1
|
Cybinski LM, Hüsch S, Ziegler GC, Mühlberger A, Herrmann MJ. Intermittent theta burst stimulation to the left prefrontal cortex enhances extinction learning but not extinction recall. Behav Brain Res 2025; 479:115357. [PMID: 39592059 DOI: 10.1016/j.bbr.2024.115357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Non-invasive brain stimulation targeting the left ventromedial prefrontal cortex (vmPFC) has shown potential in enhancing fear extinction. However, optimal stimulation parameters for clinical application remain unclear. METHODS This study investigated the effects of intermittent theta burst stimulation (iTBS) on fear extinction using a three-day paradigm. Fifty healthy participants underwent fear acquisition (day 1), extinction learning (day 2), and both a spontaneous recovery and reinstatement test (day 3). Active or sham iTBS was applied before extinction learning to the left posterior PFC (MNI: -56, 2, 40), previously shown to be functionally connected to the vmPFC. Fear responses were measured using skin conductance responses (SCR) during CS+ and CS- presentations, along with arousal, valence, and contingency awareness ratings. RESULTS A significant time x group interaction was found for iTBS administered before extinction learning, with the active group showing reduced SCR during extinction learning compared to sham. However, no TMS effects were observed during the spontaneous recovery or reinstatement tests. CONCLUSION These findings suggest limited therapeutic potential for iTBS targeting the left posterior PFC in enhancing extinction memory consolidation. Further research is needed to determine optimal stimulation parameters for clinical application.
Collapse
Affiliation(s)
- Lisa M Cybinski
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany
| | - Sophia Hüsch
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany
| | - Georg C Ziegler
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany
| | - Andreas Mühlberger
- Department of Psychology - Clinical Psychology and Psychotherapy, University of Regensburg, Universitätsstraße 31, Regensburg 93053, Germany
| | - Martin J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, Margarete-Hoeppel-Platz 1, Wuerzburg 97080, Germany.
| |
Collapse
|
2
|
Brown JC, Kweon J, Sharma P, Siddiqi SH, Isserles M, Ressler KJ. Critically Assessing the Unanswered Questions of How, Where, and When to Induce Plasticity in the Posttraumatic Stress Disorder Network With Transcranial Magnetic Stimulation. Biol Psychiatry 2025; 97:392-404. [PMID: 38909668 DOI: 10.1016/j.biopsych.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
Extinction of traumatic memory, a primary treatment approach (termed exposure therapy) in posttraumatic stress disorder (PTSD), occurs through relearning and may be subserved at the molecular level by long-term potentiation of relevant circuits. In parallel, repetitive transcranial magnetic stimulation (TMS) is thought to work through long-term potentiation-like mechanisms and may provide a novel, safe, and effective treatment for PTSD. In a recent failed randomized controlled trial we emphasized the necessity of correctly identifying cortical targets, the directionality of TMS protocols, and the role of memory activation. Here, we provide a systematic review of TMS for PTSD to further identify how, where, and when TMS treatment should be delivered to alleviate PTSD symptoms. We conducted a systematic review of the literature by searching for repetitive TMS clinical trials involving patients with PTSD and outcomes. We searched MEDLINE through October 25, 2023, for "TMS and PTSD" and "transcranial magnetic stimulation and posttraumatic stress disorder." Thirty-one publications met our inclusion criteria (k = 17 randomized controlled trials, k = 14 open label). Randomized controlled trial protocols were varied in terms of TMS protocols, cortical TMS targets, and memory activation protocols. There was no clear superiority of low-frequency (k = 5) versus high-frequency (k = 6) protocols or by stimulation location. Memory provocation or exposure protocols (k = 7) appear to enhance response. Overall, TMS appears to be effective in treating PTSD symptoms across a variety of TMS frequencies, hemispheric target differences, and exposure protocols. Disparate protocols may be conceptually harmonized when viewed as potentiating proposed anxiolytic networks or suppressing anxiogenic networks.
