1
|
Merighi A. Brain-Derived Neurotrophic Factor, Nociception, and Pain. Biomolecules 2024; 14:539. [PMID: 38785946 PMCID: PMC11118093 DOI: 10.3390/biom14050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
This article examines the involvement of the brain-derived neurotrophic factor (BDNF) in the control of nociception and pain. BDNF, a neurotrophin known for its essential role in neuronal survival and plasticity, has garnered significant attention for its potential implications as a modulator of synaptic transmission. This comprehensive review aims to provide insights into the multifaceted interactions between BDNF and pain pathways, encompassing both physiological and pathological pain conditions. I delve into the molecular mechanisms underlying BDNF's involvement in pain processing and discuss potential therapeutic applications of BDNF and its mimetics in managing pain. Furthermore, I highlight recent advancements and challenges in translating BDNF-related research into clinical practice.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, 10095 Turin, Italy
| |
Collapse
|
2
|
Hsiang HW, Girard BM, Ratkovits L, Campbell SE, Vizzard MA. Effects of pharmacological neurotrophin receptor inhibition on bladder function in female mice with cyclophosphamide-induced cystitis. FRONTIERS IN UROLOGY 2022; 2:1037511. [PMID: 37701182 PMCID: PMC10494527 DOI: 10.3389/fruro.2022.1037511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Interstitial cystitis/bladder pain syndrome is a chronic inflammatory pelvic pain syndrome of unknown etiology characterized by a number of lower urinary tract symptoms, including increased urinary urgency and frequency, bladder discomfort, decreased bladder capacity, and pelvic pain. While its etiology remains unknown, a large body of evidence suggests a role for changes in neurotrophin signaling, particularly that of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Here, we evaluated the effects of pharmacological inhibition of the NGF receptor TrkA, BDNF receptor TrkB, and pan-neurotrophin receptor p75NTR on bladder function in acute (4-hour) and chronic (8-day) mouse models of cyclophosphamide (CYP)-induced cystitis. TrkA inhibition via ARRY-954 significantly increased intermicturition interval and bladder capacity in control and acute and chronic CYP-treatment conditions. TrkB inhibition via ANA-12 significantly increased intermicturition interval and bladder capacity in acute, but not chronic, CYP-treatment conditions. Interestingly, intermicturition interval and bladder capacity significantly increased following p75NTR inhibition via LM11A-31 in the acute CYP-treatment condition, but decreased in the chronic condition, potentially due to compensatory changes in neurotrophin signaling or increased urothelial barrier dysfunction in the chronic condition. Our findings demonstrate that these receptors represent additional potent therapeutic targets in mice with cystitis and may be useful in the treatment of interstitial cystitis and other inflammatory disorders of the bladder.
Collapse
Affiliation(s)
- Harrison W. Hsiang
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Beatrice M. Girard
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Lexi Ratkovits
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Susan E. Campbell
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| | - Margaret A. Vizzard
- The Larner College of Medicine, Department of Neurological Sciences, The University of Vermont, Burlington, VT, United States
| |
Collapse
|
3
|
Ferrini F, Salio C, Boggio EM, Merighi A. Interplay of BDNF and GDNF in the Mature Spinal Somatosensory System and Its Potential Therapeutic Relevance. Curr Neuropharmacol 2021; 19:1225-1245. [PMID: 33200712 PMCID: PMC8719296 DOI: 10.2174/1570159x18666201116143422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The growth factors BDNF and GDNF are gaining more and more attention as modulators of synaptic transmission in the mature central nervous system (CNS). The two molecules undergo a regulated secretion in neurons and may be anterogradely transported to terminals where they can positively or negatively modulate fast synaptic transmission. There is today a wide consensus on the role of BDNF as a pro-nociceptive modulator, as the neurotrophin has an important part in the initiation and maintenance of inflammatory, chronic, and/or neuropathic pain at the peripheral and central level. At the spinal level, BDNF intervenes in the regulation of chloride equilibrium potential, decreases the excitatory synaptic drive to inhibitory neurons, with complex changes in GABAergic/glycinergic synaptic transmission, and increases excitatory transmission in the superficial dorsal horn. Differently from BDNF, the role of GDNF still remains to be unraveled in full. This review resumes the current literature on the interplay between BDNF and GDNF in the regulation of nociceptive neurotransmission in the superficial dorsal horn of the spinal cord. We will first discuss the circuitries involved in such a regulation, as well as the reciprocal interactions between the two factors in nociceptive pathways. The development of small molecules specifically targeting BDNF, GDNF and/or downstream effectors is opening new perspectives for investigating these neurotrophic factors as modulators of nociceptive transmission and chronic pain. Therefore, we will finally consider the molecules of (potential) pharmacological relevance for tackling normal and pathological pain.
