1
|
Alex Thomas M, Cui X, Artinian LR, Cao Q, Jing J, Silva FC, Wang S, Zigman JM, Sun Y, Shi H, Xue B. Crosstalk between Gut Sensory Ghrelin Signaling and Adipose Tissue Sympathetic Outflow Regulates Metabolic Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568689. [PMID: 38076894 PMCID: PMC10705268 DOI: 10.1101/2023.11.25.568689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The stomach-derived orexigenic hormone ghrelin is a key regulator of energy homeostasis and metabolism in humans. The ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR), is widely expressed in the brain and gastrointestinal vagal sensory neurons, and neuronal GHSR knockout results in a profoundly beneficial metabolic profile and protects against diet-induced obesity (DIO) and insulin resistance. Here we show that in addition to the well characterized vagal GHSR, GHSR is robustly expressed in gastrointestinal sensory neurons emanating from spinal dorsal root ganglia. Remarkably, sensory neuron GHSR deletion attenuates DIO through increased energy expenditure and sympathetic outflow to adipose tissue independent of food intake. In addition, neuronal viral tract tracing reveals prominent crosstalk between gut non-vagal sensory afferents and adipose sympathetic outflow. Hence, these findings demonstrate a novel gut sensory ghrelin signaling pathway critical for maintaining energy homeostasis.
Collapse
Affiliation(s)
- M. Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA
| | - Felipe C. Silva
- Department of Biology, Georgia State University, Atlanta, GA
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
2
|
Yin N, Yang YL, Cheng S, Wang HN, Hu X, Miao Y, Li F, Wang Z. Dopamine D2 Receptor-Mediated Modulation of Rat Retinal Ganglion Cell Excitability. Neurosci Bull 2019; 36:230-242. [PMID: 31606861 DOI: 10.1007/s12264-019-00431-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022] Open
Abstract
Ganglion cells (RGCs) are the sole output neurons of the retinal circuity. Here, we investigated whether and how dopamine D2 receptors modulate the excitability of dissociated rat RGCs. Application of the selective D2 receptor agonist quinpirole inhibited outward K+ currents, which were mainly mediated by glybenclamide- and 4-aminopyridine-sensitive channels, but not the tetraethylammonium-sensitive channel. In addition, quinpirole selectively enhanced Nav1.6 voltage-gated Na+ currents. The intracellular cAMP/protein kinase A, Ca2+/calmodulin-dependent protein kinase II, and mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathways were responsible for the effects of quinpirole on K+ and Na+ currents, while phospholipase C/protein kinase C signaling was not involved. Under current-clamp conditions, the number of action potentials evoked by positive current injection was increased by quinpirole. Our results suggest that D2 receptor activation increases RGC excitability by suppressing outward K+ currents and enhancing Nav1.6 currents, which may affect retinal visual information processing.
Collapse
Affiliation(s)
- Ning Yin
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yu-Long Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hong-Ning Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xin Hu
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- Department of Neurology, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Nelson M, Adams T, Ojo C, Carroll MA, Catapane EJ. Manganese toxicity is targeting an early step in the dopamine signal transduction pathway that controls lateral cilia activity in the bivalve mollusc Crassostrea virginica. Comp Biochem Physiol C Toxicol Pharmacol 2018; 213:1-6. [PMID: 30010023 PMCID: PMC6103847 DOI: 10.1016/j.cbpc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022]
Abstract
Manganese is a neurotoxin causing manganism, a Parkinson-like clinical disorder. Manganese has been shown to interfere with dopaminergic neurotransmission, but the neurotoxic mechanism involved is not fully resolved. In the bivalve mollusc Crassostrea virginica also known as the eastern oyster, beating rates of lateral cilia of the gill are controlled by dopaminergic-serotonergic innervation originating from their cerebral and visceral ganglia. Terminal release of dopamine activates D2-like receptors on these gill cells inhibiting adenylyl cyclase and slowing cilia beating rates. In C. virginica, manganese treatment disrupts this dopaminergic innervation of the gill, preventing the normal cilio-inhibitory response of lateral cells to dopamine. In this study an adenylyl cyclase activator (forskolin) and two different inhibitors (MDL-12,330A and SQ 22,536) were used to determine if manganese had any effects on the adenylyl cyclase step of the dopamine D2 receptor signal transduction pathway. The results showed that neither the adenylyl cyclase activator nor the inhibitors were affected by manganese in the control of lateral ciliary activity. This suggests that in C. virginica the mechanism of manganese toxicity on the dopaminergic control of lateral ciliary activity is targeting an early step in the D2R signal transduction pathway, which may involve interference with D2 receptor activation or alternatively some other downstream signaling activity that does not affect adenylyl cyclase.
Collapse
Affiliation(s)
- Michael Nelson
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Trevon Adams
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Christiana Ojo
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Margaret A Carroll
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA
| | - Edward J Catapane
- Department of Biology, Medgar Evers College, 1638 Bedford Ave, Brooklyn, NY 11225, USA.
