1
|
Moazzam S, Noorjahan N, Jin Y, Nagy JI, Kardami E, Cattini PA. Effect of high fat diet on maternal behavior, brain-derived neurotrophic factor and neural stem cell proliferation in mice expressing human placental lactogen during pregnancy. J Neuroendocrinol 2024; 36:e13258. [PMID: 36989439 DOI: 10.1111/jne.13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/05/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023]
Abstract
Maternal obesity is a serious health concern because it increases risks of neurological disorders, including anxiety and peripartum depression. In mice, a high fat diet (HFD) in pregnancy can negatively affect placental structure and function as well as maternal behavior reflected by impaired nest building and pup-retrieval. In humans, maternal obesity in pregnancy is associated with reduced placental lactogen (PL) gene expression, which has been linked to a higher risk of depression. PL acting predominantly through the prolactin receptor maintains energy homeostasis and is a marker of placenta villous trophoblast differentiation during pregnancy. Impaired neurogenesis and low serum levels of brain-derived neurotrophic factor (BDNF) have also been implicated in depression. Augmented neurogenesis in brain during pregnancy was reported in the subventricular zone (SVZ) of mice at gestation day 7 and linked to increased prolactin receptor signaling. Here, we used transgenic CD-1 mice that express human (h) PL during pregnancy to investigate whether the negative effects of diet on maternal behavior are mitigated in these (CD-1[hGH/PL]) mice. Specifically, we examined the effect of a HFD on nest building prepartum and pup retrieval postpartum, as well as on brain BDNF levels and neurogenesis. In contrast to wild-type CD-1[WT]mice, CD-1[hGH/PL] mice displayed significantly less anxiety-like behavior, and showed no impairment in prepartum nest building or postpartum pup-retrieval when fed a HFD. Furthermore, the HFD decreased prepartum and increased postpartum BDNF levels in CD-1[WT] but not CD-1[hGH/PL] mice. Finally, neurogenesis in the SVZ as well as phosphorylated mitogen-activated protein kinase, indicative of lactogenic signaling, appeared unaffected by pregnancy and diet at gestation day 7 in CD-1[hGH/PL] mice. These observations indicate that CD-1[hGH/PL] mice are resistant to the negative effects of HFD reported for CD-1[WT] mice, including effects on maternal behaviors and BDNF levels, and potentially, neurogenesis. This difference probably reflects a direct or indirect effect of the products of the hGH/PL transgene.
Collapse
Affiliation(s)
- Showall Moazzam
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Noshin Noorjahan
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Yan Jin
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - James I Nagy
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
2
|
High maternal BMI and low maternal blood BDNF may determine the limit of detection of amniotic fluid BDNF throughout gestation: Analysis of mother-fetus trios and literature review. PLoS One 2022; 17:e0265186. [PMID: 35271679 PMCID: PMC8912268 DOI: 10.1371/journal.pone.0265186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
Objective An increasing number of studies show the importance of brain-derived neurotrophic factor (BDNF) acting at the feto-placental interface, however, only a few studies describe BDNF levels in amniotic fluid (AF). Methods In this cross-sectional, prospective study, 109 maternal blood-amniotic fluid pairs (including 66 maternal blood-fetal-blood-amniotic fluid trios) were analyzed. BDNF concentrations were measured with a commercially available immunoassay. Results In 71 AF from 109 samples, AF-BDNF concentrations were below the lowest limit of Quantitation (LLoQ) of 1.19 pg/ml (group A), leaving 38 samples with measurable BDNF concentrations (group B). Patients in group A showed significantly higher maternal BMI before pregnancy (mean±SD 26.3± 6.7 (kg/m2) vs. 23.8 ±4.5 (kg/m2) p = 0.04) and lower maternal blood BDNF concentrations than the other group (mean±SD 510.6 ± 554.7 pg/ml vs. mean±SD 910.1± 690.1 pg/ml; p<0.0001). Spearman correlation showed a negative correlation between maternal BMI before pregnancy and maternal BDNF concentrations (r = -0.25, p = 0.01). Conclusion Our study is the first to correlate AF-BDNF samples with the corresponding maternal and fetal blood-BDNF samples. The significant negative correlation between maternal BMI before pregnancy and maternal BDNF and AF-BDNF concentrations below the limit of detection has to be evaluated in further studies.