Collapse
Affiliation(s)
- Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- Department of Psychiatry & Neuroscience, Université Laval, Québec, Canada
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Elena M. Boggio
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- National Institute of Neuroscience, Grugliasco, Italy
| |
Collapse
|
4
|
Yang Y, Zhang H, Lu Q, Liu X, Fan Y, Zhu J, Sun B, Zhao J, Dong X, Li L. Suppression of adenosine A 2a receptors alleviates bladder overactivity and hyperalgesia in cyclophosphamide-induced cystitis by inhibiting TRPV1. Biochem Pharmacol 2020; 183:114340. [PMID: 33189675 DOI: 10.1016/j.bcp.2020.114340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a type of chronic bladder inflammation characterized by increased voiding frequency, urgency and pelvic pain. The sensitization of bladder afferents is widely regarded as one of the pathophysiological changes in the development of IC/BPS. There is evidence that adenosine A2a receptors are involved in regulating the sensitization of sensory afferents. However, the effect of adenosine A2a receptors on cystitis remains unknown. In the present study, a rat model of chronic cystitis was established by intraperitoneal injection with cyclophosphamide (CYP). Cystometry and behavioral tests were performed to investigate bladder micturition function and nociceptive pain. The rats with chronic cystitis showed symptoms of bladder overactivity, characterized by an increase in bladder voiding frequency and voiding pressure. CYP treatment significantly increased the expression of the A2a receptor in bladder afferent fibers and dorsal root ganglion (DRG) neurons. The A2a receptor antagonist ZM241385 prevented bladder overactivity and hyperalgesia elicited by CYP-induced cystitis. In addition, the A2a receptor and TRPV1 were coexpressed on DRG neurons. The TRPV1 antagonist capsazepine blocked bladder overactivity induced by the A2a receptor agonist CGS21680. In contrast, ZM241385 significantly inhibited the capsaicin-induced increase in intracellular calcium concentration in DRG neurons. These results suggest that suppression of adenosine A2a receptors in bladder afferents alleviates bladder overactivity and hyperalgesia elicited by CYP-induced cystitis in rats by inhibiting TRPV1, indicating that the adenosine A2a receptor in bladder afferents is a potential therapeutic target for the treatment of IC/BPS.
Collapse
Affiliation(s)
- Yang Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Xin Liu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Yi Fan
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - Xingyou Dong
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China.
| |
Collapse
|
5
|
Philippova ES, Bazhenov IV, Ziryanov AV, Bazarny VV. Impact of intradetrusor botulinum toxin A injections on serum and urinary concentrations of nerve growth factor and brain-derived neurotrophic factor in patients with multiple sclerosis and neurogenic detrusor overactivity. Neurourol Urodyn 2020; 40:95-101. [PMID: 33034916 DOI: 10.1002/nau.24534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Accepted: 09/30/2020] [Indexed: 11/07/2022]
Abstract
AIMS To evaluate the practical relevance of changes in serum and urinary neurotrophins levels in patients with multiple sclerosis (MS) and neurogenic lower urinary tract dysfunction (NLUTD) after intradetrusor injections of botulinum toxin A (BoNTA). METHODS The study included 36 patients with MS and NLUTD and 20 controls. The patients with NLUTD received intradetrusor injection of BoNTA (200 U). The nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels were measured in serum and urine at baseline and then at 1, 3, and 6 months by enzyme-linked immunosorbent assay. Urinary NGF and BDNF were normalized to creatinine (NGF/Cr, BDNF/Cr). Patients' assessment included urodynamic examination and Neurogenic Bladder Symptom Score (NBSS). RESULTS After BoNTA injections, no significant changes were observed in the serum NGF and BDNF or the urinary BDNF/Cr. The urinary NGF/Cr was significantly higher in MS patients (1.23 ± 0.34) at baseline compared with controls (0.084 ± 0.02; p = .021). The urinary NGF/Cr decreased to 0.51 ± 0.12 (p = .001) and 0.53 ± 0.32 (p = .005) at 1 and 3 months, increasing to 1.12 ± 0.49 (p = .003) at 6 months. The urinary NGF/Cr level at baseline demonstrated a low diagnostic accuracy in predicting a better response to the BoNTA treatment (area under the curve = 0.661; p = .047) and no correlation with the urodynamic parameters. CONCLUSIONS The urinary NGF/Cr at baseline or its reduction at the first month following treatment does not serve as a predictor for the response to the BoNTA injections or for urodynamic changes.