| |
Collapse
|
4
|
Liu W, Yang X, He D, He L, Li L, Liu Y, Liu J, Wang K. Dopamine modulated ionic permeability in mesoporous silica sphere based biomimetic compartment. Colloids Surf B Biointerfaces 2016; 142:266-271. [PMID: 26962763 DOI: 10.1016/j.colsurfb.2016.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/24/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
The building of artificial systems with similar structure and function as cellular compartments will expand our understanding of compartmentalization related biological process and facilitate the construction of biomimetic highly functional structures. Herein, surface phenylboronic acid functionalized mesoporous silica sphere was developed as a biomimetic dopamine gated compartment, in which the ionic permeability can be well modulated through the dopamine-binding induced charge reversal. As the phenylboronic acid is negatively charged, the negatively charged 1, 3, 6, 8-pyrenetetrasulfonic acid (TPSA) was hindered from permeation into the biomimetic compartment. However, the presence of dopamine and its binding with phenylboronic acid reversed the gatekeeper shell from negative to positive charged and gated the permeation of TPSA into the interior. The dopamine gated permeation phenomenon resembles that in biological system, and thus the phenylboronic acid functionalized mesoporous silica sphere was taken as a simple model for dopamine gated ion channel decorated biological compartment. It will also contribute to the development of artificial cell and responsive nanoreactor.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Leiliang He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Li Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Yu Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
5
|
Estes S, Zhong L, Artinian L, Rehder V. Regulation of electrical activity and neuronal excitability in Helisoma trivolvis by carbon monoxide. Neuroscience 2015; 311:453-63. [DOI: 10.1016/j.neuroscience.2015.10.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/23/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
|
6
|
Zhong LR, Estes S, Artinian L, Rehder V. Cell-specific regulation of neuronal activity by endogenous production of nitric oxide. Eur J Neurosci 2015; 41:1013-24. [DOI: 10.1111/ejn.12875] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/09/2014] [Accepted: 02/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Ray Zhong
- Biology Department; Georgia State University; Atlanta GA 30302 USA
| | - Stephen Estes
- Biology Department; Georgia State University; Atlanta GA 30302 USA
| | - Liana Artinian
- Biology Department; Georgia State University; Atlanta GA 30302 USA
| | - Vincent Rehder
- Biology Department; Georgia State University; Atlanta GA 30302 USA
| |
Collapse
|
7
|
Estes S, Zhong LR, Artinian L, Tornieri K, Rehder V. The role of action potentials in determining neuron-type-specific responses to nitric oxide. Dev Neurobiol 2014; 75:435-51. [DOI: 10.1002/dneu.22233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen Estes
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Lei Ray Zhong
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Liana Artinian
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Karine Tornieri
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| | - Vincent Rehder
- Department of Biology; Georgia State University; Atlanta Georgia 30302
| |
Collapse
|
8
|
Zhong LR, Estes S, Artinian L, Rehder V. Nitric oxide regulates neuronal activity via calcium-activated potassium channels. PLoS One 2013; 8:e78727. [PMID: 24236040 PMCID: PMC3827272 DOI: 10.1371/journal.pone.0078727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/22/2013] [Indexed: 12/13/2022] Open
Abstract
Nitric oxide (NO) is an unconventional membrane-permeable messenger molecule that has been shown to play various roles in the nervous system. How NO modulates ion channels to affect neuronal functions is not well understood. In gastropods, NO has been implicated in regulating the feeding motor program. The buccal motoneuron, B19, of the freshwater pond snail Helisoma trivolvis is active during the hyper-retraction phase of the feeding motor program and is located in the vicinity of NO-producing neurons in the buccal ganglion. Here, we asked whether B19 neurons might serve as direct targets of NO signaling. Previous work established NO as a key regulator of growth cone motility and neuronal excitability in another buccal neuron involved in feeding, the B5 neuron. This raised the question whether NO might modulate the electrical activity and neuronal excitability of B19 neurons as well, and if so whether NO acted on the same or a different set of ion channels in both neurons. To study specific responses of NO on B19 neurons and to eliminate indirect effects contributed by other cells, the majority of experiments were performed on single cultured B19 neurons. Addition of NO donors caused a prolonged depolarization of the membrane potential and an increase in neuronal excitability. The effects of NO could mainly be attributed to the inhibition of two types of calcium-activated potassium channels, apamin-sensitive and iberiotoxin-sensitive potassium channels. NO was found to also cause a depolarization in B19 neurons in situ, but only after NO synthase activity in buccal ganglia had been blocked. The results suggest that NO acts as a critical modulator of neuronal excitability in B19 neurons, and that calcium-activated potassium channels may serve as a common target of NO in neurons.
Collapse
Affiliation(s)
- Lei Ray Zhong
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Stephen Estes
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Liana Artinian
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
| | - Vincent Rehder
- Biology Department, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
9
|
Djafi N, Vergnolle C, Cantrel C, Wietrzyñski W, Delage E, Cochet F, Puyaubert J, Soubigou-Taconnat L, Gey D, Collin S, Balzergue S, Zachowski A, Ruelland E. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase. FRONTIERS IN PLANT SCIENCE 2013; 4:307. [PMID: 23964284 PMCID: PMC3737466 DOI: 10.3389/fpls.2013.00307] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/22/2013] [Indexed: 05/02/2023]
Abstract
Phosphoinositide-dependent phospholipases C (PI-PLCs) are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII) to produce inositol triphosphate and diacylglycerol (DAG) that is phosphorylated into phosphatidic acid (PA) by DAG-kinases (DGKs). The roles of PI4KIIIs, PI-PLCs, and DGKs in basal signaling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 μM wortmannin, or R59022, inhibitors of PI-PLCs, PI4KIIIs, and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs). We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.
Collapse
Affiliation(s)
- Nabila Djafi
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Chantal Vergnolle
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Catherine Cantrel
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | | | - Elise Delage
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Françoise Cochet
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Juliette Puyaubert
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Ludivine Soubigou-Taconnat
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Delphine Gey
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Sylvie Collin
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Sandrine Balzergue
- Unité de Recherche en Biologie Végétale, UMR INRA 1165, Université d'Evry Val d'Essonne, ERL CNRS 8196Evry Cedex, France
| | - Alain Zachowski
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| | - Eric Ruelland
- Physiologie Cellulaire et Moléculaire des Plantes, CNRS EAC7180Paris, France
- Physiologie Cellulaire et Moléculaire des Plantes, UPMC-Univ Paris06 UR5Paris, France
| |
Collapse
|