Collapse
|
3
|
Flöck A, Ferrari N, Joisten C, Puth MT, Strizek B, Gembruch U, Merz WM. Cytokines and parturition: investigating adiponectin, TNF-α, and IL-6 in mother-newborn pairs. J Matern Fetal Neonatal Med 2022; 35:9249-9256. [PMID: 35156492 DOI: 10.1080/14767058.2021.2025356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Cytokines are reported to be associated with various pregnancy complications and health outcomes of the offspring. However, reference values during pregnancy have not been established, effects of clinical and obstetric factors have not been examined, and interactions between different cytokines have not yet been reported. METHODS In this cross-sectional study, we recruited 120 mother-newborn pairs. Maternal venous blood samples (6 mL) were taken on admission to the labor ward; newborn venous blood samples (6 mL) were drawn from the placental part of the umbilical cord (UC). Adiponectin, TNF-α, and IL-6 serum concentrations were measured by commercial immunoassays. Clinical and obstetric variables were analyzed for their association with maternal and UC cytokine concentrations. RESULTS Forty-six adiponectin pairs, 55 TNF-α pairs, and 14 IL-6 pairs were available for analysis. Correlation between UC and maternal adiponectin-, IL-6-, and TNF-α levels was low. We found a significant correlation of UC adiponectin with maternal brain-derived neurotrophic factor (BDNF) and maternal adiponectin, and between maternal leptin and maternal TNF-α. CONCLUSIONS Clinical and obstetric variables as well as interactions between cytokines may have an impact on serum concentrations of the respective cytokines in maternal and UC blood. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
- A Flöck
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - N Ferrari
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - C Joisten
- Department for Physical Activity in Public Health, Institute of Movement and Neurosciences, German Sport University Cologne, Cologne, Germany
| | - M T Puth
- Department of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - B Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - U Gembruch
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| | - W M Merz
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Pathare-Ingawale P, Chavan-Gautam P. The balance between cell survival and death in the placenta: Do neurotrophins have a role? Syst Biol Reprod Med 2021; 68:3-12. [PMID: 34615417 DOI: 10.1080/19396368.2021.1980132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Neurotrophins (NT) are a closely related family of growth factors, which regulate the nervous system's development, maintenance, and function. Although NTs have been well studied in neuronal cells, they are also expressed in the placenta. Despite their suggested role in regulating fetoplacental development, their precise functional significance in the placenta remains elusive. NT activate two different classes of receptors. These include the Trk, tropomyosin-related kinase family of high-affinity tropomyosin-related kinase receptors, which induces cell survival, and the p75NTR, p75 neurotrophin receptor, a member of the tumor necrosis factor(TNF) receptor superfamily, which induces apoptosis in neuronal cells. Mature NT molecule results from proteolysis of a biologically active precursor form called pro-neurotrophins (pro-NT) by the intracellular proprotein convertase or furin. Pro-NTs have a regulatory role in determining cell survival and apoptosis. Here, we review the literature on the expression and functions of NTs and their receptors in the placenta and discuss their possible role in placental tissue development and apoptosis. The possible implications of imbalance in pro-NT and mature-NT levels for fetoplacental development are also discussed.Abbreviations AGE/ALEs: Advanced glycation/lipoxidation end products; Bax: Bcl 2 Associated X; Bcl-2: B-cell lymphoma 2; BDNF: Brain-derived neurotrophic factor; FAS/FASL: Fas cell surface death receptor/ ligand; IUGR: Intrauterine growth restriction; JNK: c-Jun amino-terminal kinase; MAP: mitogen-activated protein k; mRNA: Messenger ribonucleic acid; NGF: Nerve growth factor; NT: Neurotrophins; NRAGE: Neurotrophin receptor-interacting MAGE homolog; NRIF: Neurotrophin receptor interacting factor; PE: Preeclampsia; PI3k: Phosphoinositide 3- kinase; PLC: Phospholipase C; p75NTR: p75 neurotrophin receptor; Pro-NT: Pro-neurotrophins; PTB: Preterm birth; p53: Tumor protein p53; TNF: Tumor necrosis factor; TRAF: TNFR-associated factors; Trk: Tropomyosin-related kinase; siRNA: small interfering ribonucleic acid.
