1
|
Caba M, Lehman MN, Caba-Flores MD. Food Entrainment, Arousal, and Motivation in the Neonatal Rabbit Pup. Front Neurosci 2021; 15:636764. [PMID: 33815041 PMCID: PMC8010146 DOI: 10.3389/fnins.2021.636764] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023] Open
Abstract
In the newborn rabbit, the light entrainable circadian system is immature and once a day nursing provides the primary timing cue for entrainment. In advance of the mother's arrival, pups display food anticipatory activity (FAA), and metabolic and physiological parameters are synchronized to this daily event. Central structures in the brain are also entrained as indicated by expression of Fos and Per1 proteins, GFAP, a glial marker, and cytochrome oxidase activity. Under fasting conditions, several of these rhythmic parameters persist in the periphery and brain, including rhythms in the olfactory bulb (OB). Here we provide an overview of these physiological and neurobiological changes and focus on three issues, just beginning to be examined in the rabbit. First, we review evidence supporting roles for the organum vasculosum of lamina terminalis (OVLT) and median preoptic nucleus (MnPO) in homeostasis of fluid ingestion and the neural basis of arousal, the latter which also includes the role of the orexigenic system. Second, since FAA in association with the daily visit of the mother is an example of conditioned learning, we review evidence for changes in the corticolimbic system and identified nuclei in the amygdala and extended amygdala as part of the neural substrate responsible for FAA. Third, we review recent evidence supporting the role of oxytocinergic cells of the paraventricular hypothalamic nucleus (PVN) as a link to the autonomic system that underlies physiological events, which occur in preparation for the upcoming next daily meal. We conclude that the rabbit model has contributed to an overall understanding of food entrainment.
Collapse
Affiliation(s)
- Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Mexico
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, United States
| | | |
Collapse
|
2
|
Aguilar-Roblero R, González-Mariscal G. Behavioral, neuroendocrine and physiological indicators of the circadian biology of male and female rabbits. Eur J Neurosci 2018; 51:429-453. [PMID: 30408249 DOI: 10.1111/ejn.14265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
Adult rabbits show robust circadian rhythms of: nursing, food and water intake, hard faeces excretion, locomotion, body temperature, blood and intraocular pressure, corticosteroid secretion, and sleep. Control of several circadian rhythms involves a light-entrained circadian clock and a food-entrained oscillator. Nursing periodicity, however, relies on a suckling stimulation threshold. Brain structures regulating this activity include the paraventricular nucleus and preoptic area, as determined by lesions and quantification of cFOS- and PER1 clock gene-immunoreactive proteins. Melatonin synthesis in the rabbit pineal gland shows a diurnal rhythm, with highest values at night and lowest ones during the day. In kits the main zeitgeber is milk intake, which synchronizes locomotor activity, body temperature, and corticosterone secretion. Brain regions involved in these effects include the median preoptic nucleus and several olfactory structures. As models for particular human illnesses rabbits have been valuable for studying glaucoma and cardiovascular disease. Circadian variations in intraocular pressure (main risk factor for glaucoma) have been found, with highest values at night, which depend on sympathetic innervation. Rabbits fed a high fat diet develop cholesterol plaques and high blood pressure, as do humans, and such increased fat intake directly modulates cardiovascular homeostasis and circadian patterns, independently of white adipose tissue accumulation. Rabbits have also been useful to investigate the characteristics of sleep across the day and its modulation by infections, cytokines and other endogenous humoral factors. Rabbit circadian biology warrants deeper investigation of the role of the suprachiasmatic nucleus in regulating most behavioral and physiological rhythms described above.
Collapse
Affiliation(s)
- Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
3
|
Navarrete E, Díaz G, Montúfar-Chaveznava R, Caldelas I. Temporal variations of nucleosides and nucleotides in rabbit milk. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:415-435. [PMID: 30449235 DOI: 10.1080/15257770.2018.1494278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nucleotides and nucleosides have a preeminent role in physiological and biochemical processes for newborns, the major source of these during early development is the breast milk. Different biomolecules exhibit daily fluctuations in maternal milk that could transfer temporal information that synchronize newborn circadian system. As a first approach, we characterized the diurnal profile of nucleotides and nucleosides contained in maternal milk of rabbits during the first week of lactation. It is possible that some nucleosides, such as adenosine, play a relevant role in setting up the emerging circadian rhythmicity, whereas uridine and guanosine could participate in the maintenance of rhythmicity.
