
Collapse
|
41
|
Griffin P, Michel JJ, Huysman K, Logar AJ, Vallejo AN. Integration of immunity with physical and cognitive function in definitions of successful aging. Aging Dis 2012; 3:34-50. [PMID: 22500270 PMCID: PMC3320803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 02/27/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023] Open
Abstract
Studies comparing chronologically "young" versus "old" humans document age-related decline of classical immunological functions. However, older adults aged ≥65 years have very heterogeneous health phenotypes. A significant number of them are functionally independent and are surviving well into their 8(th)-11(th) decade life, observations indicating that aging or old age is not synonymous with immune incompetence. While there are dramatic age-related changes in the immune system, not all of these changes may be considered detrimental. Here, we review evidences for novel immunologic processes that become elaborated with advancing age that complement preserved classical immune functions and promote immune homeostasis later in life. We propose that elaboration such of late life immunologic properties is indicative of beneficial immune remodeling that is an integral component of successful aging, an emerging physiologic construct associated with similar age-related physiologic adaptations underlying maintenance of physical and cognitive function. We suggest that a systems approach integrating immune, physical, and cognitive functions, rather than a strict immunodeficiency-minded approach, will be key towards innovations in clinical interventions to better promote protective immunity and functional independence among the elderly.
Collapse
Affiliation(s)
- Patricia Griffin
- Department of Pediatrics, University of Pittsburgh School of Medicine; and Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Joshua J. Michel
- Department of Pediatrics, University of Pittsburgh School of Medicine; and Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Kristy Huysman
- Department of Pediatrics, University of Pittsburgh School of Medicine; and Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Alison J. Logar
- Department of Pediatrics, University of Pittsburgh School of Medicine; and Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
| | - Abbe N. Vallejo
- Department of Pediatrics, University of Pittsburgh School of Medicine; and Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA 15224, USA
- Department of Immunology, the Pittsburgh Cancer Institute, and the McGowan Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|