1
|
Wu D, Li F, Yang F, Liu J. Validity of Plasma Neuropeptide Y in Combination with Clinical Factors in Predicting Neuralgia Following Herpes Zoster. Int J Gen Med 2024; 17:4805-4814. [PMID: 39440102 PMCID: PMC11495191 DOI: 10.2147/ijgm.s480411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Numerous lines of evidence suggest that neuropeptide Y (NPY) is critically involved in the modulation of neuropathic pain. Postherpetic neuralgia (PHN) is characterized by prolonged duration, severe pain, and significant treatment resistance, substantially impairing patients' quality of life. This study aims to evaluate the potential of plasma NPY levels in patients with PHN as a predictive biomarker for the development of this condition. Methods Between February 2022 and December 2023, 182 patients with herpes zoster (HZ) were recruited. Thirty-eight volunteers with no history of HZ were also recruited as controls. Clinical factors, NPY, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed within 3 days of healing. Logistic regression analysis was used to predict the development of PHN. Results NPY levels were lower and BDNF and NGF were higher in HZ patients than those in controls. Only NPY levels were lower in patients with PHN (n = 59) compared with those without PHN (n = 123). Age, acute pain severity, and rash area were independent predictors of PHN, as were NPY levels. The area under the curve (AUC) to predict the development of PHN based on the combination of NPY levels and clinical factors was 0.873 (95% CI: 0.805 to 0.940), and the AUC was 0.804 based on only clinical factors (AUC: 0.804, 95% CI: 0.728 to 0.881). Conclusion Low plasma NPY levels are a predictor of developing PHN in patients with HZ. Combining clinical predictors with NPY levels may improve predictive accuracy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Fang Li
- Department of Pathology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Feifei Yang
- Department of Dermatology, Tongzhou Maternal & Child Health Hospital of Beijing, Beijing City, 101101, People’s Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, the First People’s Hospital of Yinchuan, Yinchuan City, Ningxia Hui Autonomous Region, 750001, People’s Republic of China
| |
Collapse
|
2
|
Nelson TS, Sinha GP, Santos DFS, Jukkola P, Prasoon P, Winter MK, McCarson KE, Smith BN, Taylor BK. Spinal neuropeptide Y Y1 receptor-expressing neurons are a pharmacotherapeutic target for the alleviation of neuropathic pain. Proc Natl Acad Sci U S A 2022; 119:e2204515119. [PMID: 36343228 PMCID: PMC9674229 DOI: 10.1073/pnas.2204515119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/25/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral nerve injury sensitizes a complex network of spinal cord dorsal horn (DH) neurons to produce allodynia and neuropathic pain. The identification of a druggable target within this network has remained elusive, but a promising candidate is the neuropeptide Y (NPY) Y1 receptor-expressing interneuron (Y1-IN) population. We report that spared nerve injury (SNI) enhanced the excitability of Y1-INs and elicited allodynia (mechanical and cold hypersensitivity) and affective pain. Similarly, chemogenetic or optogenetic activation of Y1-INs in uninjured mice elicited behavioral signs of spontaneous, allodynic, and affective pain. SNI-induced allodynia was reduced by chemogenetic inhibition of Y1-INs, or intrathecal administration of a Y1-selective agonist. Conditional deletion of Npy1r in DH neurons, but not peripheral afferent neurons prevented the anti-hyperalgesic effects of the intrathecal Y1 agonist. We conclude that spinal Y1-INs are necessary and sufficient for the behavioral symptoms of neuropathic pain and represent a promising target for future pharmacotherapeutic development of Y1 agonists.