Collapse
Affiliation(s)
- Joshua C Brown
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jamie Kweon
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Prayushi Sharma
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts
| | - Shan H Siddiqi
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Moshe Isserles
- Department of Psychiatry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
3
|
Cybinski LM, Bohmeier B, Rolle K, Gromer D, Raij T, Gundelach F, Erhardt-Lehmann A, Mühlberger A, Deckert J, Polak T, Pauli P, Herrmann MJ. Intermittent theta burst stimulation over the left prefrontal cortex: no additional effect for virtual reality exposure therapy in acrophobia-a randomized trial. Sci Rep 2024; 14:29450. [PMID: 39604433 PMCID: PMC11603325 DOI: 10.1038/s41598-024-80832-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Anxiety disorders are the most prevalent mental health conditions. Besides psycho-pharmacotherapy, cognitive behavioral therapy with an exposure-based approach is considered the gold standard. However, not all patients benefit from this approach. Here, we aimed to translate laboratory findings on enhanced fear extinction with repetitive transcranial magnetic stimulation (TMS) to the clinic. In this double-blind, randomized, placebo-controlled clinical trial, 76 participants with acrophobia received an activating intermittent theta burst stimulation (iTBS) targeting the left posterior prefrontal cortex immediately before two virtual reality exposure therapy sessions. Phobic symptoms were assessed at baseline, post-intervention, and a 6-month follow-up. Results revealed a significant reduction in phobic symptoms from baseline to post-assessment and follow-up and confirmed the efficacy of virtual reality exposure therapy as a treatment for specific phobias. Interestingly, no additional effect was observed for active iTBS compared to sham iTBS. Our post-hoc analyses argue for an individualized TMS application. Further research is needed to determine optimal TMS parameters and validate these results in clinical trials, accounting for methodological and inter- and intra-individual variability, as well as alternative therapeutic processes.
Collapse
Affiliation(s)
- L M Cybinski
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany
| | - B Bohmeier
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany
| | - K Rolle
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| | - D Gromer
- Department of Psychology - Clinical Psychology and Psychotherapy, University of Wuerzburg, 97070, Wuerzburg, Germany
| | - T Raij
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - F Gundelach
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany
| | - A Erhardt-Lehmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804, Munich, Germany
| | - A Mühlberger
- Department of Psychology - Clinical Psychology and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - J Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany
| | - T Polak
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany
| | - P Pauli
- Department of Psychology - Clinical Psychology and Psychotherapy, University of Wuerzburg, 97070, Wuerzburg, Germany
| | - M J Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatics, and Psychotherapy, University Hospital of Wuerzburg, 97080, Wuerzburg, Germany.
| |
Collapse
|
4
|
Lei L, Lai CSW, Lee TMC, Lam CLM. The effect of transcranial direct current and magnetic stimulation on fear extinction and return of fear: A meta-analysis and systematic review. J Affect Disord 2024; 362:263-286. [PMID: 38908557 DOI: 10.1016/j.jad.2024.06.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND We conducted a meta-analysis and qualitative review on the randomized controlled trials investigating the effects of transcranial direct current stimulation and transcranial magnetic stimulation on fear extinction and the return of fear in non-primate animals and humans. METHODS The meta-analysis was conducted by searching PubMed, Web of science, PsycINFO, and Cochrane Library and extracting fear response in the active and sham groups in the randomized controlled trials. The pooled effect size was quantified by Hedges' g using a three-level meta-analytic model in R. RESULTS We identified 18 articles on the tDCS effect and 5 articles on the TMS effect, with 466 animal subjects and 621 human subjects. Our findings show that tDCS of the prefrontal cortex significantly inhibit fear retrieval in animal models (Hedges' g = -0.50). In human studies, TMS targeting the dorsolateral/ventromedial prefrontal cortex has an inhibiting effect on the return of fear (Hedges' g = -0.24). LIMITATIONS The limited number of studies and the heterogeneous designs of the selected studies made cross-study and cross-species comparison difficult. CONCLUSIONS Our findings shed light on the optimal non-invasive brain stimulation protocols for targeting the neural circuitry of threat extinction in humans.