Collapse
Affiliation(s)
- Ekaterina S Philippova
- Department of Urology, Ural State Medical University, Ekaterinburg, Russia.,Regional Urological Center, Sverdlovsk Regional Clinical Hospital No. 1, Ekaterinburg, Russia
| | - Igor V Bazhenov
- Department of Urology, Ural State Medical University, Ekaterinburg, Russia.,Regional Urological Center, Sverdlovsk Regional Clinical Hospital No. 1, Ekaterinburg, Russia
| | - Alexander V Ziryanov
- Department of Urology, Ural State Medical University, Ekaterinburg, Russia.,Regional Urological Center, Sverdlovsk Regional Clinical Hospital No. 1, Ekaterinburg, Russia
| | - Vladimir V Bazarny
- Department of Clinical Laboratory Diagnosis and Bacteriology, Ural State Medical University, Ekaterinburg, Russia
| |
Collapse
|
6
|
A Novel Alternative in the Treatment of Detrusor Overactivity? In Vivo Activity of O-1602, the Newly Synthesized Agonist of GPR55 and GPR18 Cannabinoid Receptors. Molecules 2020; 25:molecules25061384. [PMID: 32197469 PMCID: PMC7144400 DOI: 10.3390/molecules25061384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of the research was to assess the impact of O-1602—novel GPR55 and GPR18 agonist—in the rat model of detrusor overactivity (DO). Additionally, its effect on the level of specific biomarkers was examined. To stimulate DO, 0.75% retinyl acetate (RA) was administered to female rats’ bladders. O-1602, at a single dose of 0.25 mg/kg, was injected intra-arterially during conscious cystometry. Furthermore, heart rate, blood pressure, and urine production were monitored for 24 h, and the impact of O-1602 on the levels of specific biomarkers was evaluated. An exposure of the urothelium to RA changed cystometric parameters and enhanced the biomarker levels. O-1602 did not affect any of the examined cystometric parameters or levels of biomarkers in control rats. However, the O-1602 injection into animals with RA-induced DO ameliorated the symptoms of DO and caused a reversal in the described changes in the concentration of CGRP, OCT3, BDNF, and NGF to the levels observed in the control, while the values of ERK1/2 and VAChT were significantly lowered compared with the RA-induced DO group, but were still statistically higher than in the control. O-1602 can improve DO, and may serve as a promising novel substance for the pharmacotherapy of bladder diseases.