Collapse
Affiliation(s)
- Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15261
| | - Ghanshyam P. Sinha
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Diogo F. S. Santos
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Peter Jukkola
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Michelle K. Winter
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ken E. McCarson
- Kansas Intellectual and Developmental Disabilities Research Center; Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Bret N. Smith
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
3
|
Nelson TS, Taylor BK. Targeting spinal neuropeptide Y1 receptor-expressing interneurons to alleviate chronic pain and itch. Prog Neurobiol 2020; 196:101894. [PMID: 32777329 DOI: 10.1016/j.pneurobio.2020.101894] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023]
Abstract
An accelerating basic science literature is providing key insights into the mechanisms by which spinal neuropeptide Y (NPY) inhibits chronic pain. A key target of pain inhibition is the Gi-coupled neuropeptide Y1 receptor (Y1). Y1 is located in key sites of pain transmission, including the peptidergic subpopulation of primary afferent neurons and a dense subpopulation of small, excitatory, glutamatergic/somatostatinergic interneurons (Y1-INs) that are densely expressed in the dorsal horn, particularly in superficial lamina I-II. Selective ablation of spinal Y1-INs with an NPY-conjugated saporin neurotoxin attenuates the development of peripheral nerve injury-induced mechanical and cold hypersensitivity. Conversely, conditional knockdown of NPY expression or intrathecal administration of Y1 antagonists reinstates hypersensitivity in models of chronic latent pain sensitization. These and other results indicate that spinal NPY release and the consequent inhibition of pain facilitatory Y1-INs represent an important mechanism of endogenous analgesia. This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.
Collapse
Affiliation(s)
- Tyler S Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley K Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to End Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Sakai K, Akiyama T. New insights into the mechanisms behind mechanical itch. Exp Dermatol 2020; 29:680-686. [PMID: 32621303 DOI: 10.1111/exd.14143] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 12/25/2022]
Abstract
Gentle tactile stimuli, such as insects crawling on the skin, can cause itching sensation called mechanical itch. Recent studies have begun to shed light on the neural mechanisms of mechanical itch. Interestingly, the neural pathway for mechanical itch is apparently different from that for chemical itch triggered by the activation of pruriceptors with various mediators. Mechanical itch dysesthesia is frequently seen in patients with chronic itch. Mechanisms of this dysesthesia are plausibly involved in central sensitization. In this review, we summarize the current knowledge of mechanical itch under normal and pathological conditions.
Collapse
Affiliation(s)
- Kent Sakai
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tasuku Akiyama
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery and Miami Itch Center, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Siqueira-Lima PS, Quintans JSS, Heimfarth L, Passos FRS, Pereira EWM, Rezende MM, Menezes-Filho JER, Barreto RSS, Coutinho HDM, Araújo AAS, Medrado AS, Naves LA, Bomfim HF, Lucchese AM, Gandhi SR, Quintans-Júnior LJ. Involvement of the PKA pathway and inhibition of voltage gated Ca2+ channels in antihyperalgesic activity of Lippia grata/β-cyclodextrin. Life Sci 2019; 239:116961. [PMID: 31654745 DOI: 10.1016/j.lfs.2019.116961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
Abstract
Neuropathic pain (NP) is a difficult condition to treat because of the modest efficacy of available drugs. New treatments are required. In the study we aimed to investigate the effects of the essential oil from Lippia grata alone or complexed in β-cyclodextrin (LG or LG-βCD) on persistent inflammatory and neuropathic pain in a mouse model. We also investigated Ca2+ currents in rat dorsal root ganglion (DRG) neurons. Male Swiss mice were treated with LG or LG/β-CD (24 mg/kg, i.g.) and their effect was evaluated using an acute inflammatory pleurisy model and nociception triggered by intraplantar injection of an agonist of the TRPs channels. We also tested their effect in chronic pain models: injection of Freund's Complete Adjuvant and partial sciatic nerve ligation (PSNL). In the pleurisy model, LG reduced the number of leukocytes and the levels of TNF-α and IL-1β. It also inhibited cinnamaldehyde and menthol-induced nociceptive behavior. The pain threshold in mechanical and thermal hyperalgesia was increased and paw edema was decreased in models of inflammatory and neuropathic pain. PSNL increased inflammatory protein contents and LG and LG-βCD restored the protein contents of TNF-α, NF-κB, and PKA, but not IL-1β and IL-10. LG inhibited voltage gated Ca2+ channels from DRG neurons. Our results suggested that LG or LG-βCD produce anti-hyperalgesic effect in chronic pain models through reductions in TNF-α levels and PKA, and inhibited voltage-gated calcium channels and may be innovative therapeutic agents for the management of NP.