Collapse
Affiliation(s)
| | - Preeti Chavan-Gautam
- Interdisciplinary School of Health Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
5
|
Krey FC, Stocchero BA, Creutzberg KC, Heberle BA, Tractenberg SG, Xiang L, Wei W, Kluwe-Schiavon B, Viola TW. Neurotrophic Factor Levels in Preterm Infants: A Systematic Review and Meta-Analysis. Front Neurol 2021; 12:643576. [PMID: 33868149 PMCID: PMC8047113 DOI: 10.3389/fneur.2021.643576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/05/2021] [Indexed: 01/11/2023] Open
Abstract
Objectives: Through a systematic review and meta-analysis of the literature we aimed to compare the levels of BDNF, NGF, NT-3, NT-4, and GDNF between human term and preterm infants, and investigate factors implicated in the variability of effect size estimates. Methods: The analysis was performed in three online databases, MEDLINE Complete, PsycINFO, and CINAHL. A random effects model was used to calculate the standardized mean difference (SMD) of neurotrophic factor levels in preterm infants vs. term within a 95% confidence interval (CI). To explore sources of heterogeneity meta-regression models were implemented. Results: Sixteen studies were included in this meta-analysis. A combined sample of 1,379 preterm and 1,286 term newborns were evaluated. We identified significant lower BDNF (SMD = -0.32; 95% CI: -0.59, -0.06; p = 0.014) and NT-3 (SMD = -0.31; 95% CI: -0.52, -0.09; p = 0.004) levels in preterm compared to term infants. No significant difference was observed in NGF and NT-4 levels between groups. Given that only two effect sizes were generated for GDNF levels, no meta-analytical model was performed. Meta-regression models revealed sample type (placental tissue, cerebrospinal fluid, peripheral blood, and umbilical cord blood) as a significant moderator of heterogeneity for BDNF meta-analysis. No significant associations were found for gestational week, birth weight, and clinical comorbidity of newborns with effect sizes. Conclusions: Our findings indicated that lower BDNF and NT-3 levels may be associated with preterm birth. Future studies with larger samples sizes should investigate neurodevelopmental manifestations resulting from neurotrophic factor dysregulation among preterm infants.
Collapse
Affiliation(s)
- Francieli Cristina Krey
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Pediatrics and Child Health-School of Medicine, Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruna Alvim Stocchero
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Pediatrics and Child Health-School of Medicine, Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Bernardo Aguzzoli Heberle
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Pediatrics and Child Health-School of Medicine, Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Li Xiang
- Neuroepigenetic Research Lab, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Wei
- Neuroepigenetic Research Lab, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bruno Kluwe-Schiavon
- DCNL, PUCRS, Graduate Program in Psychology-School of Health Sciences, Porto Alegre, Brazil.,School of Psychology, Psychology Research Centre, University of Minho, Braga, Portugal
| | - Thiago Wendt Viola
- Developmental Cognitive Neuroscience Lab (DCNL), Graduate Program in Pediatrics and Child Health-School of Medicine, Pontifical University Catholic of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
6
|
Nyárády K, Turai R, Funke S, Györgyi E, Makai A, Prémusz V, Bódis J, Sulyok E. Effects of perinatal factors on sirtuin 3, 8-hydroxy-2'- deoxyguanosine, brain-derived neurotrophic factor and serotonin in cord blood and early breast milk: an observational study. Int Breastfeed J 2020; 15:57. [PMID: 32552911 PMCID: PMC7302386 DOI: 10.1186/s13006-020-00301-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The profile of sirtuin 3 (SIRT3), 8-hydroxy-2'-deoxyguanosine (8-OHdG), brain-derived neurotrophic factor (BDNF) and serotonin (5-HT) in cord blood and in early breast milk was studied and it was related to perinatal factors. 5-HT and BDNF signalling systems have been claimed to play a critical role in intrauterine development, postnatal adaptation and lactation. Since prematurity and Caesarean birth are frequently associated with inflammation and related oxidative stress, an attempt was made to reveal the adaptive changes of the protective SIRT3 and the complex interplay among these bioactive components in cord blood and early breast milk. METHODS Three groups each consisting of 30 mothers were included in the study: mothers who underwent spontaneous vaginal birth at term (group I), Caesarean section at term (group II) and preterm birth (group III). Venous cord blood and early breast milk samples were collected for measuring the biomarkers. SIRT3, 8-OHdG, BDNF and 5-HT levels were determined by using commercially available ELISA kits. RESULTS It was demonstrated that cord blood levels of SIRT3, BDNF and 5-HT were markedly reduced whereas those of 8-OHdG were significantly elevated after preterm birth when compared with birth at term. The Caesarean section was associated with a moderate decrease in BDNF and 5-HT, however, both SIRT3 and 8-OHdG remained unaffected. Breast milk levels of all biomarkers studied proved to be independent of their corresponding cord blood concentrations. In response to preterm birth breast milk SIRT3, 8-OHdG and 5-HT increased significantly, while a drastic fall occurred in BDNF. A significant positive relationship was found of 5-HT with SIRT3 and 8-OHdG irrespective of the gestational age and the mode of delivery. CONCLUSIONS It is suggested that the selected biomarkers in the breast milk mostly derive from local production by the mammary glands and 5-HT may have an essential role in the control of this process.
