1
|
Saito Y, Sugimura T. Noradrenergic current responses of neurons in rat oculomotor neural integrators. J Neurophysiol 2024; 132:68-77. [PMID: 38838298 DOI: 10.1152/jn.00019.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024] Open
Abstract
The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are involved in the control of horizontal and vertical gaze, respectively. A previous study showed that PHN neurons exhibit depolarized or hyperpolarized responses to noradrenaline (NA). However, the adrenoceptor types that participate in NA-induced responses and the effects of NA on INC neurons have not yet been investigated. Furthermore, the relationship between NA-induced responses and neuron types defined by neurotransmitter phenotypes has not been determined. In this study, we investigated NA-induced current responses in PHN and INC neurons and the relationships between these responses and neuron types using whole cell recordings in wild-type and transgenic rat brainstem slices. Local application of NA to the cell soma induced slow inward (SI) and slow outward (SO) currents that were mainly mediated by α1 and α2 adrenoceptors, respectively. These current responses were observed in both PHN and INC neurons, although the proportion of INC neurons that responded to NA was low. Analyses of the distributions of the current responses revealed that in the PHN, all fluorescently identified inhibitory neurons exhibited SI currents, whereas glutamatergic and cholinergic neurons exhibited both SI and SO currents. In the INC, glutamatergic and inhibitory neurons preferentially exhibited SI and SO currents, respectively. When the PHN and INC neurons were characterized by their firing pattern, we found that the proportions of the currents depended on their firing pattern. These results suggest that various modes of noradrenergic modulation in horizontal and vertical neural integrators are dependent on neuron type.NEW & NOTEWORTHY Noradrenergic modulation of oculomotor neural integrators involved in gaze control has not been elucidated. Here, we report that noradrenaline (NA)-induced slow inward (SI) and outward (SO) currents are mediated mainly by α1 and α2 adrenoceptors in neurons that participate in horizontal and vertical gaze control. The NA-induced current responses differed depending on the neurotransmitter phenotype and firing pattern. These results suggest various modes of noradrenergic modulation in horizontal and vertical integrator neurons.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
2
|
Saito Y, Sugimura T. Serotonergic current responses of neurons in rat oculomotor neural integrators. J Neurophysiol 2023; 129:399-409. [PMID: 36651645 DOI: 10.1152/jn.00452.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are involved in controlling horizontal and vertical gaze, respectively. Previous studies have shown that PHN neurons exhibit depolarized or hyperpolarized responses to serotonin (5-hydroxytryptamine, 5-HT). However, serotonergic modulation of INC neurons has not been examined. Furthermore, the relationship between 5-HT-induced responses and neuron types based on neurotransmitter phenotypes has not been clarified. In this study, we investigated 5-HT-induced current responses in PHN and INC neurons and the distributions of distinct current responses in different neuron types, using whole cell recordings of wild-type and transgenic rat brain stem slices. Local application of 5-HT to the cell soma confirmed that slow inward (SI) and slow outward (SO) currents were mediated by 5-HT2 and 5-HT1A receptors, respectively. Furthermore, fast inward (FI) currents that were mediated by 5-HT3 receptors were observed. These three current responses were observed in both PHN and INC neurons. Analyses of the distributions of the three current responses revealed that fluorescently identified glutamatergic and inhibitory neurons in the PHN showed high proportions of SI and SO currents, respectively, whereas glutamatergic and inhibitory neurons in the INC showed mainly SO currents. When PHN and INC neurons were characterized on the basis of firing patterns, the proportions of the currents depended on the firing patterns. The different distributions of 5-HT-induced currents suggest distinct serotonergic modulation modes specific to horizontal and vertical gaze control.NEW & NOTEWORTHY Serotonergic modulation of vertical gaze control (interstitial nucleus of Cajal, INC) is less understood than that of horizontal gaze control (prepositus hypoglossal nucleus, PHN). Here, we report 5-HT-induced fast inward currents in addition to the previously reported slow inward and outward currents. The distributions of these currents in INC neurons based on neurotransmitter phenotypes differ from those in PHN neurons. These results suggest distinct serotonergic modulation modes in horizontal and vertical gaze control centers.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| | - Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