Collapse
|
7
|
Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, Li W, Xie J, Huang Y, Liu X, Liu B, Zhou X. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation 2020; 17:19. [PMID: 31931832 PMCID: PMC6958761 DOI: 10.1186/s12974-020-1704-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Patients with interstitial cystitis/bladder pain syndrome (IC/BPS) often grieve over a low quality of life brought about by chronic pain. In our previous studies, we determined that neuroinflammation of the spinal dorsal horn (SDH) was associated with mechanisms of interstitial cystitis. Moreover, it has been shown that brain-derived neurotrophic factor (BDNF) participates in the regulation of neuroinflammation and pathological pain through BDNF-TrkB signaling; however, whether it plays a role in cyclophosphamide (CYP)-induced cystitis remains unclear. This study aimed to confirm whether BDNF-TrkB signaling modulates neuroinflammation and mechanical allodynia in CYP-induced cystitis and determine how it occurs. METHODS Systemic intraperitoneal injection of CYP was performed to establish a rat cystitis model. BDNF-TrkB signaling was modulated by intraperitoneal injection of the TrkB receptor antagonist, ANA-12, or intrathecal injection of exogenous BDNF. Mechanical allodynia in the suprapubic region was assessed using the von Frey filaments test. The expression of BDNF, TrkB, p-TrkB, Iba1, GFAP, p-p38, p-JNK, IL-1β, and TNF-α in the L6-S1 SDH was measured by Western blotting and immunofluorescence analysis. RESULTS BDNF-TrkB signaling was upregulated significantly in the SDH after CYP was injected. Similarly, the expressions of Iba1, GFAP, p-p38, p-JNK, IL-1β, and TNF-α in the SDH were all upregulated. Treatment with ANA-12 could attenuate mechanical allodynia, restrain activation of astrocytes and microglia and alleviate neuroinflammation. Besides, the intrathecal injection of exogenous BDNF further decreased the mechanical withdrawal threshold, promoted activation of astrocytes and microglia, and increased the release of TNF-α and IL-1β in the SDH of our CYP-induced cystitis model. CONCLUSIONS In our CYP-induced cystitis model, BDNF promoted the activation of astrocytes and microglia to release TNF-α and IL-1β, aggravating neuroinflammation and leading to mechanical allodynia through BDNF-TrkB-p38/JNK signaling.
Collapse
Affiliation(s)
- Honglu Ding
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Jialiang Chen
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Rd, Guangzhou, 510700, China
| | - Zhijun Lin
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Hailun Zhan
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Fei Yang
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Wenbiao Li
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Juncong Xie
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Yong Huang
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China
| | - Xianguo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bolong Liu
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| | - Xiangfu Zhou
- Department of Urology, the Third Affiliated hospital of Sun Yat-Sen University, 600 Tianhe Rd, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Antunes-Lopes T, Cruz F. Urinary Biomarkers in Overactive Bladder: Revisiting the Evidence in 2019. Eur Urol Focus 2019; 5:329-336. [PMID: 31231010 DOI: 10.1016/j.euf.2019.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 11/19/2022]
Abstract
CONTEXT In overactive bladder (OAB), after an initial outbreak of research, it is more consensual that biomarkers may be better used to phenotype patients. Herein, we revisit this topic, including some of the most promising biomarkers. OBJECTIVE To provide a comprehensive analysis of the actual role of biomarkers in OAB. EVIDENCE ACQUISITION A PubMed-based literature search was conducted, including the most relevant articles published in the last 15 yr, on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), adenosine triphosphate (ATP), genomics, and microbiota as OAB biomarkers. Articles with no full text available or not written in English were excluded. Additional reviews were included. EVIDENCE SYNTHESIS Urinary NGF, BDNF, and ATP are increased in many OAB patients. These biomarkers can help identify OAB phenotypes and select the ideal candidates for new therapies directed to neurotrophic and purinergic pathways. Circulating urinary miRNA may be useful for establishing the ideal moment for bladder outlet obstruction relief and will eventually lead to the development of therapeutic agents that inhibit or reverse fibrotic pathways in the bladder. Urinary microbiota seems to be related to OAB symptoms, in particular urgency urinary incontinence, and may have strong implications in the prevention, diagnosis, and treatment of OAB. CONCLUSIONS In the future, physicians may consider the use of biomarkers to identify distinct OAB phenotypes, with distinct causal mechanisms, selecting patients for specific target therapies with expected better outcomes. PATIENT SUMMARY Overactive bladder biomarkers can be useful for phenotype patients and for selecting more effective target therapies.
Collapse
Affiliation(s)
- Tiago Antunes-Lopes
- Department of Urology, Hospital de S. João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, Translational Neuro-Urology Group, University of Porto, Porto, Portugal.
| | - Francisco Cruz
- Department of Urology, Hospital de S. João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, Translational Neuro-Urology Group, University of Porto, Porto, Portugal
| |
Collapse
|
9
|
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in Crime: NGF and BDNF in Visceral Dysfunction. Curr Neuropharmacol 2019; 17:1021-1038. [PMID: 31204623 PMCID: PMC7052822 DOI: 10.2174/1570159x17666190617095844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.