Collapse
Affiliation(s)
- Letian Lei
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Cora S W Lai
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Tatia M C Lee
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Neuropsychology and Human Neuroscience, The University of Hong Kong, Hong Kong, China
| | - Charlene L M Lam
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Laboratory of Clinical Psychology and Affective Neuroscience, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
5
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Clark KB. Smart Device-Driven Corticolimbic Plasticity in Cognitive-Emotional Restructuring of Space-Related Neuropsychiatric Disease and Injury. Life (Basel) 2022; 12:236. [PMID: 35207523 PMCID: PMC8875345 DOI: 10.3390/life12020236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Escalating government and commercial efforts to plan and deploy viable manned near-to-deep solar system exploration and habitation over the coming decades now drives next-generation space medicine innovations. The application of cutting-edge precision medicine, such as brain stimulation techniques, provides powerful clinical and field/flight situation methods to selectively control vagal tone and neuroendocrine-modulated corticolimbic plasticity, which is affected by prolonged cosmic radiation exposure, social isolation or crowding, and weightlessness in constricted operational non-terran locales. Earth-based clinical research demonstrates that brain stimulation approaches may be combined with novel psychotherapeutic integrated memory structure rationales for the corrective reconsolidation of arousing or emotional experiences, autobiographical memories, semantic schema, and other cognitive structures to enhance neuropsychiatric patient outcomes. Such smart cotherapies or countermeasures, which exploit natural, pharmaceutical, and minimally invasive neuroprosthesis-driven nervous system activity, may optimize the cognitive-emotional restructuring of astronauts suffering from space-related neuropsychiatric disease and injury, including mood, affect, and anxiety symptoms of any potential severity and pathophysiology. An appreciation of improved neuropsychiatric healthcare through the merging of new or rediscovered smart theragnostic medical technologies, capable of rendering personalized neuroplasticity training and managed psychotherapeutic treatment protocols, will reveal deeper insights into the illness states experienced by astronauts. Future work in this area should emphasize the ethical role of telemedicine and/or digital clinicians to advance the (semi)autonomous, technology-assisted medical prophylaxis, diagnosis, treatment, monitoring, and compliance of astronauts for elevated health, safety, and performance in remote extreme space and extraterrestrial environments.
Collapse
Affiliation(s)
- Kevin B. Clark
- Felidae Conservation Fund, Mill Valley, CA 94941, USA;
- Cures Within Reach, Chicago, IL 60602, USA
- Domain and Campus Champions Program, NSF Extreme Science and Engineering Discovery Environment (XSEDE), National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Multi-Omics and Systems Biology Analysis Working Group, NASA GeneLab, NASA Ames Research Center, Mountain View, CA 94035, USA
- SETI Institute, Mountain View, CA 94043, USA
- NASA NfoLD, NASA Astrobiology Program, NASA Ames Research Center, Mountain View, CA 94035, USA
- Universities Space Research Association, Columbia, MD 21046, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA 19104, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, CA 94305, USA
- Shared Interest Group for Natural and Artificial Intelligence (sigNAI), Max Planck Alumni Association, 14057 Berlin, Germany
- Nanotechnology and Biometrics Councils, Institute for Electrical and Electronics Engineers (IEEE), New York, NY 10016-5997, USA
| |
Collapse
|
7
|
Marković V, Vicario CM, Yavari F, Salehinejad MA, Nitsche MA. A Systematic Review on the Effect of Transcranial Direct Current and Magnetic Stimulation on Fear Memory and Extinction. Front Hum Neurosci 2021; 15:655947. [PMID: 33828472 PMCID: PMC8019721 DOI: 10.3389/fnhum.2021.655947] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Anxiety disorders are among the most prevalent mental disorders. Present treatments such as cognitive behavior therapy and pharmacological treatments show only moderate success, which emphasizes the importance for the development of new treatment protocols. Non-invasive brain stimulation methods such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) have been probed as therapeutic option for anxiety disorders in recent years. Mechanistic information about their mode of action, and most efficient protocols is however limited. Here the fear extinction model can serve as a model of exposure therapies for studying therapeutic mechanisms, and development of appropriate intervention protocols. We systematically reviewed 30 research articles that investigated the impact of rTMS and tDCS on fear memory and extinction in animal models and humans, in clinical and healthy populations. The results of these studies suggest that tDCS and rTMS can be efficient methods to modulate fear memory and extinction. Furthermore, excitability-enhancing stimulation applied over the vmPFC showed the strongest potential to enhance fear extinction. We further discuss factors that determine the efficacy of rTMS and tDCS in the context of the fear extinction model and provide future directions to optimize parameters and protocols of stimulation for research and treatment.
Collapse
Affiliation(s)
- Vuk Marković
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- International Graduate School of Neuroscience, Ruhr-University-Bochum, Bochum, Germany
| | | | - Fatemeh Yavari
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohammad A. Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A. Nitsche
- International Graduate School of Neuroscience, Ruhr-University-Bochum, Bochum, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| |
Collapse
|
8
|
Gouveia FV, Gidyk DC, Giacobbe P, Ng E, Meng Y, Davidson B, Abrahao A, Lipsman N, Hamani C. Neuromodulation Strategies in Post-Traumatic Stress Disorder: From Preclinical Models to Clinical Applications. Brain Sci 2019; 9:brainsci9020045. [PMID: 30791469 PMCID: PMC6406551 DOI: 10.3390/brainsci9020045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/02/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is an often debilitating disease with a lifetime prevalence rate between 5⁻8%. In war veterans, these numbers are even higher, reaching approximately 10% to 25%. Although most patients benefit from the use of medications and psychotherapy, approximately 20% to 30% do not have an adequate response to conventional treatments. Neuromodulation strategies have been investigated for various psychiatric disorders with promising results, and may represent an important treatment option for individuals with difficult-to-treat forms of PTSD. We review the relevant neurocircuitry and preclinical stimulation studies in models of fear and anxiety, as well as clinical data on the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and deep brain stimulation (DBS) for the treatment of PTSD.