Collapse
Affiliation(s)
- Pollyana S Siqueira-Lima
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Fabiolla R S Passos
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Erik W M Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Marilia M Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - José E R Menezes-Filho
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Henrique D M Coutinho
- Regional University of Cariri. Universidade Regional do Cariri (URCA), Crato/CE, 63105-000, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Aline S Medrado
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ligia A Naves
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Horácio F Bomfim
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | - Angélica M Lucchese
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | | | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| |
Collapse
|
6
|
Marvizon JC, Chen W, Fu W, Taylor BK. Neuropeptide Y release in the rat spinal cord measured with Y1 receptor internalization is increased after nerve injury. Neuropharmacology 2019; 158:107732. [PMID: 31377198 DOI: 10.1016/j.neuropharm.2019.107732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Neuropeptide Y (NPY) modulates nociception in the spinal cord, but little is known about its mechanisms of release. We measured NPY release in situ using the internalization of its Y1 receptor in dorsal horn neurons. Y1 receptor immunoreactivity was normally localized to the cell surface, but addition of NPY to spinal cord slices increased the number of neurons with Y1 internalization in a biphasic fashion (EC50s of 1 nM and 1 μM). Depolarization with KCl, capsaicin, or the protein kinase A activator 6-benzoyl-cAMP also induced Y1 receptor internalization, presumably by releasing NPY. NMDA receptor activation in the presence of BVT948, an inhibitor of protein tyrosine phosphatases, also released NPY. Electrical stimulation of the dorsal horn frequency-dependently induced NPY release; and this was decreased by the Y1 antagonist BIBO3304, the Nav channel blocker lidocaine, or the Cav2 channel blocker ω-conotoxin MVIIC. Dorsal root immersion in capsaicin, but not its electrical stimulation, also induced NPY release. This was blocked by CNQX, suggesting that part of the NPY released by capsaicin was from dorsal horn neurons receiving synapses from primary afferents and not from the afferent themselves. Mechanical stimulation in vivo, with rub or clamp of the hindpaw, elicited robust Y1 receptor internalization in rats with spared nerve injury but not sham surgery. In summary, NPY is released from dorsal horn interneurons or primary afferent terminals by electrical stimulation and by activation of TRPV1, PKA or NMDA receptors in. Furthermore, NPY release evoked by noxious and tactile stimuli increases after peripheral nerve injury.
Collapse
Affiliation(s)
- Juan Carlos Marvizon
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Wenling Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, 900 Veterans Ave., Warren Hall Building, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, 90095, USA; Veteran Affairs Greater Los Angeles Healthcare System, 11310 Wilshire Blvd., Building 115, Los Angeles, CA, 90073, USA.
| | - Weisi Fu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA.
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY, USA; Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Facilitation of neuropathic pain by the NPY Y1 receptor-expressing subpopulation of excitatory interneurons in the dorsal horn. Sci Rep 2019; 9:7248. [PMID: 31076578 PMCID: PMC6510760 DOI: 10.1038/s41598-019-43493-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/16/2019] [Indexed: 01/24/2023] Open
Abstract
Endogenous neuropeptide Y (NPY) exerts long-lasting spinal inhibitory control of neuropathic pain, but its mechanism of action is complicated by the expression of its receptors at multiple sites in the dorsal horn: NPY Y1 receptors (Y1Rs) on post-synaptic neurons and both Y1Rs and Y2Rs at the central terminals of primary afferents. We found that Y1R-expressing spinal neurons contain multiple markers of excitatory but not inhibitory interneurons in the rat superficial dorsal horn. To test the relevance of this spinal population to the development and/or maintenance of acute and neuropathic pain, we selectively ablated Y1R-expressing interneurons with intrathecal administration of an NPY-conjugated saporin ribosomal neurotoxin that spares the central terminals of primary afferents. NPY-saporin decreased spinal Y1R immunoreactivity but did not change the primary afferent terminal markers isolectin B4 or calcitonin-gene-related peptide immunoreactivity. In the spared nerve injury (SNI) model of neuropathic pain, NPY-saporin decreased mechanical and cold hypersensitivity, but disrupted neither normal mechanical or thermal thresholds, motor coordination, nor locomotor activity. We conclude that Y1R-expressing excitatory dorsal horn interneurons facilitate neuropathic pain hypersensitivity. Furthermore, this neuronal population remains sensitive to intrathecal NPY after nerve injury. This neuroanatomical and behavioral characterization of Y1R-expressing excitatory interneurons provides compelling evidence for the development of spinally-directed Y1R agonists to reduce chronic neuropathic pain.