Collapse
Affiliation(s)
- Kata Nyárády
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Réka Turai
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Simone Funke
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Erzsébet Györgyi
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, Pécs, H-7624 Hungary
| | - Alexandra Makai
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Viktória Prémusz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Vörösmarty u. 4, Pécs, H-7621 Hungary
| | - József Bódis
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Vörösmarty u. 4, Pécs, H-7621 Hungary
| | - Endre Sulyok
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, Vörösmarty u. 4, Pécs, H-7621 Hungary
| |
Collapse
|
7
|
Differential Secretion of Angiopoietic Factors and Expression of MicroRNA in Umbilical Cord Blood from Healthy Appropriate-For-Gestational-Age Preterm and Term Newborns- in Search of Biomarkers of Angiogenesis-Related Processes in Preterm Birth. Int J Mol Sci 2020; 21:ijms21041305. [PMID: 32075190 PMCID: PMC7072966 DOI: 10.3390/ijms21041305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Objectives: Premature birth, defined as less than 37 weeks gestation, affects approximately 12% of all live births around the world. Advances in neonatal care have resulted in the increased survival of infants born prematurely. Although prematurity is a known risk factor for different cardiovascular diseases, little is known about the pathophysiology of vasculature during premature gestation and angiopoietic factors network during premature birth. Aims: The objective of this study was to determine whether the profile of several pro-angiogenic and anti-angiogenic factors in umbilical cord blood (UCB) is different in healthy appropriate-for-gestational-age preterm newborns and normal term babies. The second aim of this study was to investigate the microRNA (miRNAs) expression profile in UCB from preterm labor and to detect miRNAs potentially taking part in control of angogenesis-related processes (Angio-MiRs). Methods: Using an immunobead Luminex assay, we simultaneously measured the concentration of Angiogenin, Angiopoietin-1, FGF-acidic, FGF-basic, PDGF-aa, PlGF, VEGF, VEGF-D, Endostatin, Thrombospondin-2, NGF, BDNF, GDNF, and NT-4 in UCB samples collected from the preterm (n = 27) and term (n = 52) delivery. In addition, the global microRNA expression in peripheral blood mononuclear cells (PBMCs) circulating in such UCB samples was examined in this study using microarray MiRNA technique. Results: The concentrations of five from eight measured pro-angiogenic factors (VEGF, Angiopoietin-1, PDGF-AA, FGF-a, and FGF-b) were significantly lower in UCB from preterm newborns. On the contrary, two angiostatic factors (Endostatin and Thrombospondin-2) were significantly up-regulated in preterm UCB. Among analyzed neurotrophins in preterm newborns, the elevated UCB concentration was found only in the case of GDNF, whereas BDNF was significantly reduced. Moreover, two angiopoietic factors, VEGF-D and PlGF, and two neurotrophins, NT4 and NGF, did not differ in concentration in preterm and term babies. We also discovered that among the significantly down-regulated miRNAs, there were several classical Angio-MiRs (inter alia MiR-125, MiR-126, MiR-145, MiR-150, or MiR155), which are involved in angiogenesis regulation in newborn after preterm delivery. Conclusions: This is the first report of simultaneous measurements of several angiopoietic factors in UCB collected from infants during preterm and term labor. Here, we observed that several pro-angiogenic factors were at lower concentration in UCB collected from preterm newborns than term babies. In contrast, the two measured angiostatic factors, Endostatin and Thrombospondin-2, were significantly higher in UCB from preterm babies. This can suggest that distinct pathophysiological contributions from differentially expressed various angiopoietic factors may determine the clinical outcomes after preterm birth. Especially, our angiogenesis-related molecules analysis indicates that preterm birth of healthy, appropriate-for-gestational-age newborns is an “anti-angiogenic state” that may provide an increased risk for improper development and function of cardiovascular system in the adulthood. This work also contributes to a better understanding of the role of miRNAs potentially involved in angiogenesis control in preterm newborns.