3
|
Saito Y, Sugimura T. Distinct purinergic receptor-mediated currents of rat oculomotor integrator neurons characterized by different firing patterns. J Neurophysiol 2021; 126:1045-1054. [PMID: 34433003 DOI: 10.1152/jn.00209.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The prepositus hypoglossi nucleus (PHN) and the interstitial nucleus of Cajal (INC) are oculomotor neural integrators involved in the control of horizontal and vertical gaze, respectively. We previously reported that local application of adenosine 5'-trisphosphate (ATP) to PHN neurons induced P2X receptor-mediated fast inward currents, P2Y receptor-mediated slow inward currents, and/or adenosine P1 receptor-mediated slow outward currents. In contrast to the findings on PHN neurons, the expression of functional purinergic receptors in INC neurons has not been examined. In this study, we investigated ATP-induced current responses in INC neurons and the distributions of the three current types across distinct firing patterns in PHN and INC neurons using whole cell recordings of rat brainstem slices. The application of ATP induced all three current types in INC neurons. Pharmacological analyses indicated that the fast inward and slow outward currents were mainly mediated by the P2X and P1 subtypes, respectively, corresponding to the receptor subtypes in PHN neurons. However, agonists of the P2Y subtype did not induce the slow inward current in INC neurons, suggesting that other subtypes or mechanisms are responsible for this current. Analysis of the distribution of the three current types in PHN and INC neurons revealed that the proportions of the currents were distinctly dependent on the firing patterns of PHN neurons whereas the proportion of the fast inward current was higher during all firing patterns of INC neurons. The different distributions of ATP-induced currents suggest distinct modes of purinergic modulation specific to horizontal and vertical integrators.NEW & NOTEWORTHY The roles of purinergic signaling on vertical (mediated by the interstitial nucleus of Cajal; INC) and horizontal (prepositus hypoglossal nucleus; PHN) gaze control are not understood. Here, we report three current types induced by ATP in INC neurons; the distribution of these current types across different types of INC neurons is different from that in PHN neurons. These results suggest distinct modes of purinergic modulation in horizontal and vertical gaze control centers.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| | - Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
4
|
Sugimura T, Saito Y. Distinct proportions of cholinergic neurons in the rat prepositus hypoglossi nucleus according to their cerebellar projection targets. J Comp Neurol 2021; 529:1541-1552. [PMID: 32949021 DOI: 10.1002/cne.25035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 11/07/2022]
Abstract
Cerebellar functions are modulated by cholinergic inputs, the density of which varies among cerebellar regions. Although the prepositus hypoglossi nucleus (PHN), a brainstem structure involved in controlling gaze holding, is known as one of the major sources of these cholinergic inputs, the proportions of cholinergic neurons in PHN projections to distinct cerebellar regions have not been quantitatively analyzed. In this study, we identified PHN neurons projecting to the cerebellum by applying retrograde labeling with dextran-conjugated Alexa 488 in choline acetyltransferase (ChAT)-tdTomato transgenic rats and compared the proportion of cholinergic PHN neurons in the PHN projections to four different regions of the cerebellum, namely the flocculus (FL), the uvula and nodulus (UN), lobules III-V in the vermis (VM), and the hemispheric paramedian lobule and crus 2 (PC). In the PHN, the percentage of cholinergic PHN neurons was lower in the projection to the FL than in the projection to the UN, VM or PC. Preposito-cerebellar neurons, except for preposito-FL neurons, included different proportions of cholinergic neurons at different rostrocaudal positions in the PHN. These results suggest that cholinergic PHN neurons project to not only the vestibulocerebellum but also the anterior vermis and posterior hemisphere and that the proportion of cholinergic neurons among projection neurons from the PHN differs depending on cerebellar target areas and the rostro-caudal regions of the PHN. This study provides insights regarding the involvement of cerebellar cholinergic networks in gaze holding.
