1
|
Rawlings-Mortimer F, Dalley JW. Centralising a loss of consciousness to the central medial thalamus. Brain Neurosci Adv 2024; 8:23982128241306549. [PMID: 39691416 PMCID: PMC11650603 DOI: 10.1177/23982128241306549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
Although a role of the thalamus in different arousal and awareness states is well established, there is a surprising lack of knowledge on subregional specificity within this complex, multinucleated structure of the diencephalon. In their recent paper 'Extrasynaptic GABA-A receptors in central medial thalamus mediate anaesthesia in rats', Muheyati et al. evaluated whether GABAA receptors expressed in the central medial (CM), paraventricular (PV) or lateral mediodorsal (MD) nuclei of the thalamus contribute to the loss of the righting reflex (LORR) in rats. Deficits in this reflex have previously been interpreted as a surrogate marker of altered levels of consciousness. Using a range of convergent techniques, the authors report the novel finding that delta subunit-expressing GABAA receptors in the CM contribute to distinct awareness states. This important discovery implicates a tonic GABAA-mediated conductance in the CM that may be relevant for minimally conscious states and other conditions of altered awareness.
Collapse
Affiliation(s)
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Frohlich J, Mediano PAM, Bavato F, Gharabaghi A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun Biol 2023; 6:654. [PMID: 37340024 DOI: 10.1038/s42003-023-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Low-frequency (<4 Hz) neural activity, particularly in the delta band, is generally indicative of loss of consciousness and cortical down states, particularly when it is diffuse and high amplitude. Remarkably, however, drug challenge studies of several diverse classes of pharmacological agents-including drugs which treat epilepsy, activate GABAB receptors, block acetylcholine receptors, or produce psychedelic effects-demonstrate neural activity resembling cortical down states even as the participants remain conscious. Of those substances that are safe to use in healthy volunteers, some may be highly valuable research tools for investigating which neural activity patterns are sufficient for consciousness or its absence.
Collapse
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
4
|
Llano DA, Ma C, Di Fabrizio U, Taheri A, Stebbings KA, Yudintsev G, Xiao G, Kenyon RV, Berger-Wolf TY. A novel dynamic network imaging analysis method reveals aging-related fragmentation of cortical networks in mouse. Netw Neurosci 2021; 5:569-590. [PMID: 34189378 PMCID: PMC8233117 DOI: 10.1162/netn_a_00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Network analysis of large-scale neuroimaging data is a particularly challenging computational problem. Here, we adapt a novel analytical tool, the community dynamic inference method (CommDy), for brain imaging data from young and aged mice. CommDy, which was inspired by social network theory, has been successfully used in other domains in biology; this report represents its first use in neuroscience. We used CommDy to investigate aging-related changes in network metrics in the auditory and motor cortices by using flavoprotein autofluorescence imaging in brain slices and in vivo. We observed that auditory cortical networks in slices taken from aged brains were highly fragmented compared to networks observed in young animals. CommDy network metrics were then used to build a random-forests classifier based on NMDA receptor blockade data, which successfully reproduced the aging findings, suggesting that the excitatory cortical connections may be altered during aging. A similar aging-related decline in network connectivity was also observed in spontaneous activity in the awake motor cortex, suggesting that the findings in the auditory cortex reflect general mechanisms during aging. These data suggest that CommDy provides a new dynamic network analytical tool to study the brain and that aging is associated with fragmentation of intracortical networks.
Collapse
Affiliation(s)
- Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Chihua Ma
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Umberto Di Fabrizio
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Aynaz Taheri
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Kevin A. Stebbings
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Georgiy Yudintsev
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Robert V. Kenyon
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Tanya Y. Berger-Wolf
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
- Current affiliation: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Frohlich J, Toker D, Monti MM. Consciousness among delta waves: a paradox? Brain 2021; 144:2257-2277. [PMID: 33693596 DOI: 10.1093/brain/awab095] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 01/29/2023] Open
Abstract
A common observation in EEG research is that consciousness vanishes with the appearance of delta (1 - 4 Hz) waves, particularly when those waves are high amplitude. High amplitude delta oscillations are very frequently observed in states of diminished consciousness, including slow wave sleep, anaesthesia, generalised epileptic seizures, and disorders of consciousness such as coma and vegetative state. This strong correlation between loss of consciousness and high amplitude delta oscillations is thought to stem from the widespread cortical deactivation that occurs during the "down states" or troughs of these slow oscillations. Recently, however, many studies have reported the presence of prominent delta activity during conscious states, which casts doubt on the hypothesis that high amplitude delta oscillations are an indicator of unconsciousness. These studies include work in Angelman syndrome, epilepsy, behavioural responsiveness during propofol anaesthesia, postoperative delirium, and states of dissociation from the environment such as dreaming and powerful psychedelic states. The foregoing studies complement an older, yet largely unacknowledged, body of literature that has documented awake, conscious patients with high amplitude delta oscillations in clinical reports from Rett syndrome, Lennox-Gastaut syndrome, schizophrenia, mitochondrial diseases, hepatic encephalopathy, and nonconvulsive status epilepticus. At the same time, a largely parallel body of recent work has reported convincing evidence that the complexity or entropy of EEG and magnetoencephalogram or MEG signals strongly relates to an individual's level of consciousness. Having reviewed this literature, we discuss plausible mechanisms that would resolve the seeming contradiction between high amplitude delta oscillations and consciousness. We also consider implications concerning theories of consciousness, such as integrated information theory and the entropic brain hypothesis. Finally, we conclude that false inferences of unconscious states can be best avoided by examining measures of electrophysiological complexity in addition to spectral power.