Collapse
|
8
|
Association between Brain-Derived Neurotrophic Factor (BDNF) Levels in 2 nd Trimester Amniotic Fluid and Fetal Development. Mediators Inflamm 2018; 2018:8476217. [PMID: 30622436 PMCID: PMC6304926 DOI: 10.1155/2018/8476217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
The development of the fetal nervous system mirrors general fetal development, comprising a combination of genetic resources and effects of the intrauterine environment. Our aim was to assess the 2nd trimester amniotic fluid levels of brain-derived neurotrophic factor (BDNF) and to investigate its association with fetal growth. In accordance with our study design, samples of amniotic fluid were collected from women who had undergone amniocentesis early in the 2nd trimester. All pregnancies were followed up until delivery and fetal growth patterns and birth weights were recorded, following which pregnancies were divided into three groups based on fetal weight: (1) AGA (appropriate for gestational age), (2) SGA (small for gestational age), and (3) LGA (large for gestational age). We focused on these three groups representing a reflection of the intrauterine growth spectrum. Our results revealed the presence of notably higher BDNF levels in the amniotic fluid of impaired growth fetuses by comparison with those of normal growth. Both SGA and macrosomic fetuses are characterized by notably higher amniotic fluid levels of BDNF (mean values of 36,300 pg/ml and 35,700 pg/ml, respectively) compared to normal-growth fetuses (mean value of 32,700 pg/ml). Though apparently small, this difference is, nevertheless, statistically significant (p value < 0.05) in SGA fetuses in the extremes of the distribution, i.e., below the 3rd centile. In conclusion, there is clear evidence that severe impairment of fetal growth induces the increased production of fetal brain growth factor as an adaptive mechanism in reaction to a hostile intrauterine environment, thereby accelerating fetal brain development and maturation.
Collapse
|
9
|
|
10
|
Hodyl NA, Crawford TM, McKerracher L, Lawrence A, Pitcher JB, Stark MJ. Antenatal steroid exposure in the late preterm period is associated with reduced cord blood neurotrophin-3. Early Hum Dev 2016; 101:57-62. [PMID: 27411106 DOI: 10.1016/j.earlhumdev.2016.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND Neurotrophins are proteins critically involved in neural growth, survival and differentiation, and therefore important for fetal brain development. Reduced cord blood neurotrophins have been observed in very preterm infants (<32weeks gestation) who subsequently develop brain injury. Antenatal steroid exposure can alter neurotrophin concentrations, yet studies to date have not examined whether this occurs in the late preterm infant (33-36weeks gestation), despite increasing recognition of subtle neurodevelopmental deficits in this population. AIM To assess the impact of antenatal steroids on cord blood neurotrophins in late preterm infants following antenatal steroid exposure. STUDY DESIGN Retrospective analysis. SUBJECTS Late preterm infants (33-36weeks; n=119) and term infants (37-41weeks; n=129) born at the Women's and Children's Hospital, Adelaide. OUTCOME MEASURES Cord blood neurotrophin-3 (NT-3), NT-4, nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) concentrations measured by ELISA. RESULTS Cord blood NT-4 and NGF were increased at term compared to the late preterm period (p<0.001), while BDNF and NT-3 were not different. In the late preterm period, cord blood NT-3 was reduced when antenatal steroids were administered >24h prior to delivery (p<0.01). CONCLUSION This study identified an association between reduced cord blood NT-3 and antenatal steroid exposure in the late preterm period. The reduced NT-3 may be a consequence of steroids inducing neuronal apoptosis, thereby reducing endogenous neuronal NT3 production, or be an action of steroids on other maternal or fetal NT-3 producing cells, which may then affect neuronal growth, differentiation and survival. Regardless of the specific mechanism, a reduction in NT-3 may have long term implications for child neurodevelopment, and emphasizes the ongoing vulnerability of the fetal brain across the full preterm period.
Collapse
Affiliation(s)
- Nicolette A Hodyl
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia; Department of Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia.
| | - Tara M Crawford
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| | - Lorna McKerracher
- Department of Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Andrew Lawrence
- Microbiology and Infectious Diseases, SA Pathology, Adelaide, South Australia, Australia
| | - Julia B Pitcher
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia
| | - Michael J Stark
- Robinson Research Institute, School of Medicine, University of Adelaide, South Australia, Australia; Department of Neonatal Medicine, Women's and Children's Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Carter C. The barrier, airway particle clearance, placental and detoxification functions of autism susceptibility genes. Neurochem Int 2016; 99:42-51. [DOI: 10.1016/j.neuint.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/11/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
|
12
|
Wadhwani NS, Narang AS, Mehendale SS, Wagh GN, Gupte SA, Joshi SR. Reduced Maternal Erythrocyte Long Chain Polyunsaturated Fatty Acids Exist in Early Pregnancy in Preeclampsia. Lipids 2015; 51:85-94. [PMID: 26626477 DOI: 10.1007/s11745-015-4098-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 11/09/2015] [Indexed: 01/12/2023]
Abstract
The present prospective study examines proportions of maternal erythrocyte fatty acids across gestation and their association with cord erythrocyte fatty acids in normotensive control (NC) and preeclamptic pregnancies. We hypothesize that maternal fatty acid status in early pregnancy influences fetal fatty acid stores in preeclampsia. 137 NC women and 58 women with preeclampsia were included in this study. Maternal blood was collected at 3 time points during pregnancy (16-20th weeks, 26-30th weeks and at delivery). Cord blood was collected at delivery. Fatty acids were analyzed using gas chromatography. The proportions of maternal erythrocyte α-linolenic acid, docosahexaenoic acid, nervonic acid, and monounsaturated fatty acids (MUFA) (p < 0.05 for all) were lower while total n-6 fatty acids were higher (p < 0.05) at 16-20th weeks of gestation in preeclampsia as compared with NC. Cord 18:3n-3, 22:6n-3, 24:1n-9, MUFA, and total n-3 fatty acids (p < 0.05 for all) were also lower in preeclampsia as compared with NC. A positive association was observed between maternal erythrocyte 22:6n-3 and 24:1n-9 at 16-20th weeks with the same fatty acids in cord erythrocytes (p < 0.05 for both) in preeclampsia. Our study for the first time indicates alteration in maternal erythrocyte fatty acids at 16th weeks of gestation which is further reflected in cord erythrocytes at delivery in preeclampsia.