Collapse
Affiliation(s)
- Taketoshi Sugimura
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
5
|
Sugioka M, Saito Y. Purinergic modulation of neuronal activity in the rat prepositus hypoglossi nucleus. Eur J Neurosci 2018; 48:3354-3366. [PMID: 30339313 DOI: 10.1111/ejn.14210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/03/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
Abstract
In the nervous system, adenosine 5'-trisphosphate (ATP) functions as a neurotransmitter and binds to ionotropic P2X receptors and metabotropic P2Y receptors. Although ATP receptors are expressed in the prepositus hypoglossi nucleus (PHN), which is a brainstem structure involved in controlling horizontal gaze, it is unclear whether ATP indeed affects the activity of PHN neurons. In this study, we investigated the effects of ATP on spontaneous firing of PHN neurons using whole-cell recordings in rat brainstem slices. Bath application of ATP increased or decreased the spontaneous firing rate of the neurons in a dose-dependent manner, indicating that ATP indeed affects PHN neuronal activity. To clarify the mechanisms of the ATP effects, we investigated the current responses of PHN neurons to a local application of ATP. The ATP application induced a fast inward (FI) current, a slow inward (SI) current, and/or a slow outward (SO) current in the neurons. The agonists of P2X and P2Y receptors induced FI and SI currents, respectively. The SO currents were not induced by the ATP agonists but were induced by adenosine, which may be extracellularly converted from ATP by ectonucleotidases. An antagonist of adenosine P1 (A1 ) receptors abolished the adenosine-induced SO currents and bath application of adenosine decreased the spontaneous firing rate of all PHN neurons tested. These results indicate that PHN neurons express functional purinoceptors and show that the FI, SI, and SO currents were mediated via P2X, P2Y, and A1 receptors, respectively.
Collapse
Affiliation(s)
- Miho Sugioka
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
6
|
Zhang Y, Yanagawa Y, Saito Y. Firing responses mediated via distinct nicotinic acetylcholine receptor subtypes in rat prepositus hypoglossi nuclei neurons. J Neurophysiol 2018; 120:1525-1533. [PMID: 29975163 DOI: 10.1152/jn.00168.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that cholinergic current responses mediated via nicotinic acetylcholine (ACh) receptors (nAChRs) in the prepositus hypoglossi nucleus (PHN), which participates in gaze control, can be classified into distinct types based on different kinetics and are mainly composed of α7- and/or non-α7-subtypes: fast (F)-, slow (S)-, and fast and slow (FS)-type currents. In this study, to clarify how each current type is related to neuronal activities, we investigated the relationship between the current types and the membrane properties and the firing responses that were induced by each current type. The proportion of the current types differed in neurons that exhibited different afterhyperpolarization (AHP) profiles and firing patterns, suggesting that PHN neurons show a preference for specific current types dependent on the membrane properties. In response to ACh, F-type neurons showed either one action potential (AP) or multiple APs with a short firing duration, and S-type neurons showed multiple APs with a long firing duration. The firing frequency of F-type neurons was significantly higher than that of S-type and FS-type neurons. An α7-subtype-specific antagonist abolished the firing responses of F-type neurons and reduced the responses of FS-type neurons but had little effect on the responses of S-type neurons, which were reduced by a non-α7-subtype-specific antagonist. These results suggest that the different properties of the current types and the distinct expression of the nAChR subtypes in PHN neurons with different membrane properties produce unique firing responses via the activation of nAChRs. NEW & NOTEWORTHY Prepositus hypoglossi nucleus (PHN) neurons show distinct nicotinic acetylcholine receptor (nAChR)-mediated current responses. The proportion of the current types differed in the neurons that exhibited different afterhyperpolarization profiles and firing patterns. The nAChR-mediated currents with different kinetics induced firing responses of the neurons that were distinct in the firing frequency and duration. These results suggest that the different properties of the current types in PHN neurons with different membrane properties produce unique firing responses via the activation of nAChRs.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Physiology, Dalian Medical University , Dalian , China