Collapse
Affiliation(s)
- Joel Frohlich
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA
| | - Daniel Toker
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA
| | - Martin M Monti
- Department of Psychology, University of California Los Angeles, 3423 Franz Hall, Los Angeles, California 90095, USA.,Department of Neurosurgery, UCLA Brain Injury Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
6
|
Finley J. Cellular stress and AMPK links metformin and diverse compounds with accelerated emergence from anesthesia and potential recovery from disorders of consciousness. Med Hypotheses 2019; 124:42-52. [PMID: 30798915 DOI: 10.1016/j.mehy.2019.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/19/2019] [Indexed: 01/23/2023]
Abstract
The neural correlates of consciousness and the mechanisms by which general anesthesia (GA) modulate such correlates to induce loss of consciousness (LOC) has been described as one of the biggest mysteries of modern medicine. Several cellular targets and neural circuits have been identified that play a critical role in LOC induced by GA, including the GABAA receptor and ascending arousal nuclei located in the basal forebrain, hypothalamus, and brain stem. General anesthetics (GAs) including propofol and inhalational agents induce LOC in part by potentiating chloride influx through the GABAA receptor, leading to neural inhibition and LOC. Interestingly, nearly all GAs used clinically may also induce paradoxical excitation, a phenomenon in which GAs promote neuronal excitation at low doses before inducing unconsciousness. Additionally, emergence from GA, a passive process that occurs after anesthetic removal, is associated with lower anesthetic concentrations in the brain compared to doses associated with induction of GA. AMPK, an evolutionarily conserved kinase activated by cellular stress (e.g. increases in calcium [Ca2+] and/or reactive oxygen species [ROS], etc.) increases lifespan and healthspan in several model organisms. AMPK is located throughout the mammalian brain, including in neurons of the thalamus, hypothalamus, and striatum as well as in pyramidal neurons in the hippocampus and cortex. Increases in ROS and Ca2+ play critical roles in neuronal excitation and glutamate, the primary excitatory neurotransmitter in the human brain, activates AMPK in cortical neurons. Nearly every neurotransmitter released from ascending arousal circuits that promote wakefulness, arousal, and consciousness activates AMPK, including acetylcholine, histamine, orexin-A, dopamine, and norepinephrine. Several GAs that are commonly used to induce LOC in human patients also activate AMPK (e.g. propofol, sevoflurane, isoflurane, dexmedetomidine, ketamine, midazolam). Various compounds that accelerate emergence from anesthesia, thus mitigating problematic effects associated with delayed emergence such as delirium, also activate AMPK (e.g. nicotine, caffeine, forskolin, carbachol). GAs and neurotransmitters also act as preconditioning agents and the GABAA receptor inhibitor bicuculline, which reverses propofol anesthesia, also activates AMPK in cortical neurons. We propose the novel hypothesis that cellular stress-induced AMPK activation links wakefulness, arousal, and consciousness with paradoxical excitation and accelerated emergence from anesthesia. Because AMPK activators including metformin and nicotine promote proliferation and differentiation of neural stem cells located in the subventricular zone and the dentate gyrus, AMPK activation may also enhance brain repair and promote potential recovery from disorders of consciousness (i.e. minimally conscious state, vegetative state, coma).