Collapse
Affiliation(s)
- Erika Navarrete
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| | - Georgina Díaz
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| | | | - Ivette Caldelas
- a Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , Ciudad de México , México
| |
Collapse
|
4
|
Schneider NY, Datiche F, Coureaud G. Brain anatomy of the 4-day-old European rabbit. J Anat 2018; 232:747-767. [PMID: 29441579 DOI: 10.1111/joa.12789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 01/31/2023] Open
Abstract
The European rabbit (Oryctolagus cuniculus) is a widely used model in fundamental, medical and veterinary neurosciences. Besides investigations in adults, rabbit pups are relevant to study perinatal neurodevelopment and early behaviour. To date, the rabbit is also the only species in which a pheromone - the mammary pheromone (MP) - emitted by lactating females and active on neonatal adaptation has been described. The MP is crucial since it contributes directly to nipple localisation and oral seizing in neonates, i.e. to their sucking success. It may also be one of the non-photic cues arising from the mother, which stimulates synchronisation of the circadian system during pre-visual developmental stages. Finally, the MP promotes neonatal odour associative and appetitive conditioning in a remarkably rapid and efficient way. For these different reasons, the rabbit offers a currently unique opportunity to determine pheromonal-induced brain processing supporting adaptation early in life. Therefore, it is of interest to create a reference work of the newborn rabbit pup brain, which may constitute a tool for future multi-disciplinary and multi-approach research in this model, and allow comparisons related to the neuroethological basis of social and feeding behaviour among newborns of various species. Here, in line with existing experimental studies, and based on original observations, we propose a functional anatomical description of brain sections in 4-day-old rabbits with a particular focus on seven brain regions which appear important for neonatal perception of sensory signals emitted by the mother, circadian adaptation to the short and single daily nursing of the mother in the nest, and expression of specific motor actions involved in nipple localisation and milk intake. These brain regions involve olfactory circuits, limbic-related areas important in reward, motivation, learning and memory formation, homeostatic areas engaged in food anticipation, and regions implicated in circadian rhythm and arousal, as well as in motricity.
Collapse
Affiliation(s)
- Nanette Y Schneider
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), CNRS UMR, 6265, INRA 1324, Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), CNRS UMR, 6265, INRA 1324, Université de Bourgogne Franche-Comté, Dijon, France
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon (Lyon Neuroscience Research Center) INSERM U1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
5
|
Navarrete E, Ortega-Bernal JR, Trejo-Muñoz L, Díaz G, Montúfar-Chaveznava R, Caldelas I. Participation of the Olfactory Bulb in Circadian Organization during Early Postnatal Life in Rabbits. PLoS One 2016; 11:e0156539. [PMID: 27305041 PMCID: PMC4909232 DOI: 10.1371/journal.pone.0156539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022] Open
Abstract
Experimental evidence indicates that during pre-visual stages of development in mammals, circadian regulation is still not under the control of the light-entrainable hypothalamic pacemaker, raising the possibility that the circadian rhythmicity that occurs during postnatal development is under the control of peripheral oscillators, such as the main olfactory bulb (MOB). We evaluated the outcome of olfactory bulbectomy on the temporal pattern of core body temperature and gross locomotor activity in newborn rabbits. From postnatal day 1 (P1), pups were randomly assigned to one of the following conditions: intact pups (INT), intact pups fed by enteral gavage (INT+ENT), sham operated pups (SHAM), pups with unilateral lesions of the olfactory bulb (OBx-UNI), and pups with bilateral lesions of the olfactory bulb (OBx-BI). At the beginning of the experiment, from P1-8, the animals in all groups were fed at 11:00, from P9-13 the feeding schedule was delayed 6 h (17:00), and finally, from P14-15 the animals were subjected to fasting conditions. The rabbit pups of the INT, INT+ENT, SHAM and OBx-UNI groups exhibited a clear circadian rhythmicity in body temperature and locomotor activity, with a conspicuous anticipatory rise hours prior to the nursing or feeding schedule, which persisted even during fasting conditions. In addition, phase delays in the nursing or feeding schedule induced a clear phase shift in both parameters. In contrast, the OBx-BI group exhibited atypical rhythmicity in both parameters under entrained conditions that altered the anticipatory component, as well as deficient phase control of both rhythms. The present results demonstrate that the expression of circadian rhythmicity at behavioral and physiological levels during early stages of rabbit development largely depends on the integrity of the main olfactory bulb.