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, Sanbancho, Chiyoda-ku, Tokyo , Japan
| | - Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.,Department of Neurophysiology, Nara Medical University, Kashihara, Nara , Japan
| |
Collapse
|
7
|
Comparisons of Neuronal and Excitatory Network Properties between the Rat Brainstem Nuclei that Participate in Vertical and Horizontal Gaze Holding. eNeuro 2017; 4:eN-NWR-0180-17. [PMID: 28966973 PMCID: PMC5616193 DOI: 10.1523/eneuro.0180-17.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 11/21/2022] Open
Abstract
Gaze holding is primarily controlled by neural structures including the prepositus hypoglossi nucleus (PHN) for horizontal gaze and the interstitial nucleus of Cajal (INC) for vertical and torsional gaze. In contrast to the accumulating findings of the PHN, there is no report regarding the membrane properties of INC neurons or the local networks in the INC. In this study, to verify whether the neural structure of the INC is similar to that of the PHN, we investigated the neuronal and network properties of the INC using whole-cell recordings in rat brainstem slices. Three types of afterhyperpolarization (AHP) profiles and five firing patterns observed in PHN neurons were also observed in INC neurons. However, the overall distributions based on the AHP profile and the firing patterns of INC neurons were different from those of PHN neurons. The application of burst stimulation to a nearby site of a recorded INC neuron induced an increase in the frequency of spontaneous EPSCs. The duration of the increased EPSC frequency of INC neurons was not significantly different from that of PHN neurons. The percent of duration reduction induced by a Ca2+-permeable AMPA (CP-AMPA) receptor antagonist was significantly smaller in the INC than in the PHN. These findings suggest that local excitatory networks that activate sustained EPSC responses also exist in the INC, but their activation mechanisms including the contribution of CP-AMPA receptors differ between the INC and the PHN.
Collapse
|
8
|
Saito Y, Yanagawa Y. Distinct response properties of rat prepositus hypoglossi nucleus neurons classified on the basis of firing patterns. Neurosci Res 2017; 121:18-28. [PMID: 28288866 DOI: 10.1016/j.neures.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/20/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Neurons in the prepositus hypoglossi nucleus (PHN), which is involved in controlling horizontal gaze, show distinct firing patterns in response to depolarizing current pulses. Although the firing patterns are commonly used to classify neuron types, whether the classified PHN neurons show differences in voltage response properties when stimulated with various types of current inputs remains unclear. In this study, we investigated the response properties of PHN neurons to various current stimuli using whole-cell recordings in rat brainstem slices. In response to pulse currents, neurons that exhibited oscillatory firing (OSC type) showed greater gain than other types, and neurons with a low firing rate (LFR type) showed strong overshooting firing responses to ramp currents. In response to triangular ramp currents, the late-spiking type and the LFR type showed a marked hysteretic frequency-current relationship. In response to sinusoidal currents, the gain was larger in the OSC type than in the other types, although the gain and phase of all types of neurons were similarly modulated by an increase in the input frequency. These findings suggest that distinct neuron types show distinct response properties, depending on the type of stimulus. These neuron types may represent the functionally different populations in the PHN.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
9
|
Zhang Y, Yanagawa Y, Saito Y. Nicotinic acetylcholine receptor-mediated responses in medial vestibular and prepositus hypoglossi nuclei neurons showing distinct neurotransmitter phenotypes. J Neurophysiol 2016; 115:2649-57. [PMID: 26936981 DOI: 10.1152/jn.00852.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/27/2016] [Indexed: 11/22/2022] Open
Abstract