Collapse
|
8
|
Diaz-delCastillo M, Woldbye DP, Heegaard AM. Neuropeptide Y and its Involvement in Chronic Pain. Neuroscience 2018; 387:162-169. [DOI: 10.1016/j.neuroscience.2017.08.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
|
9
|
Malet M, Leiguarda C, Gastón G, McCarthy C, Brumovsky P. Spinal activation of the NPY Y1 receptor reduces mechanical and cold allodynia in rats with chronic constriction injury. Peptides 2017; 92:38-45. [PMID: 28465077 DOI: 10.1016/j.peptides.2017.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/18/2022]
Abstract
Neuropeptide tyrosine (NPY) and its associated receptors Y1R and Y2R have been previously implicated in the spinal modulation of neuropathic pain induced by total or partial sectioning of the sciatic nerve. However, their role in chronic constrictive injuries of the sciatic nerve has not yet been described. In the present study, we analyzed the consequences of pharmacological activation of spinal Y1R, by using the specific Y1R agonist Leu31Pro34-NPY, in rats with chronic constriction injury (CCI). CCI and sham-injury rats were implanted with a permanent intrathecal catheter (at day 7 after injury), and their response to the administration of different doses (2.5, 5, 7, 10 or 20μg) of Leu31Pro34-NPY (at a volume of 10μl) through the implanted catheter, recorded 14days after injury. Mechanical allodynia was tested by means of the up-and-down method, using von Frey filaments. Cold allodynia was tested by application of an acetone drop to the affected hindpaw. Intrathecal Leu31Pro34-NPY induced an increase of mechanical thresholds in rats with CCI, starting at doses of 5μg and becoming stronger with higher doses. Intrathecal Leu31Pro34 also resulted in reductions in the frequency of withdrawal to cold stimuli, although the effect was somewhat more moderate and mostly observed for doses of 7μg and higher. We thus show that spinal activation of the Y1R is able to reduce neuropathic pain due to a chronic constrictive injury and, together with other studies, support the use of a spinal Y1R agonist as a therapeutic agent against chronic pain induced by peripheral neuropathy.
Collapse
Affiliation(s)
- Mariana Malet
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Candelaria Leiguarda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Guillermo Gastón
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Carly McCarthy
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina
| | - Pablo Brumovsky
- Instituto de Investigaciones en Medicina Traslacional (IIMT), Consejo Nacional de Investigaciones Cientiíficas y Técnicas (CONICET) - Austral University, Avenida Juan D. Perón 1500, B1629AHJ, Pilar, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Wodarski R, Delaney A, Ultenius C, Morland R, Andrews N, Baastrup C, Bryden LA, Caspani O, Christoph T, Gardiner NJ, Huang W, Kennedy JD, Koyama S, Li D, Ligocki M, Lindsten A, Machin I, Pekcec A, Robens A, Rotariu SM, Voß S, Segerdahl M, Stenfors C, Svensson CI, Treede RD, Uto K, Yamamoto K, Rutten K, Rice AS. Cross-centre replication of suppressed burrowing behaviour as an ethologically relevant pain outcome measure in the rat: a prospective multicentre study. Pain 2016; 157:2350-65. [PMID: 27643836 PMCID: PMC5028161 DOI: 10.1097/j.pain.0000000000000657] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
Burrowing, an ethologically relevant rodent behaviour, has been proposed as a novel outcome measure to assess the global impact of pain in rats. In a prospective multicentre study using male rats (Wistar, Sprague-Dawley), replication of suppressed burrowing behaviour in the complete Freund adjuvant (CFA)-induced model of inflammatory pain (unilateral, 1 mg/mL in 100 µL) was evaluated in 11 studies across 8 centres. Following a standard protocol, data from participating centres were collected centrally and analysed with a restricted maximum likelihood-based mixed model for repeated measures. The total population (TP-all animals allocated to treatment; n = 249) and a selected population (SP-TP animals burrowing over 500 g at baseline; n = 200) were analysed separately, assessing the effect of excluding "poor" burrowers. Mean baseline burrowing across studies was 1113 g (95% confidence interval: 1041-1185 g) for TP and 1329 g (1271-1387 g) for SP. Burrowing was significantly suppressed in the majority of studies 24 hours (7 studies/population) and 48 hours (7 TP, 6 SP) after CFA injections. Across all centres, significantly suppressed burrowing peaked 24 hours after CFA injections, with a burrowing deficit of -374 g (-479 to -269 g) for TP and -498 g (-609 to -386 g) for SP. This unique multicentre approach first provided high-quality evidence evaluating suppressed burrowing as robust and reproducible, supporting its use as tool to infer the global effect of pain on rodents. Second, our approach provided important informative value for the use of multicentre studies in the future.