Collapse
Affiliation(s)
- Erika Navarrete
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Juan Roberto Ortega-Bernal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Lucero Trejo-Muñoz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Georgina Díaz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Ivette Caldelas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail:
| |
Collapse
|
6
|
González-Mariscal G, Caba M, Martínez-Gómez M, Bautista A, Hudson R. Mothers and offspring: The rabbit as a model system in the study of mammalian maternal behavior and sibling interactions. Horm Behav 2016; 77:30-41. [PMID: 26062431 DOI: 10.1016/j.yhbeh.2015.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023]
Abstract
UNLABELLED This article is part of a Special Issue "Parental Care". Jay Rosenblatt effectively promoted research on rabbit maternal behavior through his interaction with colleagues in Mexico. Here we review the activities of pregnant and lactating rabbits (Oryctolagus cuniculus), their neuro-hormonal regulation, and the synchronization of behavior between mother and kits. Changing concentrations of estradiol, progesterone, and prolactin throughout gestation regulate nest-building (digging, straw-carrying, fur-pulling) and prime the mother's brain to respond to the newborn. Nursing is the only mother-young contact throughout lactation. It happens once/day, inside the nest, with ca. 24h periodicity, and lasts around 3min. Periodicity and duration of nursing depend on a threshold of suckling as procedures reducing the amount of nipple stimulation interfere with the temporal aspects of nursing, though not with the doe's maternal motivation. Synchronization between mother and kits, critical for nursing, relies on: a) the production of pheromonal cues which guide the young to the mother's nipples for suckling; b) an endogenous circadian rhythm of anticipatory activity in the young, present since birth. Milk intake entrains the kits' locomotor behavior, corticosterone secretion, and the activity of several brain structures. Sibling interactions within the huddle, largely determined by body mass at birth, are important for: a) maintaining body temperature; b) ensuring normal neuromotor and social development. Suckling maintains nursing behavior past the period of abundant milk production but abrupt and efficient weaning occurs in concurrently pregnant-lactating does by unknown factors. CONCLUSION female rabbits have evolved a reproductive strategy largely dissociating maternal care from maternal presence, whose multifactorial regulation warrants future investigations.
Collapse
Affiliation(s)
- G González-Mariscal
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Mexico.
| | - M Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - M Martínez-Gómez
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Mexico; Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - A Bautista
- Centro Tlaxcala Biología de la Conducta, Universidad Autónoma de Tlaxcala, Mexico
| | - R Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
7
|
Trejo-Muñoz L, Navarrete E, Montúfar-Chaveznava R, Caldelas I. Temporal modulation of the canonical clockwork in the suprachiasmatic nucleus and olfactory bulb by the mammary pheromone 2MB2 in pre-visual rabbits. Neuroscience 2014; 275:170-83. [PMID: 24931761 DOI: 10.1016/j.neuroscience.2014.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 02/05/2023]
Abstract
During the early stages of development, the olfactory system plays a vital role in the survival of altricial mammals. One remarkable example is the Oryctolagus cuniculus, whose mother-young interaction greatly depends on the 2-methylbut-2-enal (2MB2) pheromone that triggers nipple search and grasping behaviors. Olfactory stimulation with 2MB2 regulates the expression of the core body temperature and locomotor activity rhythms in rabbit pups, indicating the modulation of the circadian system by this volatile cue. To address this issue, in the present study, we determined the effect of stimulation with pulses of 2MB2 on the molecular circadian clockwork in the suprachiasmatic nucleus (SCN) and in the main olfactory bulb (MOB). For this purpose, 7-day-old rabbits were stimulated with distilled water (CON), with ethyl isobutyrate (ETHYL) or with the pheromone (2MB2) at different times of the cycle, and 1h later, the expression of the activity marker C-FOS and of the clock proteins PER1, CRY1 and BMAL1 was evaluated in the SCN and in the three layers of the MOB. The clock proteins were abundantly expressed in both structures; nevertheless these showed diurnal rhythmicity only in the MOB, confirming that central pacemakers exhibit a heterochronical development of the molecular clockwork. C-FOS expression in the SCN and in the MOB was modulated by exposure to ETHYL and to 2MB2 only when these stimulants were presented at ZT00 and at ZT18. In contrast, the clock proteins were essentially modulated by 2MB2 at ZT00 and at ZT06 in both structures. In addition, the PER1 and CRY1 proteins exhibited differential responses to stimulation in the three layers of the MOB. For the first time, we report a modulatory and time-dependent effect of the mammary pheromone 2MB2 on the expression of the core clock proteins in the SCN and in the MOB in rabbits during pre-visual stages of development.