Collapse
Affiliation(s)
- Nisha S Wadhwani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India
| | - Ankita S Narang
- Department of Nutritional Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India
| | - Savita S Mehendale
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Bharati Vidyapeeth Deemed University, Pune, 411043, India
| | - Girija N Wagh
- Department of Obstetrics and Gynaecology, Bharati Medical College and Hospital, Bharati Vidyapeeth Deemed University, Pune, 411043, India
| | | | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune, 411043, India.
| |
Collapse
|
13
|
Sahay AS, Sundrani DP, Wagh GN, Mehendale SS, Joshi SR. Neurotrophin levels in different regions of the placenta and their association with birth outcome and blood pressure. Placenta 2015; 36:938-43. [PMID: 26138363 DOI: 10.1016/j.placenta.2015.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/22/2015] [Accepted: 06/14/2015] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Our recent study in preeclampsia indicates differential oxidative stress in various regions of the placenta. Oxidative stress is known to influence neurotrophin levels. We therefore hypothesize that placental regional differences in oxidative stress will also lead to differences in neurotrophin levels. METHODS The current study examines the levels of neurotrophins, brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in different regions of the placenta in 50 normotensive control women and 47 women with preeclampsia (21 delivering at term and 26 delivering preterm). Placentae were collected from four different regions: central maternal (CM), central fetal (CF), peripheral maternal (PM) and peripheral fetal (PF). RESULTS BDNF levels were higher in CF region as compared to CM (p < 0.01), PM (p < 0.01) and PF (p < 0.05) regions of the placenta in the control group. There was no regional change in NGF levels in any of the groups. Analysis between groups indicated higher NGF levels in CM (p < 0.01), PM (p < 0.05) and PF (p < 0.01) regions of preterm preeclampsia group as compared to control. Negative association of NGF levels in CM, CF and PM regions with baby weight and in CF, PM and PF regions with baby length was observed. NGF levels in all four regions were positively associated with systolic blood pressure. DISCUSSION Our data indicates regional differences in levels of BDNF only in normotensive control but not in preeclampsia group. Higher NGF levels in preterm preeclampsia may be a response to increased oxidative stress. This may have implications for altered placental development in preeclampsia.
Collapse
Affiliation(s)
- A S Sahay
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - D P Sundrani
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | - G N Wagh
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - S S Mehendale
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth University, Pune, India
| | - S R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India.
| |
Collapse
|
14
|
Maur DG, Pascuan CG, Genaro AM, Zorrilla-Zubilete MA. Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress. ADVANCES IN NEUROBIOLOGY 2015; 10:61-74. [PMID: 25287536 DOI: 10.1007/978-1-4939-1372-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic-pituitary-adrenal axis activity via GR.Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO-citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed.
