1
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Pentylenetetrazol-induced seizures are followed by a reduction in the multiunitary activity of hippocampal CA1 pyramidal neurons in adult rats. Epilepsy Behav 2022; 137:108922. [PMID: 36279807 DOI: 10.1016/j.yebeh.2022.108922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
Pentylenetetrazol (PTZ) blocks the inhibitory action of GABA, triggering a Glu-mediated hyperexcitation of the dendritic spines in hippocampal CA1 pyramidal neurons that leads to the generation of epileptiform seizures. The aim of this work was to determine the effect of PTZ on the electrical activity of the hippocampal pyramidal neurons in male rats. Bipolar electrodes were implanted stereotaxically in the right and left hippocampal CA1 fields of adults, and PTZ (65 mg/kg) was administered i.p. Simultaneous recordings of the field activity and the firing rate (multiunitary activity, MUA) were analyzed at 10, 20, and 30 min post-administration of PTZ. Only rats that presented tonic-clonic seizures during the first 1-5 min after PTZ treatment were included in the study. The recordings of the field activity were analyzed in 4 frequency bands. In both the right and left hippocampal CA1 fields, the relative power corresponding to the slow waves (4-7 Hz) increased, while in the bands 13-30 Hz and 31-50 Hz, it decreased at 10, 20, and 30 min post-PTZ. MUA recordings were analyzed at four levels. The highest levels corresponded to larger amplitudes of the action potentials in the pyramidal neurons. The firing rates of the PTZ-treated rats did not differ from baseline but presented a significant decrement at 10, 20, and 30 min post-PTZ. The decreased firing rate of the hippocampal CA1 pyramidal neurons after PTZ treatment could be associated with plastic changes of dendritic spines along with some microenvironmental adaptations at synaptic level, after neuronal PTZ-mediated hyperexcitation.
Collapse
|
3
|
Bao Y, Yang X, Fu Y, Li Z, Gong R, Lu W. NMDAR-dependent somatic potentiation of synaptic inputs is correlated with β amyloid-mediated neuronal hyperactivity. Transl Neurodegener 2021; 10:34. [PMID: 34496956 PMCID: PMC8424869 DOI: 10.1186/s40035-021-00260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND β Amyloid (Aβ)-mediated neuronal hyperactivity, a key feature of the early stage of Alzheimer's disease (AD), is recently proposed to be initiated by the suppression of glutamate reuptake. Nevertheless, the underlying mechanism by which the impaired glutamate reuptake causes neuronal hyperactivity remains unclear. Chronic suppression of the glutamate reuptake causes accumulation of ambient glutamate that could diffuse from synaptic sites at the dendrites to the soma to elevate the tonic activation of somatic N-methyl-D-aspartate receptors (NMDARs). However, less attention has been paid to the potential role of tonic activity change in extrasynaptic glutamate receptors (GluRs) located at the neuronal soma on generation of neuronal hyperactivity. METHODS Whole-cell patch-clamp recordings were performed on CA1 pyramidal neurons in acute hippocampal slices exposed to TFB-threo-β-benzyloxyaspartic acid (TBOA) or human Aβ1-42 peptide oligomer. A series of dendritic patch-clamp recordings were made at different distances from the soma to identify the location of the changes in synaptic inputs. Moreover, single-channel recording in the cell-attached mode was performed to investigate the activity changes of single NMDARs at the soma. RESULTS Blocking glutamate uptake with either TBOA or the human Aβ1-42 peptide oligomer elicited potentiation of synaptic inputs in CA1 hippocampal neurons. Strikingly, this potentiation specifically occurred at the soma, depending on the activation of somatic GluN2B-containing NMDARs (GluN2B-NMDARs) and accompanied by a substantial and persistent increment in the open probability of somatic NMDARs. Blocking the activity of GluN2B-NMDARs at the soma completely reversed both the TBOA-induced or the Aβ1-42-induced somatic potentiation and neuronal hyperactivity. CONCLUSIONS The somatic potentiation of synaptic inputs may represent a novel amplification mechanism that elevates cell excitability and thus contributes to neuronal hyperactivity initiated by impaired glutamate reuptake in AD.