Collapse
|
7
|
Léger D, Debellemaniere E, Rabat A, Bayon V, Benchenane K, Chennaoui M. Slow-wave sleep: From the cell to the clinic. Sleep Med Rev 2018; 41:113-132. [DOI: 10.1016/j.smrv.2018.01.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
|
8
|
Castro-Zaballa S, Cavelli ML, Gonzalez J, Nardi AE, Machado S, Scorza C, Torterolo P. EEG 40 Hz Coherence Decreases in REM Sleep and Ketamine Model of Psychosis. Front Psychiatry 2018; 9:766. [PMID: 30705645 PMCID: PMC6345101 DOI: 10.3389/fpsyt.2018.00766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/21/2018] [Indexed: 01/04/2023] Open
Abstract
Cognitive processes are carried out during wakefulness by means of extensive interactions between cortical and subcortical areas. In psychiatric conditions, such as psychosis, these processes are altered. Interestingly, REM sleep where most dreams occurs, shares electrophysiological, pharmacological, and neurochemical features with psychosis. Because of this fact, REM sleep is considered a natural model of psychosis. Ketamine is a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist that at sub-anesthetic dose induces psychotomimetic-like effects in humans and animals, and is employed as a pharmacological model of psychosis. Oscillations in the gamma frequency band of the electroencephalogram (EEG), mainly at about 40 Hz, have been involved in cognitive functions. Hence, the present study was conducted to analyze the EEG low gamma (30-45 Hz) band power and coherence of the cat, in natural (REM sleep) and pharmacological (sub-anesthetic doses of ketamine) models of psychosis. These results were compared with the gamma activity during alert (AW) and quiet wakefulness (QW), as well as during non-REM (NREM) sleep. Five cats were chronically prepared for polysomnographic recordings, with electrodes in different cortical areas. Basal recordings were obtained and ketamine (5, 10, and 15 mg/kg, i.m.) was administrated. Gamma activity (power and coherence) was analyzed in the abovementioned conditions. Compared to wakefulness and NREM sleep, following ketamine administration gamma coherence decreased among all cortical regions studied; the same coherence profile was observed during REM sleep. On the contrary, gamma power was relatively high under ketamine, and similar to QW and REM sleep. We conclude that functional interactions between cortical areas in the gamma frequency band decrease in both experimental models of psychosis. This uncoupling of gamma frequency activity may be involved in the cognitive features shared by dreaming and psychosis.
Collapse
Affiliation(s)
- Santiago Castro-Zaballa
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Matías Lorenzo Cavelli
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquin Gonzalez
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Antonio Egidio Nardi
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Neurociência da Atividade Física, Universidade Salgado de Oliveira, Rio de Janeiro, Brazil
| | - Sergio Machado
- Laboratório de Pânico e Respiração, Instituto de Psiquiatria da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Neurociência da Atividade Física, Universidade Salgado de Oliveira, Rio de Janeiro, Brazil.,The Intercontinental Neuroscience Research Group, Merida, Mexico
| | - Cecilia Scorza
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,The Intercontinental Neuroscience Research Group, Merida, Mexico
| |
Collapse
|
9
|
Gaidica M, Clem J. Enhanced Neuronal Synchrony During Skilled Reaching at High Altitude. High Alt Med Biol 2017; 18:296-298. [PMID: 28472592 DOI: 10.1089/ham.2017.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Matt Gaidica
- 1 Neuroscience Graduate Department, University of Michigan , Ann Arbor, Michigan
| | - Jenna Clem
- 2 Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
10
|
Nagy D, Stoiljkovic M, Menniti FS, Hajós M. Differential Effects of an NR2B NAM and Ketamine on Synaptic Potentiation and Gamma Synchrony: Relevance to Rapid-Onset Antidepressant Efficacy. Neuropsychopharmacology 2016; 41:1486-94. [PMID: 26404843 PMCID: PMC4832008 DOI: 10.1038/npp.2015.298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/26/2015] [Accepted: 09/19/2015] [Indexed: 12/23/2022]
Abstract
Ketamine, a pan-NMDA receptor channel blocker, and CP-101,606, an NR2B-selective negative allosteric modulator, have antidepressant effects in humans that develop rapidly after the drugs are cleared from the body. It has been proposed that the antidepressant effect of ketamine results from delayed synaptic potentiation. To further investigate this hypothesis and potential mechanistic underpinnings we compared the effects of ketamine and CP-101,606 on neurophysiological biomarkers in rats immediately after drug administration and after the drugs had been eliminated. Local field and auditory-evoked potentials (AEPs) were recorded from primary auditory cortex and hippocampus in freely moving rats. Effects of different doses of ketamine or CP-101,606 were evaluated on amplitude of AEPs, auditory gating, and absolute power of delta and gamma oscillations 5-30 min (drug-on) and 5-6 h (drug-off) after systemic administration. Both ketamine and CP-101,606 significantly enhanced AEPs in cortex and hippocampus in the drug-off phase. In contrast, ketamine but not CP-101,606 disrupted auditory gating and increased gamma-band power during the drug-on period. Although both drugs affected delta power, these changes did not correlate with increase in AEPs in the drug-off phase. Our findings show that both ketamine and CP-101,606 augment AEPs after drug elimination, consistent with synaptic potentiation as a mechanism for antidepressant efficacy. However, these drugs had different acute effects on neurophysiological parameters. These results have implications for understanding the underlying mechanisms for the rapid-onset antidepressant effects of NMDA receptor inhibition and for the use of electrophysiological measures as translatable biomarkers.