Collapse
Affiliation(s)
- Damian G Maur
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
15
|
Song QX, Chermansky CJ, Birder LA, Li L, Damaser MS. Brain-derived neurotrophic factor in urinary continence and incontinence. Nat Rev Urol 2014; 11:579-88. [PMID: 25224451 DOI: 10.1038/nrurol.2014.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary incontinence adversely affects quality of life and results in an increased financial burden for the elderly. Accumulating evidence suggests a connection between neurotrophins, such as brain-derived neurotrophic factor (BDNF), and lower urinary tract function, particularly with regard to normal physiological function and the pathophysiological mechanisms of stress urinary incontinence (SUI) and bladder pain syndrome/interstitial cystitis (BPS/IC). The interaction between BDNF and glutamate receptors affects both bladder and external urethral sphincter function during micturition. Clinical findings indicate reduced BDNF levels in antepartum and postpartum women, potentially correlating with postpartum SUI. Experiments with animal models demonstrate that BDNF is decreased after simulated childbirth injury, thereby impeding the recovery of injured nerves and the restoration of continence. Treatment with exogenous BDNF facilitates neural recovery and the restoration of continence. Serotonin and noradrenaline reuptake inhibitors, used to treat both depression and SUI, result in enhanced BDNF levels. Understanding the neurophysiological roles of BDNF in maintaining normal urinary function and in the pathogenesis of SUI and BPS/IC could lead to future therapies based on these mechanisms.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Changhai Hospital, Shanghai, PR China
| | - Christopher J Chermansky
- Department of Urology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital of TMMU, Chongqing, PR China
| | - Margot S Damaser
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH 44195, USA
| |
Collapse
|
16
|
Garcés MF, Sanchez E, Torres-Sierra AL, Ruíz-Parra AI, Angel-Müller E, Alzate JP, Sánchez ÁY, Gomez MA, Romero XC, Castañeda ZE, Sanchez-Rebordelo E, Diéguez C, Nogueiras R, Caminos JE. Brain-derived neurotrophic factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species. Clin Endocrinol (Oxf) 2014; 81:141-51. [PMID: 24372023 DOI: 10.1111/cen.12391] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/28/2013] [Accepted: 12/15/2013] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pregnancy is characterized by several metabolic changes that promote fat gain and later onset of insulin resistance. As Brain-derived neurotrophic factor (BDNF) decreases hyperglycaemia and hyperphagia, we aimed to investigate the potential role of placental and circulating BDNF levels in these pregnancy-related metabolic changes in rats and humans. DESIGN AND METHODS We identified the mRNA and protein expression of placental BDNF and its receptor TrkB using real-time PCR, Western blot and immunohistochemical approaches in both rat and humans. Serum BDNF was measured by ELISA. We also did a longitudinal prospective cohort study in 42 pregnant women to assess BDNF levels and correlations with other metabolic parameters. RESULTS We found that BDNF and TrkB are expressed in both rat and human placenta. In rat, both placental mRNA and serum levels are increased throughout pregnancy, whereas their protein levels are significantly decreased at the end of gestation. Serum BDNF levels in pregnant women are significantly lower in the first trimester when compared to the second and third trimester (P < 0·0148, P < 0·0012, respectively). Serum BDNF levels were negatively correlated with gestational age at birth and fasting glucose levels. CONCLUSION Our findings suggest that both BDNF and its receptor TrkB are expressed in rodent and human placenta being regulated during pregnancy. Taken together, these findings support a role of BDNF in the regulation of several metabolic functions during pregnancy.
Collapse
Affiliation(s)
- María F Garcés
- Department of Physiology, School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dhobale M. Neurotrophins: Role in adverse pregnancy outcome. Int J Dev Neurosci 2014; 37:8-14. [DOI: 10.1016/j.ijdevneu.2014.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 01/13/2023] Open
|
18
|
Levels of brain derived neurotrophic factors across gestation in women with preeclampsia. Int J Dev Neurosci 2014; 37:36-40. [PMID: 24955870 DOI: 10.1016/j.ijdevneu.2014.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/13/2014] [Accepted: 06/13/2014] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia (PE) is a major pregnancy complication of placental origin which leads to adverse pregnancy outcome. Brain derived neurotrophic factor (BDNF) is suggested to promote trophoblast growth and regulate placental and fetal development. This study for the first time examines the levels of maternal plasma BDNF at various time points during gestation, cord plasma and placental BDNF levels and their association with birth outcome in women with PE. Normotensive control (NC) women (n=89) and women with PE (n=61) were followed at three different time points [16-20 weeks (T1), 26-30 weeks (T2) and at delivery (T3)]. Maternal blood at all time points and cord blood was collected. Results indicate that maternal BDNF levels at T1 (p=0.050) and T3 (p=0.025) were lower in women with PE than in NC women. Cord BDNF levels at delivery in women with PE were lower (p=0.032) than those in NC women. Placental BDNF gene expression was also lower (p=0.0082) in women with PE than in NC women. Our data suggests that BDNF plays an important role in the development of the materno-fetal-placental unit during pregnancy. Alteration in the levels of BDNF during pregnancy may be associated with an abnormal development of the placenta resulting in PE.