Collapse
Affiliation(s)
- Yifei Bao
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xin Yang
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yi Fu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zhengyan Li
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ru Gong
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Lu
- MOE Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China. .,Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontier Center for Brain Science, Fudan University, Shanghai, 200032, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
4
|
André MV, Cacciagli P, Cano A, Vaugier L, Roussel M, Girard N, Chabrol B, Villard L, Milh M. The phenotype caused by recessive variations in SLC25A22: Report of a new case and literature review. Arch Pediatr 2020; 28:87-92. [PMID: 33342683 DOI: 10.1016/j.arcped.2020.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/20/2020] [Accepted: 10/31/2020] [Indexed: 10/22/2022]
Abstract
We describe the clinical, electroencephalography (EEG), and developmental features of a patient with developmental and epileptic encephalopathy due to a homozygous pathogenic variation of mitochondrial glutamate/H+ symporter SLC25A22. Epilepsy began during the first week of life with focal onset seizures. Interictal EEG revealed a suppression-burst pattern with extensive periods of non-activity. The prospective follow-up confirmed developmental encephalopathy as well as ongoing active epilepsy and almost no sign of development at 8 years of age. We confirm in the following paper that SLC25A22 recessive variations may cause a severe developmental and epileptic encephalopathy characterized by a suppression-burst pattern. On the basis of an in-depth literature review, we also provide an overview of this rare genetic cause of neonatal onset epilepsy.
Collapse
Affiliation(s)
- M-V André
- Department of pediatric neurology, hôpital de la Timone, AP-HM, 13085 Marseille, France.
| | - P Cacciagli
- Inserm, GMGF, UMR_S 910, faculté de médecine, Aix-Marseille university, 13085 Marseille, France; Department of medical genetics, hôpital de La Timone, AP-HM, 13085 Marseille, France
| | - A Cano
- Department of pediatric neurology, hôpital de la Timone, AP-HM, 13085 Marseille, France
| | - L Vaugier
- Department of clinical neurophysiology, hôpital de la Timone, AP-HM, 13085 Marseille, France
| | - M Roussel
- Department of clinical neurophysiologie, hôpital Nord, AP-HM, 13015 Marseille, France
| | - N Girard
- Department of Neuroradiology, Aix-Marseille University, AP-HM, 13085 Marseille, France
| | - B Chabrol
- Department of pediatric neurology, hôpital de la Timone, AP-HM, 13085 Marseille, France
| | - L Villard
- Inserm, GMGF, UMR_S 910, faculté de médecine, Aix-Marseille university, 13085 Marseille, France; Department of medical genetics, hôpital de La Timone, AP-HM, 13085 Marseille, France
| | - M Milh
- Department of pediatric neurology, hôpital de la Timone, AP-HM, 13085 Marseille, France; Inserm, GMGF, UMR_S 910, faculté de médecine, Aix-Marseille university, 13085 Marseille, France
| |
Collapse
|
5
|
Bocchio M, Lukacs IP, Stacey R, Plaha P, Apostolopoulos V, Livermore L, Sen A, Ansorge O, Gillies MJ, Somogyi P, Capogna M. Group II Metabotropic Glutamate Receptors Mediate Presynaptic Inhibition of Excitatory Transmission in Pyramidal Neurons of the Human Cerebral Cortex. Front Cell Neurosci 2019; 12:508. [PMID: 30670948 PMCID: PMC6333023 DOI: 10.3389/fncel.2018.00508] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023] Open
Abstract
Group II metabotropic glutamate receptor (mGluR) ligands are potential novel drugs for neurological and psychiatric disorders, but little is known about the effects of these compounds at synapses of the human cerebral cortex. Investigating the effects of neuropsychiatric drugs in human brain tissue with preserved synaptic circuits might accelerate the development of more potent and selective pharmacological treatments. We have studied the effects of group II mGluR activation on excitatory synaptic transmission recorded from pyramidal neurons of cortical layers 2-3 in acute slices derived from surgically removed cortical tissue of people with epilepsy or tumors. The application of a selective group II mGluR agonist, LY354740 (0.1-1 μM) inhibited the amplitude and frequency of action potential-dependent spontaneous excitatory postsynaptic currents (sEPSCs). This effect was prevented by the application of a group II/III mGluR antagonist, CPPG (0.1 mM). Furthermore, LY354740 inhibited the frequency, but not the amplitude, of action potential-independent miniature EPSCs (mEPSCs) recorded in pyramidal neurons. Finally, LY354740 did slightly reduce cells' input resistance without altering the holding current of the neurons recorded in voltage clamp at -90 mV. Our results suggest that group II mGluRs are mainly auto-receptors that inhibit the release of glutamate onto pyramidal neurons in layers 2-3 in the human cerebral cortex, thereby regulating network excitability. We have demonstrated the effect of a group II mGluR ligand at human cortical synapses, revealing mechanisms by which these drugs could exert pro-cognitive effects and treat human neuropsychiatric disorders.