Collapse
Affiliation(s)
- L Trejo-Muñoz
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico
| | - E Navarrete
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico
| | - R Montúfar-Chaveznava
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico
| | - I Caldelas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Distrito Federal, Mexico.
| |
Collapse
|
8
|
Montúfar-Chaveznava R, Trejo-Muñoz L, Hernández-Campos O, Navarrete E, Caldelas I. Maternal olfactory cues synchronize the circadian system of artificially raised newborn rabbits. PLoS One 2013; 8:e74048. [PMID: 24040161 PMCID: PMC3764011 DOI: 10.1371/journal.pone.0074048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/26/2013] [Indexed: 01/22/2023] Open
Abstract
In European newborn rabbits, once-daily nursing acts as a strong non-photic entraining cue for the pre-visual circadian system. Nevertheless, there is a lack of information regarding which of the non-photic cues are capable of modulating pup circadian system. In this study, for the first time, we determined that the mammary pheromone 2-methylbut-2-enal (2MB2) presented in the maternal milk acts as a non-photic entraining cue. We evaluated the effect of once-daily exposure to maternal olfactory cues on the temporal pattern of core body temperature, gross locomotor activity and metabolic variables (liver weight, serum glucose, triacylglycerides, free fatty acids, cholecystokinin and cholesterol levels) in newborn rabbits. Rabbit pups were separated from their mothers from postnatal day 1 (P1) to P8 and were randomly assigned to one of the following conditions: nursed by a lactating doe (NAT); exposed to a 3-min pulse of maternal milk (M-Milk), mammary pheromone (2MB2), or water (H₂O). To eliminate maternal stimulation, the pups of the last three groups were artificially fed once every 24-h. On P8, the rabbits were sacrificed at different times of the day. In temperature and activity, the NAT, M-Milk and 2MB2 groups exhibited clear diurnal rhythmicity with a conspicuous anticipatory rise hours prior to nursing. In contrast, the H₂O group exhibited atypical rhythmicity in both parameters, lacking the anticipatory component. At the metabolic level, all of the groups exhibited a diurnal pattern with similar phases in liver weight and metabolites examined. The results obtained in this study suggest that during pre-visual stages of development, the circadian system of newborn rabbits is sensitive to the maternal olfactory cues contained in milk, indicating that these cues function as non-photic entraining signals mainly for the central oscillators regulating the expression of temperature and behavior, whereas in metabolic diurnal rhythmicity, these cues lack an effect, indicating that peripheral oscillators respond to milk administration.
Collapse
Affiliation(s)
| | - Lucero Trejo-Muñoz
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Oscar Hernández-Campos
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Erika Navarrete
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
| | - Ivette Caldelas
- Departamento Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Distrito Federal, México
- * E-mail:
| |
Collapse
|
9
|
Nolasco N, Juárez C, Morgado E, Meza E, Caba M. A circadian clock in the olfactory bulb anticipates feeding during food anticipatory activity. PLoS One 2012; 7:e47779. [PMID: 23094084 PMCID: PMC3477144 DOI: 10.1371/journal.pone.0047779] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/17/2012] [Indexed: 11/21/2022] Open
Abstract
Rabbit pups ingest food, in this case milk, once a day with circadian periodicity and are a natural model of food anticipatory activity. During nursing, several sensory systems receive information about properties of the food, one of them being the olfactory system, which has received little attention in relation to synchronization by food. In addition, the olfactory bulb has a circadian pacemaker that exhibits rhythms independently of the suprachiasmatic nucleus, but the biological functions of these rhythms are largely unknown. In the present contribution, we hypothesized that circadian suckling of milk synchronizes rhythms in the olfactory bulb. To this aim we explored by immunohistochemistry, rhythms of FOS and PER1 proteins, as indicators of activation and reporter of oscillations, respectively, through a complete 24-h cycle in periglomerular, mitral and granular cell layers of both the main and the accessory olfactory bulb. Subjects were 7-day-old rabbit pups scheduled to nurse during the night (02∶00 h) or day (10∶00 h), and also fasted subjects, to explore the possible persistence of oscillations. In the three layers of the main olfactory bulb, FOS was high at time of nursing, then further increased 1.5 h afterward, and then decreased to increase again in advance of the next nursing bout. This pattern persisted, without the postprandial increase, in fasted subjects with a shift in subjects nursed at 02∶00. PER1 was increased 2–8 h after nursing and this increase persisted in most cell layers, with a shift, in fasted subjects. In the accessory olfactory bulb we only observed a consistent pattern of FOS expression in the mitral cell layer of nursed subjects, similar to that of the main olfactory bulb. We conclude that the main olfactory bulb is synchronized during milk ingestion, but during fasting its oscillations perhaps are modulated by the suprachiasmatic nucleus, as proposed for rodents.
Collapse
Affiliation(s)
- Nahum Nolasco
- Doctorado en Ciencias Biomédicas, CIB, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Claudia Juárez
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Elvira Morgado
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Enrique Meza
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Mario Caba
- Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
- * E-mail:
| |
Collapse
|
10
|
Determining the period, phase and anticipatory component of activity and temperature patterns in newborn rabbits that were maintained under a daily nursing schedule and fasting conditions. Physiol Behav 2012; 106:587-96. [DOI: 10.1016/j.physbeh.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/15/2012] [Accepted: 04/04/2012] [Indexed: 11/21/2022]
|