Collapse
Affiliation(s)
- Dávid Nagy
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Milan Stoiljkovic
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | - Mihály Hajós
- Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA,Laboratory of Translational Neuropharmacology, Section of Comparative Medicine, Yale School of Medicine, 310 Cedar St MBL 330, New Haven, CT 06520, USA, Tel: +1 203 737 7649, Fax: +1 203 785 7499, E-mail:
| |
Collapse
|
11
|
Li M, Zhao F, Lee J, Wang D, Kuang H, Tsien JZ. Computational Classification Approach to Profile Neuron Subtypes from Brain Activity Mapping Data. Sci Rep 2015. [PMID: 26212360 PMCID: PMC4515637 DOI: 10.1038/srep12474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The analysis of cell type-specific activity patterns during behaviors is important for better understanding of how neural circuits generate cognition, but has not been well explored from in vivo neurophysiological datasets. Here, we describe a computational approach to uncover distinct cell subpopulations from in vivo neural spike datasets. This method, termed “inter-spike-interval classification-analysis” (ISICA), is comprised of four major steps: spike pattern feature-extraction, pre-clustering analysis, clustering classification, and unbiased classification-dimensionality selection. By using two key features of spike dynamic - namely, gamma distribution shape factors and a coefficient of variation of inter-spike interval - we show that this ISICA method provides invariant classification for dopaminergic neurons or CA1 pyramidal cell subtypes regardless of the brain states from which spike data were collected. Moreover, we show that these ISICA-classified neuron subtypes underlie distinct physiological functions. We demonstrate that the uncovered dopaminergic neuron subtypes encoded distinct aspects of fearful experiences such as valence or value, whereas distinct hippocampal CA1 pyramidal cells responded differentially to ketamine-induced anesthesia. This ISICA method should be useful to better data mining of large-scale in vivo neural datasets, leading to novel insights into circuit dynamics associated with cognitions.
Collapse
Affiliation(s)
- Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Fang Zhao
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Jason Lee
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Dong Wang
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA
| | - Hui Kuang
- 1] Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA [2] The Brain Decoding Center, Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province 666100, China
| | - Joe Z Tsien
- 1] Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, 30912, USA [2] The Brain Decoding Center, Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province 666100, China
| |
Collapse
|
12
|
Kalyanasundar B, Perez CI, Luna A, Solorio J, Moreno MG, Elias D, Simon SA, Gutierrez R. D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell. J Neurophysiol 2015; 114:585-607. [PMID: 25972577 DOI: 10.1152/jn.00012.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/06/2015] [Indexed: 12/18/2022] Open
Abstract
Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds.
Collapse
Affiliation(s)
- B Kalyanasundar
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Claudia I Perez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Alvaro Luna
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico; Department of Bioelectronics, CINVESTAV, Mexico City, Mexico
| | - Jessica Solorio
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - Mario G Moreno
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico
| | - David Elias
- Department of Bioelectronics, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico;
| |
Collapse
|
13
|
Cellular registration without behavioral recall of olfactory sensory input under general anesthesia. Anesthesiology 2014; 120:890-905. [PMID: 24694846 DOI: 10.1097/aln.0000000000000137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies suggest that sensory information is "received" but not "perceived" under general anesthesia. Whether and to what extent the brain continues to process sensory inputs in a drug-induced unconscious state remain unclear. METHODS One hundred seven rats were randomly assigned to 12 different anesthesia and odor exposure paradigms. The immunoreactivities of the immediate early gene products c-Fos and Egr1 as neural activity markers were combined with behavioral tests to assess the integrity and relationship of cellular and behavioral responsiveness to olfactory stimuli under a surgical plane of ketamine-xylazine general anesthesia. RESULTS The olfactory sensory processing centers could distinguish the presence or absence of experimental odorants even when animals were fully anesthetized. In the anesthetized state, the c-Fos immunoreactivity in the higher olfactory cortices revealed a difference between novel and familiar odorants similar to that seen in the awake state, suggesting that the anesthetized brain functions beyond simply receiving external stimulation. Reexposing animals to odorants previously experienced only under anesthesia resulted in c-Fos immunoreactivity, which was similar to that elicited by familiar odorants, indicating that previous registration had occurred in the anesthetized brain. Despite the "cellular memory," however, odor discrimination and forced-choice odor-recognition tests showed absence of behavioral recall of the registered sensations, except for a longer latency in odor recognition tests. CONCLUSIONS Histologically distinguishable registration of sensory processing continues to occur at the cellular level under ketamine-xylazine general anesthesia despite the absence of behavioral recognition, consistent with the notion that general anesthesia causes disintegration of information processing without completely blocking cellular communications.
Collapse
|