Collapse
Affiliation(s)
- Marco Bocchio
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Istvan P. Lukacs
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Oxford, United Kingdom
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Martin J. Gillies
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine – Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Balakrishnan S, Mironov SL. CA1 Neurons Acquire Rett Syndrome Phenotype After Brief Activation of Glutamatergic Receptors: Specific Role of mGluR1/5. Front Cell Neurosci 2018; 12:363. [PMID: 30386209 PMCID: PMC6199391 DOI: 10.3389/fncel.2018.00363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/03/2023] Open
Abstract
Rett syndrome (RTT) is a neurological disorder caused by the mutation of the X-linked MECP2 gene. The neurophysiological hallmark of the RTT phenotype is the hyperexcitability of neurons made responsible for frequent epileptic attacks in the patients. Increased excitability in RTT might stem from impaired glutamate handling in RTT and its long-term consequences that has not been examined quantitatively. We recently reported (Balakrishnan and Mironov, 2018a,b) that the RTT hippocampus consistently demonstrates repetitive glutamate transients that parallel the burst firing in the CA1 neurons. We aimed to examine how brief stimulation of specific types of ionotropic and metabotropic glutamate receptors (GluR) can modulate the neuronal phenotype. We imaged glutamate with a fluorescence sensor (iGluSnFr) expressed in CA1 neurons in hippocampal organotypic slices from wild-type (WT) and Mecp2-/y mice (RTT). The neuronal and synaptic activities were assessed by patch-clamp and calcium imaging. In both WT and RTT slices, activation of AMPA, kainate, and NMDA receptors for 30 s first enhanced neuronal activity that induced a global release of glutamate. After transient augmentation of excitability and ambient glutamate, they subsided. After wash out of the agonists for 10 min, WT slices recovered and demonstrated repetitive glutamate transients, whose pattern resembled those observed in naïve RTT slices. Hyperpolarization-activated (HCN) decreased and voltage-sensitive calcium channel (VSCC) currents increased. The effects were long-lasting and bigger in WT. We examined the role of mGluR1/5 in more detail. The effects of the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) were the same as AMPA and NMDA and occluded by mGluR1/5 antagonists. Further modifications were examined using a non-stationary noise analysis of postsynaptic currents. The mean single channel current and their number at postsynapse increased after DHPG. We identified new channels as calcium-permeable AMPARs (CP-AMPAR). We then examined back-propagating potentials (bAPs) as a measure of postsynaptic integration. After bAPs, spontaneous afterdischarges were observed that lasted for ∼2 min and were potentiated by DHPG. The effects were occluded by intracellular CP-AMPAR blocker and did not change after NMDAR blockade. We propose that brief elevations in ambient glutamate (through brief excitation with GluR agonists) specifically activate mGluR1/5. This modifies CP-AMPAR, HCN, and calcium conductances and makes neurons hyperexcitable. Induced changes can be further supported by repetitive glutamate transients established and serve to persistently maintain the aberrant neuronal RTT phenotype in the hippocampus.