Collapse
Affiliation(s)
- Rachel Wodarski
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
- Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom
| | - Ada Delaney
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Camilla Ultenius
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | - Rosie Morland
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Nick Andrews
- Department of Neurobiology, Boston Children's Hospital, MA, USA
| | - Catherine Baastrup
- Danish Pain Research Center, Aarhus University Hospital, Aarhus, Denmark
| | - Luke A. Bryden
- CNS Disease Division Research Germany, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach an der Riss, Germany
| | - Ombretta Caspani
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Thomas Christoph
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Natalie J. Gardiner
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Wenlong Huang
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | - Suguru Koyama
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Dominic Li
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Marcin Ligocki
- Eli Lilly and Company, Erl Wood Manor, Windlesham, United Kingdom
| | | | - Ian Machin
- Deal, Kent, United Kingdom. L. A. Bryden is now with the Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom. W. Huang is now with the Institute of Medical Sciences, University of Aberdeen, United Kingdom. C. Stenfors is now with the R&D CNS Research, Orion Corporation, Orion Pharma, Espoo, Finland
| | - Anton Pekcec
- CNS Disease Division Research Germany, Boehringer Ingelheim Pharma GmbH and Co KG, Biberach an der Riss, Germany
| | - Angela Robens
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Sanziana M. Rotariu
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sabrina Voß
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Marta Segerdahl
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
- H. Lundbeck A/S, Valby, Denmark
| | - Carina Stenfors
- Neuroscience CNSP iMED, AstraZeneca R&D Södertälje, Södertälje, Sweden
| | - Camilla I. Svensson
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim (CBTM), Heidelberg University, Mannheim, Germany
| | - Katsuhiro Uto
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kazumi Yamamoto
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | - Kris Rutten
- Department of Pharmacology and Biomarker Development, Translational Science and Strategy, Grünenthal GmbH, Aachen, Germany
| | - Andrew S.C. Rice
- Pain Research Group, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
11
|
Nucci-Martins C, Martins DF, Nascimento LF, Venzke D, Oliveira AS, Frederico MJS, Silva FRMB, Brighente IMC, Pizzolatti MG, Santos ARS. Ameliorative potential of standardized fruit extract of Pterodon pubescens Benth on neuropathic pain in mice: Evidence for the mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2015; 175:273-286. [PMID: 26386380 DOI: 10.1016/j.jep.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/31/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plant Pterodon pubescens Benth has been traditionally used for a long time to treat rheumatic diseases due to its anti-inflammatory and analgesic activities. The present study aims to evaluate the antinociceptive effect of ethanolic extract from P. pubescens fruits (EEPp) in a model of neuropathic pain in mice. MATERIALS AND METHODS The phytochemical analysis of EEPp was performed through GC-MS, HPLC and colorimetric analysis. The antinociceptive effects of EEPp (30-300 mg/kg, i.g.) were evaluated on mechanical and thermal (cold or heat) hyperalgesia in neuropathic pain induced by partial sciatic nerve ligation (PSNL) in mice. We also investigated the effects of EEPp on the nociceptive response induced by intrathecal injection (i.t.) of ionotropic (AMPA, NMDA and kainate) and metabotropic (trans-ACPD) glutamate receptor agonists, proinflammatory cytokines such as IL-1β and TNF-α, as well as TRPV1 and TRPA1 agonists. In addition, we also investigated the safety profile of prolonged treatment with EEPp in mice. RESULTS The phytochemical analysis showed a higher amount terpenes, being nine sesquiterpenes and seven diterpenes with vouacapan skeletons, as well as a small amount of phenols and flavonoids. The exact mechanism by which EEPp promotes its antinociceptive effect is not yet fully understood, but its oral administration causes significant inhibition of glutamate-, kainate-, NMDA-, trans-ACPD-induced biting responses, as well as of proinflammatory cytokines (TNF-α and IL-1β) and TRPV1 and TRPA1 channels activators (capsaicin and