Collapse
Affiliation(s)
| | - Darryl C Gidyk
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Enoch Ng
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Agessandro Abrahao
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N3M5, Canada.
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada.
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada.
| |
Collapse
|
9
|
Kelley NJ, Gallucci A, Riva P, Romero Lauro LJ, Schmeichel BJ. Stimulating Self-Regulation: A Review of Non-invasive Brain Stimulation Studies of Goal-Directed Behavior. Front Behav Neurosci 2019; 12:337. [PMID: 30713492 PMCID: PMC6345691 DOI: 10.3389/fnbeh.2018.00337] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022] Open
Abstract
Self-regulation enables individuals to guide their thoughts, feelings, and behaviors in a purposeful manner. Self-regulation is thus crucial for goal-directed behavior and contributes to many consequential outcomes in life including physical health, psychological well-being, ethical decision making, and strong interpersonal relationships. Neuroscientific research has revealed that the prefrontal cortex plays a central role in self-regulation, specifically by exerting top-down control over subcortical regions involved in reward (e.g., striatum) and emotion (e.g., amygdala). To orient readers, we first offer a methodological overview of tDCS and then review experiments using non-invasive brain stimulation techniques (especially transcranial direct current stimulation) to target prefrontal brain regions implicated in self-regulation. We focus on brain stimulation studies of self-regulatory behavior across three broad domains of response: persistence, delay behavior, and impulse control. We suggest that stimulating the prefrontal cortex promotes successful self-regulation by altering the balance in activity between the prefrontal cortex and subcortical regions involved in emotion and reward processing.
Collapse
Affiliation(s)
- Nicholas J. Kelley
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Alessia Gallucci
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Paolo Riva
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | | | - Brandon J. Schmeichel
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Tan SZK, Sheng V, Chan YS, Lim LW. Eternal sunshine of the neuromodulated mind: Altering fear memories through neuromodulation. Exp Neurol 2019; 314:9-19. [PMID: 30639183 DOI: 10.1016/j.expneurol.2019.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/27/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022]
Abstract
Anxiety disorders pose one of the greatest threats to mental health. Modern treatment methods exist but are hindered by relapse, toxicity, and low efficacy. The use of neuromodulation to treat anxiety disorders has shown promising results, yet its underpinning mechanisms remain poorly understood. In this review, we make the case for further development of neuromodulation techniques to alter fear memories, with particular regard to future clinical applications in treating anxiety disorders. We start by briefly summarizing the neural circuitry of fear while identifying the pros and cons of possible neuromodulation targets. We then highlight recent advances in neuromodulation techniques that have been used to alter fear memories. Next, we apply a novel network-based approach to elucidate possible mechanisms of neuromodulation which may disrupt the consolidation of fear memory. Finally, we emphasize the need for more systematic neuromodulation studies on animal models and the developing brain. Overall, we aim to provide an integrated framework for future action, identifying key research priorities that must be addressed before effective neuromodulation-based treatments can be developed for practical use.
Collapse
Affiliation(s)
- Shawn Zheng Kai Tan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Victoria Sheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
11
|
Combined transcranial direct current stimulation with virtual reality exposure for posttraumatic stress disorder: Feasibility and pilot results. Brain Stimul 2018; 12:41-43. [PMID: 30266416 DOI: 10.1016/j.brs.2018.09.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/17/2018] [Accepted: 09/10/2018] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Facilitating neural activity using non-invasive brain stimulation may improve extinction-based treatments for posttraumatic stress disorder (PTSD). OBJECTIVE/HYPOTHESIS Here, we examined the feasibility of simultaneous transcranial direct current stimulation (tDCS) application during virtual reality (VR) to reduce psychophysiological arousal and symptoms in Veterans with PTSD. METHODS Twelve Veterans with PTSD received six combat-related VR exposure sessions during sham-controlled tDCS targeting ventromedial prefrontal cortex. Primary outcome measures were changes in skin conductance-based arousal and self-reported PTSD symptom severity. RESULTS tDCS + VR components were combined without technical difficulty. We observed a significant interaction between reduction in arousal across sessions and tDCS group (p = .03), indicating that the decrease in physiological arousal was greater in the tDCS + VR versus sham group. We additionally observed a clinically meaningful reduction in PTSD symptom severity. CONCLUSIONS This study demonstrates feasibility of applying tDCS during VR. Preliminary data suggest a reduction in psychophysiological arousal and PTSD symptomatology, supporting future studies.