Collapse
Affiliation(s)
- Saju Balakrishnan
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, DFG Research Center 103), Institute of Neuro and Sensory Physiology, University of Göttingen, Göttingen, Germany
| | - Sergej L Mironov
- CNMPB (Centre for Nanoscale Microscopy and Molecular Physiology of the Brain, Cluster of Excellence 171, DFG Research Center 103), Institute of Neuro and Sensory Physiology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Astrocytes and presynaptic plasticity in the striatum: Evidence and unanswered questions. Brain Res Bull 2018; 136:17-25. [DOI: 10.1016/j.brainresbull.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/30/2016] [Accepted: 01/02/2017] [Indexed: 02/03/2023]
|
8
|
Goubert E, Mircheva Y, Lasorsa FM, Melon C, Profilo E, Sutera J, Becq H, Palmieri F, Palmieri L, Aniksztejn L, Molinari F. Inhibition of the Mitochondrial Glutamate Carrier SLC25A22 in Astrocytes Leads to Intracellular Glutamate Accumulation. Front Cell Neurosci 2017; 11:149. [PMID: 28620281 PMCID: PMC5449474 DOI: 10.3389/fncel.2017.00149] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
The solute carrier family 25 (SLC25) drives the import of a large diversity of metabolites into mitochondria, a key cellular structure involved in many metabolic functions. Mutations of the mitochondrial glutamate carrier SLC25A22 (also named GC1) have been identified in early epileptic encephalopathy (EEE) and migrating partial seizures in infancy (MPSI) but the pathophysiological mechanism of GC1 deficiency is still unknown, hampered by the absence of an in vivo model. This carrier is mainly expressed in astrocytes and is the principal gate for glutamate entry into mitochondria. A sufficient supply of energy is essential for the proper function of the brain and mitochondria have a pivotal role in maintaining energy homeostasis. In this work, we wanted to study the consequences of GC1 absence in an in vitro model in order to understand if glutamate catabolism and/or mitochondrial function could be affected. First, short hairpin RNA (shRNA) designed to specifically silence GC1 were validated in rat C6 glioma cells. Silencing GC1 in C6 resulted in a reduction of the GC1 mRNA combined with a decrease of the mitochondrial glutamate carrier activity. Then, primary astrocyte cultures were prepared and transfected with shRNA-GC1 or mismatch-RNA (mmRNA) constructs using the Neon® Transfection System in order to target a high number of primary astrocytes, more than 64%. Silencing GC1 in primary astrocytes resulted in a reduced nicotinamide adenine dinucleotide (Phosphate) (NAD(P)H) formation upon glutamate stimulation. We also observed that the mitochondrial respiratory chain (MRC) was functional after glucose stimulation but not activated by glutamate, resulting in a lower level of cellular adenosine triphosphate (ATP) in silenced astrocytes compared to control cells. Moreover, GC1 inactivation resulted in an intracellular glutamate accumulation. Our results show that mitochondrial glutamate transport via GC1 is important in sustaining glutamate homeostasis in astrocytes. Main Points:The mitochondrial respiratory chain is functional in absence of GC1 Lack of glutamate oxidation results in a lower global ATP level Lack of mitochondrial glutamate transport results in intracellular glutamate accumulation
Collapse
Affiliation(s)
| | - Yanina Mircheva
- INMED, INSERM, Aix-Marseille UniversitéMarseille, France.,Centre De Recherche De L'Institut Universitaire En Santé Mentale de QuébecQuebec City, QC, Canada
| | - Francesco M Lasorsa
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesBari, Italy
| | | | - Emanuela Profilo
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesBari, Italy
| | - Julie Sutera
- INMED, INSERM, Aix-Marseille UniversitéMarseille, France
| | - Hélène Becq
- INMED, INSERM, Aix-Marseille UniversitéMarseille, France
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesBari, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, and CNR Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesBari, Italy
| | | | | |
Collapse
|
9
|
Qian F, Tang FR. Metabotropic Glutamate Receptors and Interacting Proteins in Epileptogenesis. Curr Neuropharmacol 2017; 14:551-62. [PMID: 27030135 PMCID: PMC4983745 DOI: 10.2174/1570159x14666160331142228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 12/30/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Neurotransmitter and receptor systems are involved in different neurological and neuropsychological disorders such as Parkinson's disease, depression, Alzheimer’s disease and epilepsy. Recent advances in studies of signal transduction pathways or interacting proteins of neurotransmitter receptor systems suggest that different receptor systems may share the common signal transduction pathways or interacting proteins which may be better therapeutic targets for development of drugs to effectively control brain diseases. In this paper, we reviewed metabotropic glutamate receptors (mGluRs) and their related signal transduction pathways or interacting proteins in status epilepticus and temporal lobe epilepsy, and proposed some novel therapeutical drug targets for controlling epilepsy and epileptogenesis.