cinnamaldehyde, respectively). These results may indicate, at least in part, some of the mechanisms that are involved in this effect. In particular, EEPp decreases neuropathic pain and clearly shows, for the first time, a thermal and mechanical hyperalgesia reduction in the model of partial sciatic nerve ligation (PSNL), without inducing tolerance. Furthermore, the prolonged treatment with EEPp (300 mg/kg, i.g.) showed a cumulative effect over 24h, in the 15th day, after last treatment. In addition, the open-field test showed that doses up to 300 mg/kg in both treatments, acute and/or prolonged, did not affect the motor activity of mice. Also, EEPp showed no toxicity according to the serum levels of the renal and hepatic injury indicators or observed macroscopic organs, after PSNL. CONCLUSIONS Taken together, these results provide the first experimental evidence of the significant antinociceptive effect of EEPp on neuropathic pain without causing side effects, such as sedation or locomotor dysfunction. Moreover, these results appear to be mediated, at least in part, by the inhibition of glutamatergic receptors, TRPV1 and TRPA1 channels and proinflammatory cytokines. Thus, this study adds new scientific evidence and highlights the therapeutic potential of the medicinal plant P. pubescens in the development of phytomedicines for the management of neuropathic pain.
Collapse
Affiliation(s)
- Catharina Nucci-Martins
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil; Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Daniel F Martins
- Laboratory of Experimental Neuroscience, Graduate Program in Health Sciences, University of Southern Santa Catarina, Pedra Branca, Palhoça, SC 88137-270, Brazil
| | - Leandro F Nascimento
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil; Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Dalila Venzke
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Aldo S Oliveira
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Marisa J S Frederico
- Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fátima R M B Silva
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Inês M C Brighente
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Moacir G Pizzolatti
- Department of Chemistry, Center of Physical and Mathematical Sciences, Federal University of Santa Catarina, Trindade Florianópolis, SC 88040-900, Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC 88040-900, Brazil; Graduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol 2015; 93:125-40. [DOI: 10.1016/j.bcp.2014.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/13/2022]
|
13
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Wiley RG. Inhibition in the dorsal horn. Pain 2013; 154:2577-2578. [PMID: 23778298 DOI: 10.1016/j.pain.2013.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Ronald G Wiley
- Neurology Service, Veterans Affairs Tennessee Valley Healthcare System, Departments of Neurology and Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
15
|
Xiang Q, Wang CL, Song S, Jing R. Interaction of somatostatin receptor-2 and neuropeptide Y receptor-1 in mice dorsal root ganglion neurons on the pinch-nerve injury model. Pharmacol Biochem Behav 2013; 105:71-5. [PMID: 23402941 DOI: 10.1016/j.pbb.2013.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/28/2013] [Accepted: 02/01/2013] [Indexed: 11/18/2022]
Abstract
The aim of this paper was to evaluate the interactions of Somatostatin receptor-2 (SST2) and Neuropeptide Y receptors-1 (Y1) by molecular, pharmacological and behavioral studies. Double-immunolabeling of SST2 and Y1 has shown the colocalization of these two receptors in the dorsal root ganglion (DRG) neurons. On the basis of the Pinch nerve injury model, the mechanical hyperalgesia and severely painful behavior (autotomy) were detected after the application of SST2 antibody (anti-SST2; 200μg/kg) on the pinch-injured nerve. The differential distribution of Y1 and up-regulation of PKC expression in DRGs were observed after anti-SST2 treatment. Our results indicated for the first time the interactions of SST2 and Y1 in DRGs, which have functional role in pain modulation and might give rise to explore possible novel therapeutic strategies against pain.
Collapse
Affiliation(s)
- Qiong Xiang
- School of Life Sciences and Technology, Harbin Institute of Technology, Harbin, China.
| | | | | | | |
Collapse
|
16
|
The Role of the Central Nervous System in Osteoarthritis Pain and Implications for Rehabilitation. Curr Rheumatol Rep 2012; 14:576-82. [DOI: 10.1007/s11926-012-0285-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|