Cholinergic transmission in both the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN) plays an important role in horizontal eye movements. We previously demonstrated that the current responses mediated via nicotinic acetylcholine receptors (nAChRs) were larger than those mediated via muscarinic acetylcholine receptors (mAChRs) in cholinergic MVN and PHN neurons that project to the cerebellum. In this study, to clarify the predominant nAChR responses and the expression patterns of nAChRs in MVN and PHN neurons that exhibit distinct neurotransmitter phenotypes, we identified cholinergic, inhibitory, and glutamatergic neurons using specific transgenic rats and investigated current responses to the application of acetylcholine (ACh) using whole cell recordings in brain stem slices. ACh application induced larger nAChR-mediated currents than mAChR-mediated currents in every neuronal phenotype. In the presence of an mAChR antagonist, we found three types of nAChR-mediated currents that exhibited different rise and decay times and designated these as fast (F)-, slow (S)-, and fast and slow (FS)-type currents. F-type currents were the predominant response in inhibitory MVN neurons, whereas S-type currents were observed in the majority of glutamatergic MVN and PHN neurons. No dominant response type was observed in cholinergic neurons. Pharmacological analyses revealed that the F-, S-, and FS-type currents were mainly mediated by α7, non-α7, and both α7 and non-α7 nAChRs, respectively. These findings suggest that cholinergic responses in the major neuronal populations of the MVN and PHN are predominantly mediated by nAChRs and that the expression of α7 and non-α7 nAChRs differ among the neuronal phenotypes.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Physiology, Dalian Medical University, Dalian, China
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Chiyoda-ku, Tokyo, Japan; and
| | - Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
10
|
Saito Y, Zhang Y, Yanagawa Y. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model. Eur J Neurosci 2015; 41:1036-48. [PMID: 25808645 DOI: 10.1111/ejn.12878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 01/30/2015] [Accepted: 02/18/2015] [Indexed: 11/28/2022]
Abstract
Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan; Department of Neurophysiology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | | | | |
Collapse
|
11
|
Zhang Y, Kaneko R, Yanagawa Y, Saito Y. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors. Eur J Neurosci 2014; 39:1294-313. [PMID: 24593297 DOI: 10.1111/ejn.12509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 12/11/2013] [Accepted: 01/10/2014] [Indexed: 02/02/2023]
Abstract
Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | |
Collapse
|
12
|
Saito Y, Yanagawa Y. Ca(2+)-activated ion currents triggered by ryanodine receptor-mediated Ca(2+) release control firing of inhibitory neurons in the prepositus hypoglossi nucleus. J Neurophysiol 2012; 109:389-404. [PMID: 23100137 DOI: 10.1152/jn.00617.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous miniature outward currents (SMOCs) are known to exist in smooth muscles and peripheral neurons, and evidence for the presence of SMOCs in central neurons has been accumulating. SMOCs in central neurons are induced through Ca(2+)-activated K(+) (K(Ca)) channels, which are activated through Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum via ryanodine receptors (RyRs). Previously, we found that some neurons in the prepositus hypoglossi nucleus (PHN) showed spontaneous outward currents (SOCs). In the present study, we used whole cell recordings in slice preparations of the rat brain stem to investigate the following: 1) the ionic mechanisms of SOCs, 2) the types of neurons exhibiting frequent SOCs, and 3) the effect of Ca(2+)-activated conductance on neuronal firing. Pharmacological analyses revealed that SOCs were induced via the activation of small-conductance-type K(Ca) (SK) channels and RyRs, indicating that SOCs correspond to SMOCs. An analysis of the voltage responses to current pulses of the fluorescence-expressing inhibitory neurons of transgenic rats revealed that inhibitory neurons frequently exhibited SOCs. Abolition of SOCs via blockade of SK channels enhanced the frequency of spontaneous firing of inhibitory PHN neurons. However, abolition of SOCs via blockade of RyRs reduced the firing frequency and hyperpolarized the membrane potential. Similar reductions in firing frequency and hyperpolarization were also observed when Ca(2+)-activated nonselective cation (CAN) channels were blocked. These results suggest that, in inhibitory neurons in the PHN, Ca(2+) release via RyRs activates SK and CAN channels, and these channels regulate spontaneous firing in a complementary manner.
Collapse
Affiliation(s)
- Yasuhiko Saito
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | | |
Collapse
|
13
|
Saito Y, Shino M, Yanagawa Y. Characterization of ionic channels underlying the specific firing pattern of a novel neuronal subtype in the rat prepositus hypoglossi nucleus. Neurosci Res 2012; 73:32-41. [DOI: 10.1016/j.neures.2012.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/31/2012] [Accepted: 02/21/2012] [Indexed: 11/28/2022]
|