Collapse
|
12
|
Vergallito A, Riva P, Pisoni A, Romero Lauro LJ. Modulation of negative emotions through anodal tDCS over the right ventrolateral prefrontal cortex. Neuropsychologia 2018; 119:128-135. [PMID: 30089234 DOI: 10.1016/j.neuropsychologia.2018.07.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/04/2023]
Abstract
Increasing evidence suggests that the right ventrolateral prefrontal cortex (rVLPFC) plays a critical role in emotion regulation, in particular concerning negative feelings. In the present research, we applied anodal transcranial direct current stimulation (tDCS) over the rVLPFC with a twofold purpose. First, we aimed at exploring the feasibility of modulating the subjective experience of emotions through tDCS in healthy participants. Second, we wanted to assess which specific emotion can be regulated (and which cannot) with this brain stimulation approach. We designed a double-blind, between-subjects, sham-controlled study in which 96 participants watched short video clips eliciting different emotions during anodal or sham tDCS over the rVLPFC. Emotional reactions to each video clip were assessed with self-report scales measuring eight basic emotions. Results showed that, in contrast to the sham condition, tDCS over the rVLPFC reduced the perceived extent of specific negative emotions, namely, fear, anxiety, and sadness, compared to other negative or positive feelings. Overall, these results support the role of rVLPFC in regulating negative emotions, mostly associated with the prevention of dangerous situations (i.e., fear, anxiety, and sadness).
Collapse
|
13
|
Raij T, Nummenmaa A, Marin MF, Porter D, Furtak S, Setsompop K, Milad MR. Prefrontal Cortex Stimulation Enhances Fear Extinction Memory in Humans. Biol Psychiatry 2018; 84:129-137. [PMID: 29246436 PMCID: PMC5936658 DOI: 10.1016/j.biopsych.2017.10.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Animal fear conditioning studies have illuminated neuronal mechanisms of learned associations between sensory stimuli and fear responses. In rats, brief electrical stimulation of the infralimbic cortex has been shown to reduce conditioned freezing during recall of extinction memory. Here, we translated this finding to humans with magnetic resonance imaging-navigated transcranial magnetic stimulation (TMS). METHODS Subjects (N = 28) were aversively conditioned to two different cues (day 1). During extinction learning (day 2), TMS was paired with one of the conditioned cues but not the other. TMS parameters were similar to those used in rat infralimbic cortex: brief pulse trains (300 ms at 20 Hz) starting 100 ms after cue onset, total of four trains (28 TMS pulses). TMS was applied to one of two targets in the left frontal cortex, one functionally connected (target 1) and the other unconnected (target 2, control) with a human homologue of infralimbic cortex in the ventromedial prefrontal cortex. Skin conductance responses were used as an index of conditioned fear. RESULTS During extinction recall (day 3), the cue paired with TMS to target 1 showed significantly reduced skin conductance responses, whereas TMS to target 2 had no effect. Further, we built group-level maps that weighted TMS-induced electric fields and diffusion magnetic resonance imaging connectivity estimates with fear level. These maps revealed distinct cortical regions and large-scale networks associated with reduced versus increased fear. CONCLUSIONS The results showed that spatiotemporally focused TMS may enhance extinction learning and/or consolidation of extinction memory and suggested novel cortical areas and large-scale networks for targeting in future studies.
Collapse
Affiliation(s)
- Tommi Raij
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Massachusetts Institute of Technology, Charlestown, Massachusetts; Harvard Medical School, Boston, Massachusetts.