Collapse
Affiliation(s)
| | | | | | - Célia Duarte Cruz
- Address correspondence to this author at the Department of Experimental Biology, Experimental Biology Unit, Faculty of Medicine of the University of Porto, Alameda Hernâni Monteiro; Tel: 351 220426740; Fax: +351 225513655; E-mail:
| |
Collapse
|
10
|
Tao YS, Piao SG, Jin YS, Jin JZ, Zheng HL, Zhao HY, Lim SW, Yang CW, Li C. Expression of brain-derived neurotrophic factor in kidneys from normal and cyclosporine-treated rats. BMC Nephrol 2018. [PMID: 29540150 PMCID: PMC5853162 DOI: 10.1186/s12882-018-0852-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that a decrease in brain-derived neurotrophic factor (BDNF) level induces a variety of psychiatric and neurological disorders. However, the expression and role of BDNF in the kidney have not been explored. The present study examined the expression of BDNF and tropomyosin-related kinase (Trk) receptors in an experimental model of chronic cyclosporine A (CsA) nephropathy. METHODS Sprague-Dawley rats on a salt-deplete diet were treated daily for four weeks with vehicle or CsA. Urine profiles, apoptotic cell death, oxidative stress (8-hydroxy-2'-deoxyguanosine, 8-OHdG), and expression of BDNF and Trk receptors (TrkB and TrkC) were compared between groups. The impact of vasopressin infusion on the urine-concentrating ability was examined by measuring the expression of aquaporin-2 (AQP-2) and BDNF and urine profiles in normal and CsA-treated rats. RESULTS Compared with the vehicle-treated rats, rats given CsA had enhanced urine volume and declined urine osmolality. Immunohistochemistry and immunoblotting showed that BDNF and Trk receptors were constitutively expressed in kidneys from vehicle-treated rats. This was confirmed by double immunofluorescent staining for Na-K-ATPase-α1, AQP-1, and AQP-2. By contrast, the expression of these factors decreased in kidneys from CsA-treated rats (BDNF: 51.1 ± 19.5% vs. 102.0 ± 30.3%, p < 0.01). Downregulation of BDNF was accompanied by impairment of urine osmolality, and this was reversed by exogenous infusion of vasopressin. Notably, the number of TUNEL-positive cells correlated negatively with BDNF expression and positively with urinary 8-OHdG excretion. CONCLUSIONS BDNF is expressed in the collecting duct of the kidney and may be associated with urine-concentrating ability in an experimental model of chronic CsA-induced nephropathy. Our study provides a new avenue for further investigation of chronic CsA nephropathy.
Collapse
Affiliation(s)
- Yuan Sheng Tao
- Department of Nephrology, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China
| | - Shang Guo Piao
- Department of Nephrology, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China
| | - Ying Shun Jin
- Department of Nephrology, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China
| | - Ji Zhe Jin
- Department of Nephrology, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China
| | - Hai Lan Zheng
- Department of Nephrology, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China
| | - Hai Yan Zhao
- Health Examination Center, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China
| | - Sun Woo Lim
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, The Catholic University of Korea, Seoul, South Korea
| | - Chul Woo Yang
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, The Catholic University of Korea, Seoul, South Korea.,Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Can Li
- Department of Nephrology, Yanbian University Hospital, #1327 Juzi St., Yanji, 133000, Jilin Province, People's Republic of China.
| |
Collapse
|
11
|
Kashyap MP, Pore SK, de Groat WC, Chermansky CJ, Yoshimura N, Tyagi P. BDNF overexpression in the bladder induces neuronal changes to mediate bladder overactivity. Am J Physiol Renal Physiol 2017; 315:F45-F56. [PMID: 29092846 DOI: 10.1152/ajprenal.00386.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Elevated levels of brain-derived neurotrophic factor (BDNF) in urine of overactive bladder (OAB) patients support the association of BDNF with OAB symptoms, but the causality is not known. Here, we investigated the functionality of BDNF overexpression in rat bladder following bladder wall transfection of either BDNF or luciferase (luciferase) transgenes (10 µg). One week after transfection, BDNF overexpression in bladder tissue and elevation of urine BDNF levels were observed together with increased transcript of BDNF, its cognate receptors (TrkB and p75NTR), and downstream PLCγ isoforms in bladder. BDNF overexpression can induce the bladder overactivity (BO) phenotype which is demonstrated by the increased voiding pressure and reduced intercontractile interval during transurethral open cystometry under urethane anesthesia. A role for BDNF-mediated enhancement of prejunctional cholinergic transmission in BO is supported by the significant increase in the atropine- and neostigmine-sensitive component of nerve-evoked contractions and upregulation of choline acetyltransferase, vesicular acetylcholine transporter, and transporter Oct2 and -α1 receptors. In addition, higher expression of transient receptor channels (TRPV1 and TRPA1) and pannexin-1 channels in conjunction with elevation of ATP and neurotrophins in bladder and also in L6/S1 dorsal root ganglia together support a role for sensitized afferent nerve terminals in BO. Overall, genomic changes in efferent and afferent neurons of bladder induced by the overexpression of BDNF per se establish a mechanistic link between elevated BDNF levels in urine and dysfunctional voiding observed in animal models and in OAB patients.