Collapse
Affiliation(s)
| | - Feng-Ru Tang
- Radiobiology Research Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore.
| |
Collapse
|
10
|
Trabelsi Y, Amri M, Becq H, Molinari F, Aniksztejn L. The conversion of glutamate by glutamine synthase in neocortical astrocytes from juvenile rat is important to limit glutamate spillover and peri/extrasynaptic activation of NMDA receptors. Glia 2016; 65:401-415. [PMID: 27862359 DOI: 10.1002/glia.23099] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/31/2022]
Abstract
Glutamate transporters (EAATs) are important to maintain spatial and temporal specificity of synaptic transmission. Their efficiency to uptake and transport glutamate into the intracellular space depends on several parameters including the intracellular concentrations of Na+ and glutamate, the elevations of which may slow down the cycling rate of EAATs. In astrocytes, glutamate is maintained at low concentration due to the presence of specific enzymes such as glutamine synthase (GS). GS inhibition results in cytosolic accumulation of glutamate suggesting that the conversion of glutamate by GS is important for EAATs operation. Here we recorded astrocytes from juvenile rat neocortical slices and analyzed the consequences of elevated intracellular glutamate concentrations and of GS inhibition on the time course of synaptically evoked transporter current (STC). In slices from rats treated with methionine sulfoximine (MSO), a GS inhibitor, STC evoked by short burst of high frequency stimulation (HFS; 100 Hz for 100 ms) but not by low frequency stimulation (LFS; 0.1 Hz) was twice slower than STC evoked from saline injected rats. Same results were obtained for astrocytes recorded with pipette containing 3-10 mM glutamate and compared with cells recorded with 0 or1 mM glutamate in the patch pipette. We also showed that HFS elicited significantly larger NMDAR-excitatory postsynaptic currents (EPSCs) with a stronger peri/extrasynaptic component in pyramidal cells from MSO-treated compared with saline treated rats. Taken together our data demonstrate that the conversion of glutamate by GS is fundamental to ensure an efficient clearance of glutamate by EAATs and to prevent glutamate spillover. GLIA 2017;65:401-415.
Collapse
Affiliation(s)
- Yosra Trabelsi
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| | - Mohamed Amri
- Laboratoire de Neurophysiologie Fonctionnelle et Pathologies, Tunis, UR11ES09, Tunisie
| | - Hélène Becq
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| | - Florence Molinari
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| | - Laurent Aniksztejn
- Institut de Neurobiologie de la Méditerranée (INMED), Aix-Marseille Université, Marseille, 13009, France.,INSERM, UMR_S 901, Marseille, 13009, France
| |
Collapse
|
11
|
Wanke E, Gullo F, Dossi E, Valenza G, Becchetti A. Neuron-glia cross talk revealed in reverberating networks by simultaneous extracellular recording of spikes and astrocytes' glutamate transporter and K+ currents. J Neurophysiol 2016; 116:2706-2719. [PMID: 27683885 PMCID: PMC5133298 DOI: 10.1152/jn.00509.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/22/2016] [Indexed: 01/11/2023] Open
Abstract
In neocortex networks, we simultaneously captured spikes and the slower astrocytes' K+and glutamate transporter (GluT) currents with the use of individual MEA electrodes. Inward and outward K+currents in different regions of the glial syncytium suggested that spatial buffering was operant. Moreover, in organotypic slices from ventral tegmental area and prefrontal cortex, the large GluT current amplitudes allowed to measure transporter currents with a single electrode. Our method allows direct study of the dynamic interplay of different cell types in excitable and nonexcitable tissue. Astrocytes uptake synaptically released glutamate with electrogenic transporters (GluT) and buffer the spike-dependent extracellular K+ excess with background K+ channels. We studied neuronal spikes and the slower astrocytic signals on reverberating neocortical cultures and organotypic slices from mouse brains. Spike trains and glial responses were simultaneously captured from individual sites of multielectrode arrays (MEA) by splitting the recorded traces into appropriate filters and reconstructing the original signal by deconvolution. GluT currents were identified by using dl-threo-β-benzyloxyaspartate (TBOA). K+ currents were blocked by 30 μM Ba2+, suggesting a major contribution of inwardly rectifying K+ currents. Both types of current were tightly correlated with the spike rate, and their astrocytic origin was tested in primary cultures by blocking glial proliferation with cytosine β-d-arabinofuranoside (AraC). The spike-related, time-locked inward and outward K+ currents in different regions of the astrocyte syncytium were consistent with the assumptions of the spatial K+ buffering model. In organotypic slices from ventral tegmental area and prefrontal cortex, the GluT current amplitudes exceeded those observed in primary cultures by several orders of magnitude, which allowed to directly measure transporter currents with a single electrode. Simultaneously measuring cell signals displaying widely different amplitudes and kinetics will help clarify the neuron-glia interplay and make it possible to follow the cross talk between different cell types in excitable as well as nonexcitable tissue.