| | - Aapo Nummenmaa
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Marie-France Marin
- Harvard Medical School, Boston, MA, USA,MGH Department of Psychiatry, MA, USA
| | | | | | - Kawin Setsompop
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Mohammed R. Milad
- Harvard Medical School, Boston, MA, USA,MGH Department of Psychiatry, MA, USA
| |
Collapse
|
14
|
Herrmann MJ, Katzorke A, Busch Y, Gromer D, Polak T, Pauli P, Deckert J. Medial prefrontal cortex stimulation accelerates therapy response of exposure therapy in acrophobia. Brain Stimul 2017; 10:291-297. [DOI: 10.1016/j.brs.2016.11.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022] Open
|
15
|
Rajan TS, Cuzzocrea S, Bruschetta D, Quartarone A. Repetitive Transcranial Magnetic Stimulation as a Novel Therapy in Animal Models of Traumatic Brain Injury. Methods Mol Biol 2016; 1462:433-443. [PMID: 27604732 DOI: 10.1007/978-1-4939-3816-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Traumatic brain injury (TBI) in humans causes a broad range of structural damage and functional deficits due to both primary and secondary injury mechanisms. Over the past three decades, animal models have been established to replicate the diverse changes of human TBI, to study the underlying pathophysiology and to develop new therapeutic strategies. However, drugs that were identified as neuroprotective in animal brain injury models were not successful in clinical trials phase II or phase III. Repetitive transcranial magnetic stimulation (rTMS) is a powerful noninvasive approach to excite cortical neurons in humans and animals, widely applied for therapeutic purpose in patients with brain diseases. In addition, recent animal studies showed rTMS as a strong neuroprotective tool. In this chapter, we discuss the rationale and mechanisms related to rTMS as well as therapeutic applications and putative molecular mechanisms. Furthermore, relevant biochemical studies and neuroprotective effect in animal models and possible application of rTMS as a novel treatment for rodent brain injury models are discussed.
Collapse
Affiliation(s)
- Thangavelu Soundara Rajan
- Department of Neurosciences, Policlinico Universitario, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Messina, Italy
- Manchester Biomedical Research Center, University of Manchester, Manchester, UK
| | - Daniele Bruschetta
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Department of Neurosciences, Policlinico Universitario, University of Messina, Messina, Italy.
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.
- Department of Physiology and Pharmacology, City University of New York Medical School, New York, NY, USA.
| |
Collapse
|
16
|
Guarda AS, Schreyer CC, Boersma GJ, Tamashiro KL, Moran TH. Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning. Physiol Behav 2015; 152:466-72. [PMID: 25846837 DOI: 10.1016/j.physbeh.2015.04.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/02/2015] [Indexed: 12/12/2022]
Abstract
The high comorbidity between anorexia nervosa (AN) and anxiety disorders is well recognized. AN is a motivated behavioral disorder in which habit formation is likely to contribute to the persistence of abnormal eating and exercise behaviors. Secondary alterations in brain circuitry underlying the reward value of food and exercise, along with disturbances in neuroendocrine hunger and satiety signaling arising from starvation and excessive exercise, are likely contributors to the maintenance of anorectic behaviors in genetically vulnerable individuals. The potential role of fear conditioning in facilitating onset of AN, or of impaired fear extinction in contributing to the high relapse rates observed following weight restoration, is of interest. Evidence from animal models of anxiety and human laboratory studies indicate that low estrogen impairs fear extinction. Low estradiol levels in AN may therefore play a role in perpetuating fear of food and fat in recently weight restored patients. Translational models including the activity based anorexia (ABA) rodent model of AN, and neuroimaging studies of fear extinction and conditioning, could help clarify the underlying molecular mechanisms and neurocircuitry involved in food avoidance behaviors in AN. Moreover, the adaptation of novel treatment interventions with efficacy in anxiety disorders may contribute to the development of new treatments for this impairing disorder.
Collapse
Affiliation(s)
- Angela S Guarda
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Colleen C Schreyer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Gretha J Boersma
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Kellie L Tamashiro
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| |
Collapse
|
17
|
Wang HN, Bai YH, Chen YC, Zhang RG, Wang HH, Zhang YH, Gan JL, Peng ZW, Tan QR. Repetitive transcranial magnetic stimulation ameliorates anxiety-like behavior and impaired sensorimotor gating in a rat model of post-traumatic stress disorder. PLoS One 2015; 10:e0117189. [PMID: 25659132 PMCID: PMC4320076 DOI: 10.1371/journal.pone.0117189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 12/21/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been employed for decades as a non-pharmacologic treatment for post-traumatic stress disorder (PTSD). Although a link has been suggested between PTSD and impaired sensorimotor gating (SG), studies assessing the effects of rTMS against PTSD or PTSD with impaired SG are scarce. AIM To assess the benefit of rTMS in a rat model of PTSD. METHODS Using a modified single prolonged stress (SPS&S) rat model of PTSD, behavioral parameters were acquired using open field test (OFT), elevated plus maze test (EPMT), and prepulse inhibition trial (PPI), with or without 7 days of high frequency (10Hz) rTMS treatment of SPS&S rats. RESULTS Anxiety-like behavior, impaired SG and increased plasma level of cortisol were observed in SPS&S animals after stress for a prolonged time. Interestingly, rTMS administered immediately after stress prevented those impairment. CONCLUSION Stress-induced anxiety-like behavior, increased plasma level of cortisol and impaired PPI occur after stress and high-frequency rTMS has the potential to ameliorate this behavior, suggesting that high frequency rTMS should be further evaluated for its use as a method for preventing PTSD.