Collapse
Affiliation(s)
- Mahendra P Kashyap
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Subrata K Pore
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | | | - Naoki Yoshimura
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Girard BM, Malley S, May V, Vizzard MA. Effects of CYP-Induced Cystitis on Growth Factors and Associated Receptor Expression in Micturition Pathways in Mice with Chronic Overexpression of NGF in Urothelium. J Mol Neurosci 2016; 59:531-43. [PMID: 27259880 DOI: 10.1007/s12031-016-0774-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
We have determined if cyclophosphamide (CYP)-induced cystitis produces additional changes in growth factor/receptors expression in the urinary bladder (urothelium, detrusor) and lumbosacral (L6-S1) dorsal root ganglia (DRG) in a transgenic mouse model with chronic urothelial overexpression of NGF (NGF-OE). Functionally, NGF-OE mice treated with CYP exhibit significant increases in voiding frequency above that observed in control NGF-OE mice (no CYP). Quantitative PCR was used to determine NGF, BDNF, VEGF, and receptors (TrkA, TrkB, p75(NTR)) transcripts expression in tissues from NGF-OE and wild-type (WT) mice with CYP-induced cystitis of varying duration (4 h, 48 h, 8 days). In urothelium of control NGF-OE mice, NGF mRNA was significantly (p ≤ 0.001) increased. Urothelial expression of NGF mRNA in NGF-OE mice treated with CYP (4 h, 48 h, 8 days) was not further increased but maintained with all durations of CYP treatment evaluated. In contrast, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice demonstrated significant (p ≤ 0.05) regulation in BDNF, VEGF, TrkA, TrkB, and P75(NTR) mRNA in urothelium and detrusor smooth muscle. Similarly, CYP-induced cystitis (4 h, 48 h, 8 days) in NGF-OE mice resulted in significant (p ≤ 0.05), differential changes in transcript expression for NGF, BDNF, and receptors (TrkA, TrkB, p75(NTR)) in S1 DRG that was dependent on the duration-of CYP-induced cystitis. In general, NGF, BDNF, TrkA, and TrkB protein content in the urinary bladder increased in WT and NGF-OE mice with CYP-induced cystitis (4 h). Changes in NGF, TrkA and TrkB expression in the urinary bladder were significantly (p ≤ 0.05) greater in NGF-OE mice with CYP-induced cystitis (4 h) compared to WT mice with cystitis (4 h). However, the magnitude of change between WT and NGF-OE mice was only significantly (p ≤ 0.05) different for TrkB expression in urinary bladder of NGF-OE mice treated with CYP. These studies are consistent with target-derived NGF and other inflammatory mediators affecting neurochemical plasticity with potential contributions to reflex function of micturition pathways.
Collapse
Affiliation(s)
- Beatrice M Girard
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Susan Malley
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, D405A Given Research Building, Burlington, VT, 05405, USA.