Collapse
Affiliation(s)
- Enzo Wanke
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Francesca Gullo
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Elena Dossi
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| | - Gaetano Valenza
- Research Centre "E. Piaggio" and Department of Information Engineering, School of Engineering, University of Pisa, Pisa, Italy
| | - Andrea Becchetti
- Department of Biotechnologies and Biosciences and Milan Center For Neuroscience (NeuroMI), University of Milano-Bicocca, Milan, Italy; and
| |
Collapse
|
12
|
Facilitated glutamate release at Schaffer collateral to CA1 synapses has access to an exclusive population of NMDA receptors. Brain Res 2015; 1622:22-35. [PMID: 26100337 DOI: 10.1016/j.brainres.2015.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022]
Abstract
In order to explore short-term facilitation of the Schaffer collateral to CA1 synapse in mouse hippocampal brain slices, we measured the time course of the decay of the peak amplitude of successive EPSCs during progressive MK-801-dependent block (PMDB) of NMDAR responses to paired (R1 and R2) stimuli. We made the unexpected observation that the R2 response exhibited a slower PMDB decay constant than that of the R1 response. This indicated that the facilitated R2 response engages release sites with NMDARs that are protected from opening and consequent MK-801 block during the basal R1 response. We then utilized conditions that affect synaptic glutamate distribution to dissect the components of the distinct PMDB decay constants of the first and second of paired pulses. While extra-synaptic NMDARs and glutamate transporters appear to play only minor roles in the differences of the PMDB decay constant, we showed important roles for the R1 response itself and for glutamate diffusion in determining the PMDB decay constant of R2. We used a simple computational model with realistic parameters that allowed us to predict the time course of R2 decay based on the R1 decay time course.
Collapse
|
13
|
Eid T, Lee TSW, Wang Y, Perez E, Peréz E, Drummond J, Lauritzen F, Bergersen LH, Meador-Woodruff JH, Spencer DD, de Lanerolle NC, McCullumsmith RE. Gene expression of glutamate metabolizing enzymes in the hippocampal formation in human temporal lobe epilepsy. Epilepsia 2013; 54:228-38. [PMID: 23384343 PMCID: PMC3578420 DOI: 10.1111/epi.12008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Increased interictal concentrations of extracellular hippocampal glutamate have been implicated in the pathophysiology of temporal lobe epilepsy (TLE). Recent studies suggest that perturbations of the glutamate metabolizing enzymes glutamine synthetase (GS) and phosphate activated glutaminase (PAG) may underlie the glutamate excess in TLE. However, the molecular mechanism of the enzyme perturbations remains unclear. A better understanding of the regulatory mechanisms of GS and PAG could facilitate the discovery of novel therapeutics for TLE. METHODS We used in situ hybridization on histologic sections to assess the distribution and quantity of messenger RNA (mRNA) for GS and PAG in subfields of hippocampal formations from the following: (1) patients with TLE and concomitant hippocampal sclerosis, (2) patients with TLE and no hippocampal sclerosis, and (3) nonepilepsy autopsy subjects. KEY FINDINGS GS mRNA was increased by ~50% in the CA3 in TLE patients without hippocampal sclerosis versus in TLE patients with sclerosis and in nonepilepsy subjects. PAG mRNA was increased by >100% in the subiculum in both TLE patient categories versus in nonepilepsy subjects. PAG mRNA was also increased in the CA1, CA2, CA3, and dentate hilus in TLE without hippocampal sclerosis versus in TLE with sclerosis. Finally, PAG mRNA was increased in the dentate gyrus in TLE with sclerosis versus in nonepilepsy subjects, and also increased in the hilus in TLE without sclerosis versus in TLE with sclerosis. SIGNIFICANCE These findings demonstrate complex changes in the expression of mRNAs for GS and PAG in the hippocampal formation in TLE, and raise the possibility that both transcriptional and posttranscriptional mechanisms may underlie the regulation of GS and PAG proteins in the epileptic brain.
Collapse
Affiliation(s)
- Tore Eid
- Departments of Laboratory Medicine Psychiatry Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8035, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|