Collapse
Affiliation(s)
- Hua-ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan-han Bai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yun-chun Chen
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Rui-guo Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Huai-hai Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-hong Zhang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jing-li Gan
- Department of Psychiatry, 91 Hospital of P. L. A., Jiaozuo, 454150, China
| | - Zheng-wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qing-rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
18
|
Taylor JJ, Neitzke DJ, Khouri G, Borckardt JJ, Acierno R, Tuerk PW, Schmidt M, George MS. A pilot study to investigate the induction and manipulation of learned helplessness in healthy adults. Psychiatry Res 2014; 219:631-7. [PMID: 25023370 PMCID: PMC4186698 DOI: 10.1016/j.psychres.2014.05.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Eliminating the controllability of a noxious stimulus may induce a learned helplessness (LH) that resembles aspects of depression and post-traumatic stress disorder (PTSD). This study examined whether repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) promotes resilience in an aversive stimulus model of LH. All 55 participants were told that an undisclosed sequence of button presses would terminate an aversive stimulus on their forearm. In truth, only half had control (+C). The other half had no control (-C). All participants received real (R) or sham (S) left DLPFC rTMS during the paradigm (+C/R, -C/S,+C/S,-C/R). We evaluated the cognitive effects of LH using an anagram task. The LH paradigm successfully reduced perceived control in the -C groups. As predicted, the +C/R and +C/S groups tended to give up less quickly and take less time to solve each anagram than did the -C/S group. Superior anagram performance in the -C/R group approached statistical significance. Our preliminary results suggest that manipulating the controllability of an aversive stimulus may induce an LH effect that manifests as impaired anagram performance. Further research is needed to refine this model and determine if DLPFC rTMS mitigates any LH effects.
Collapse
Affiliation(s)
| | | | - George Khouri
- Medical University of South Carolina, Charleston, SC, USA
| | | | - Ron Acierno
- Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Peter W Tuerk
- Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | | | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
19
|
VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 2014; 113:3-18. [PMID: 24321650 PMCID: PMC4156287 DOI: 10.1016/j.nlm.2013.11.014] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/31/2013] [Accepted: 11/24/2013] [Indexed: 01/08/2023]
Abstract
Nearly 100 years ago, Ivan Pavlov demonstrated that dogs could learn to use a neutral cue to predict a biologically relevant event: after repeated predictive pairings, Pavlov's dogs were conditioned to anticipate food at the sound of a bell, which caused them to salivate. Like sustenance, danger is biologically relevant, and neutral cues can take on great salience when they predict a threat to survival. In anxiety disorders such as posttraumatic stress disorder (PTSD), this type of conditioned fear fails to extinguish, and reminders of traumatic events can cause pathological conditioned fear responses for decades after danger has passed. In this review, we use fear conditioning and extinction studies to draw a direct line from Pavlov to PTSD and other anxiety disorders. We explain how rodent studies have informed neuroimaging studies of healthy humans and humans with PTSD. We describe several genes that have been linked to both PTSD and fear conditioning and extinction and explain how abnormalities in fear conditioning or extinction may reflect a general biomarker of anxiety disorders. Finally, we explore drug and neuromodulation treatments that may enhance therapeutic extinction in anxiety disorders.
Collapse
Affiliation(s)
- Michael B VanElzakker
- Tufts University Psychology, 490 Boston Avenue, Medford, MA 02155, USA; Massachusetts General Hospital Psychiatry, 149 Thirteenth Street, Charlestown, MA 02129, USA.