| |
Collapse
|
13
|
Wang X, Peng B, Xu C, Gao Z, Cao Y, Liu Z, Liu T. BDNF-ERK1/2 signaling pathway in ketamine-associated lower urinary tract symptoms. Int Urol Nephrol 2016; 48:1387-93. [PMID: 27165402 DOI: 10.1007/s11255-016-1315-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/04/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Long-term ketamine abuse can affect the urinary system, resulting in lower urinary tract symptoms (LUTS), but the pathogenesis of this is still unknown. Previous studies have demonstrated that ketamine can change the expression of the brain-derived neurotrophic factor (BDNF) in the serum of ketamine abuse patients. The aim of the present study is to explore the mechanism of the ketamine-mediated BDNF signaling pathway in the bladder of rats on chronic ketamine treatment. METHODS Rats were randomly assigned to a control (normal saline) or ketamine (30 mg/kg) group, with five rats in each group. The experimental group was given ketamine via intraperitoneal injection daily, while the control group was treated with saline. After 12 weeks of treatment, bladders were excised and samples from the control and ketamine group were examined with transmission electron microscopy (TEM). Phosphoprotein and non-phosphoprotein purification, histopathology, immunohistochemistry, and western blot were carried out in all groups. RESULTS Histological study showed hyperplastic epithelium and inflammatory cell infiltration in ketamine-treated rat bladders. TEM showed that chronic ketamine treatment results in structural damage to organelles. Immunohistochemical staining and western blot showed that the expression of BDNF was significantly lower in the ketamine group. However, the expression of phosphorylated extracellular signal-regulated kinases ½ (ERK1/2) in the ketamine group was higher, whereas the total ERK1/2 was similar to the control group. CONCLUSIONS Long-term ketamine abuse reduces expression of BDNF, while inducing phosphorylation of ERK1/2 in the bladder wall. This may play an important role in the pathogenesis of ketamine-associated LUTS.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Rd, Wuhan, 430071, China
| | - Biwen Peng
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Rd, Wuhan, 430071, China
| | - Chang Xu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Rd, Wuhan, 430071, China
| | - Zhengyan Gao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Rd, Wuhan, 430071, China
| | - Yuanfei Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Rd, Wuhan, 430071, China
| | - Zhao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Rd, Wuhan, 430071, China
| | - Tongzu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Rd, Wuhan, 430071, China. .,Department of Physiology, School of Basic Medical Sciences, Wuhan University, 185 Donghu Rd, Wuhan, 430071, China.
| |
Collapse
|
14
|
Lamarre NS, Bjorling DE. Treatment of painful bladder syndrome/interstitial cystitis with botulinum toxin A: why isn't it effective in all patients? Transl Androl Urol 2016; 4:543-54. [PMID: 26816853 PMCID: PMC4708559 DOI: 10.3978/j.issn.2223-4683.2015.10.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Botulinum toxin A (BTA) is currently used to treat a variety of painful disorders, including painful bladder syndrome/interstitial cystitis (PBS/IC). However, BTA is not consistently effective in all patients. This may be due to the disparity of causes of pain, but this may also relate to the processes by which BTA exerts anti-nociceptive effects. This review discusses mechanisms by which BTA may inhibit pain and studies of the use of BTA in PSB/IC patients. It is doubtful that any single treatment will effectively control pain in PBS/IC patients, and it is highly probable that multiple strategies will be required, both within individual patients and across the population of PBS/IC patients. The purpose of this review is to discuss those mechanisms by which BTA acts, with the intent that alternative strategies exploiting these mechanism, or work through alternative pathways, can be identified to more effectively treat pain in PBS/IC patients in the future.
Collapse
Affiliation(s)
- Neil S Lamarre
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| | - Dale E Bjorling
- School of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
15
|
Coelho A, Wolf-Johnston AS, Shinde S, Cruz CD, Cruz F, Avelino A, Birder LA. Urinary bladder inflammation induces changes in urothelial nerve growth factor and TRPV1 channels. Br J Pharmacol 2015; 172:1691-9. [PMID: 25297375 DOI: 10.1111/bph.12958] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/10/2014] [Accepted: 09/26/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The urinary bladder urothelium expresses various receptors and in response to chemical and mechanical stimuli releases mediators, thereby modulating bladder sensory pathways. Transient receptor potential vanilloid 1 (TRPV1) ion channels and nerve growth factor (NGF) in those cells are implicated in this modulatory effect and play a role in sensitizing pain-related afferent pathways during inflammation. In this study, we investigated the interaction between NGF and TRPV1 channels in urothelial cells. EXPERIMENTAL APPROACH Urothelial cells from female Sprague-Dawley rat bladders were cultured to quantify membrane expression of TRPV1 channels and capsaicin-induced ATP release in the presence of NGF alone or with TrKA or PI3K inhibitors. Pain scores from rats with cyclophosphamide (CYP)-induced bladder inflammation were assessed after treatment with a TrkA antagonist. Bladders (from control and CYP rats) were collected and analysed for NGF content and TRPV1 channel expression. KEY RESULTS Cultured cells responded to NGF with increased TRPV1 channel expression in the cell membrane and increased release of ATP. Both responses were blocked by either a TrkA antagonist or a PI3K inhibitor. Treatment in vivo with the TrkA antagonist alleviated pain symptoms and reduced CYP-induced NGF overexpression in the mucosa. Furthermore, in urothelial cells from animals with bladder inflammation, expression of TRPV1 channels in the membrane was significantly increased. CONCLUSIONS AND IMPLICATIONS During bladder inflammation, increased production of NGF in urothelial cells induced increased expression and activity of TRPV1 channels in the cell membrane. This effect was primarily mediated by the PI3K pathway.