Collapse
|
19
|
Dhobale MV, Pisal HR, Mehendale SS, Joshi SR. Differential expression of human placental neurotrophic factors in preterm and term deliveries. Int J Dev Neurosci 2013; 31:719-23. [DOI: 10.1016/j.ijdevneu.2013.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/19/2013] [Accepted: 09/17/2013] [Indexed: 12/11/2022] Open
Affiliation(s)
- Madhavi V. Dhobale
- Department of Nutritional MedicineInteractive Research School for Health AffairsBharati Vidyapeeth UniversityPune411043India
| | - Hemlata R. Pisal
- Department of Nutritional MedicineInteractive Research School for Health AffairsBharati Vidyapeeth UniversityPune411043India
| | - Savita S. Mehendale
- Department of Obstetrics and GynaecologyBharati Medical College and HospitalBharati Vidyapeeth UniversityPune411043India
| | - Sadhana R. Joshi
- Department of Nutritional MedicineInteractive Research School for Health AffairsBharati Vidyapeeth UniversityPune411043India
| |
Collapse
|
20
|
Role of brain-derived neurotrophic factor in bone marrow angiogenesis in multiple myeloma. ACTA ACUST UNITED AC 2013; 33:485-490. [DOI: 10.1007/s11596-013-1146-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/26/2013] [Indexed: 12/20/2022]
|
21
|
D'Souza VA, Kilari AS, Joshi AA, Mehendale SS, Pisal HM, Joshi SR. Differential regulation of brain-derived neurotrophic factor in term and preterm preeclampsia. Reprod Sci 2013; 21:230-5. [PMID: 23793470 DOI: 10.1177/1933719113493512] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Our earlier studies in preeclampsia (PE) suggest a causal relationship between altered angiogenic factors and birth outcomes. Recent studies suggest that brain-derived neurotrophic factor (BDNF) can stimulate angiogenesis. The present study examines the levels of maternal and cord BDNF in women with PE (n = 106; full term [n = 60] and preterm [n = 46]) and normotensive women (n = 95; control) delivering at term. Maternal BDNF levels were lower (P < .05) in women with PE when compared to normotensive women. Cord BDNF levels were higher (P < .01) in women with PE delivering at term, while it was lower (P < .01) in women delivering preterm. Maternal BDNF levels were negatively associated with systolic and diastolic blood pressure (P < .01 for both). Our data for the first time suggest a possible role for BDNF in the pathophysiology of PE. Differential regulation of cord BDNF levels in preterm PE suggests a need to follow-up children to assess the neurodevelopmental effects in later life.
Collapse
Affiliation(s)
- Vandita A D'Souza
- 1Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | | | | | | | | | | |
Collapse
|
22
|
Bibliography. Current world literature. Neonatology and perinatology. Curr Opin Pediatr 2013; 25:275-81. [PMID: 23481475 DOI: 10.1097/mop.0b013e32835f58ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Dangat K, Kilari A, Mehendale S, Lalwani S, Joshi S. Higher levels of brain derived neurotrophic factor but similar nerve growth factor in human milk in women with preeclampsia. Int J Dev Neurosci 2013; 31:209-13. [PMID: 23337827 DOI: 10.1016/j.ijdevneu.2012.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/26/2012] [Accepted: 12/08/2012] [Indexed: 01/16/2023] Open
Abstract
Children born to mothers with preeclampsia have consistently been suggested to be at risk for cognitive and behavioral disorders in later life. Breastfeeding is said to be associated with better neurodevelopment outcomes. Our earlier studies indicated higher levels of docosahexaenoic acid (DHA) in human milk in women with preeclampsia. DHA is known to regulate the expression of neurotrophins and together they play a vital role in neurodevelopment and cognitive performance. The present study examines the levels of maternal plasma and milk neurotrophins [(nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF)] in women with preeclampsia and compares them with normotensive women who served as controls. Singleton pregnant women diagnosed with preeclampsia (n=72) and controls (n=102) were recruited for this study from Bharati Hospital, Pune. Plasma and milk samples were analyzed for NGF and BDNF levels using the Emax Immuno Assay System using promega kits. Maternal plasma NGF and BDNF levels were lower (p<0.01 for both) in women with preeclampsia as compared to the control women. Milk NGF levels were similar while milk BDNF levels were higher (p<0.05) in the preeclampsia group as compared to controls. Plasma NGF levels were positively correlated with milk NGF levels in the control group. Our results indicate the differential regulation of milk NGF and BDNF levels in women with preeclampsia. The present study suggests a role for both NGF and BDNF in human milk for postnatal brain development. Further studies need to examine the associations of DHA and BDNF in human milk with cognition at later ages.
Collapse
Affiliation(s)
- Kamini Dangat
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune 411043, India
| | | | | | | | | |
Collapse
|