| | - M Kathryn Dahlgren
- Tufts University Psychology, 490 Boston Avenue, Medford, MA 02155, USA; Massachusetts General Hospital Psychiatry, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - F Caroline Davis
- Massachusetts General Hospital Psychiatry, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Stacey Dubois
- Tufts University Psychology, 490 Boston Avenue, Medford, MA 02155, USA
| | - Lisa M Shin
- Tufts University Psychology, 490 Boston Avenue, Medford, MA 02155, USA; Massachusetts General Hospital Psychiatry, 149 Thirteenth Street, Charlestown, MA 02129, USA
| |
Collapse
|
20
|
Fullana MA, Cardoner N, Alonso P, Subirà M, López-Solà C, Pujol J, Segalàs C, Real E, Bossa M, Zacur E, Martínez-Zalacaín I, Bulbena A, Menchón JM, Olmos S, Soriano-Mas C. Brain regions related to fear extinction in obsessive-compulsive disorder and its relation to exposure therapy outcome: a morphometric study. Psychol Med 2014; 44:845-856. [PMID: 23773479 DOI: 10.1017/s0033291713001128] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The size of particular sub-regions within the ventromedial prefrontal cortex (vmPFC) has been associated with fear extinction in humans. Exposure therapy is a form of extinction learning widely used in the treatment of obsessive-compulsive disorder (OCD). Here we investigated the relationship between morphometric measurements of different sub-regions of the vmPFC and exposure therapy outcome in OCD. METHOD A total of 74 OCD patients and 86 healthy controls underwent magnetic resonance imaging (MRI). Cortical thickness and volumetric measurements were obtained for the rostral anterior cingulate cortex (rACC), the medial orbital frontal cortex and the subcallosal cortex. After MRI acquisition, patients were enrolled in an exposure therapy protocol, and we assessed the relationship between MRI-derived measurements and treatment outcome. Baseline between-group differences for such measurements were also assessed. RESULTS Compared with healthy controls, OCD patients showed a thinner left rACC (p = 0.008). Also, left rACC thickness was inversely associated with exposure therapy outcome (r - 0.32, p = 0.008), and this region was significantly thinner in OCD patients who responded to exposure therapy than in those who did not (p = 0.006). Analyses based on regional volumetry did not yield any significant results. CONCLUSIONS OCD patients showed cortical thickness reductions in the left rACC, and these alterations were related to exposure therapy outcome. The precise characterization of neuroimaging predictors of treatment response derived from the study of the brain areas involved in fear extinction may optimize exposure therapy planning in OCD and other anxiety disorders.
Collapse
Affiliation(s)
- M A Fullana
- Institute of Neuropsychiatry and Addictions (INAD), Hospital del Mar and Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - N Cardoner
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - P Alonso
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - M Subirà
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - C López-Solà
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - J Pujol
- CRC Mar, Hospital del Mar, Barcelona, Spain
| | - C Segalàs
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - E Real
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - M Bossa
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - E Zacur
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - I Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - A Bulbena
- Institute of Neuropsychiatry and Addictions (INAD), Hospital del Mar and Department of Psychiatry, Autonomous University of Barcelona, Barcelona, Spain
| | - J M Menchón
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - S Olmos
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - C Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| |
Collapse
|
21
|
McClelland J, Bozhilova N, Nestler S, Campbell IC, Jacob S, Johnson-Sabine E, Schmidt U. Improvements in Symptoms Following Neuronavigated Repetitive Transcranial Magnetic Stimulation (rTMS) in Severe and Enduring Anorexia Nervosa: Findings from two Case Studies. EUROPEAN EATING DISORDERS REVIEW 2013; 21:500-6. [DOI: 10.1002/erv.2266] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
McClelland J, Bozhilova N, Campbell I, Schmidt U. A systematic review of the effects of neuromodulation on eating and body weight: evidence from human and animal studies. EUROPEAN EATING DISORDERS REVIEW 2013; 21:436-55. [PMID: 24155246 DOI: 10.1002/erv.2256] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 08/17/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Eating disorders (ED) are chronic and sometimes deadly illnesses. Existing treatments have limited proven efficacy, especially in the case of adults with anorexia nervosa (AN). Emerging neural models of ED provide a rationale for more targeted, brain-directed interventions. AIMS This systematic review has examined the effects of neuromodulation techniques on eating behaviours and body weight and assessed their potential for therapeutic use in ED. METHOD All articles in PubMed, PsychInfo and Web of Knowledge were considered and screened against a priori inclusion/exclusion criteria. The effects of repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, vagus nerve stimulation (VNS) and deep brain stimulation (DBS) were examined across studies in ED samples, other psychiatric and neurological disorders, and animal models. RESULTS Sixty studies were identified. There is evidence for ED symptom reduction following rTMS and DBS in both AN and bulimia nervosa. Findings from studies of other psychiatric and neurological disorders and from animal studies demonstrate that increases in food intake and body weight can be achieved following DBS and that VNS has potential value as a means of controlling eating and inducing weight loss. CONCLUSIONS Neuromodulation tools have potential for reducing ED symptomatology and related behaviours, and for altering food intake and body weight. In response to such findings, and emerging neural models of ED, treatment approaches are highly unlikely to remain 'brainless'. More research is required to evaluate the potential of neuromodulation procedures for improving long-term outcomes in ED.
Collapse
Affiliation(s)
- Jessica McClelland
- Section of Eating Disorders, Institute of Psychiatry, King's College London, London, UK
| | | | | | | |
Collapse
|
23
|
|