Collapse
Affiliation(s)
- A Coelho
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Porto, Portugal; Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | | | | | | | | | | | | |
Collapse
|
16
|
Frias B, Santos J, Morgado M, Sousa MM, Gray SMY, McCloskey KD, Allen S, Cruz F, Cruz CD. The role of brain-derived neurotrophic factor (BDNF) in the development of neurogenic detrusor overactivity (NDO). J Neurosci 2015; 35:2146-60. [PMID: 25653370 PMCID: PMC4315839 DOI: 10.1523/jneurosci.0373-14.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 11/21/2014] [Accepted: 11/27/2014] [Indexed: 12/24/2022] Open
Abstract
Neurogenic detrusor overactivity (NDO) is a well known consequence of spinal cord injury (SCI), recognizable after spinal shock, during which the bladder is areflexic. NDO emergence and maintenance depend on profound plastic changes of the spinal neuronal pathways regulating bladder function. It is well known that neurotrophins (NTs) are major regulators of such changes. NGF is the best-studied NT in the bladder and its role in NDO has already been established. Another very abundant neurotrophin is BDNF. Despite being shown that, acting at the spinal cord level, BDNF is a key mediator of bladder dysfunction and pain during cystitis, it is presently unclear if it is also important for NDO. This study aimed to clarify this issue. Results obtained pinpoint BDNF as an important regulator of NDO appearance and maintenance. Spinal BDNF expression increased in a time-dependent manner together with NDO emergence. In chronic SCI rats, BDNF sequestration improved bladder function, indicating that, at later stages, BDNF contributes NDO maintenance. During spinal shock, BDNF sequestration resulted in early development of bladder hyperactivity, accompanied by increased axonal growth of calcitonin gene-related peptide-labeled fibers in the dorsal horn. Chronic BDNF administration inhibited the emergence of NDO, together with reduction of axonal growth, suggesting that BDNF may have a crucial role in bladder function after SCI via inhibition of neuronal sprouting. These findings highlight the role of BDNF in NDO and may provide a significant contribution to create more efficient therapies to manage SCI patients.
Collapse
Affiliation(s)
- Bárbara Frias
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| | - João Santos
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| | - Marlene Morgado
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Mónica Mendes Sousa
- Nerve Regeneration Group, IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Susannah M Y Gray
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT7 1 NN Belfast, United Kingdom
| | - Shelley Allen
- Molecular Neurobiology Unit, University of Bristol, School of Clinical Sciences, BS10 5NB Bristol, United Kingdom
| | - Francisco Cruz
- Translational NeuroUrology and Department of Urology, Hospital de S. João, 4200-319 Porto, Portugal, and
| | - Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal, Translational NeuroUrology and
| |
Collapse
|
17
|
Song QX, Chermansky CJ, Birder LA, Li L, Damaser MS. Brain-derived neurotrophic factor in urinary continence and incontinence. Nat Rev Urol 2014; 11:579-88. [PMID: 25224451 DOI: 10.1038/nrurol.2014.244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Urinary incontinence adversely affects quality of life and results in an increased financial burden for the elderly. Accumulating evidence suggests a connection between neurotrophins, such as brain-derived neurotrophic factor (BDNF), and lower urinary tract function, particularly with regard to normal physiological function and the pathophysiological mechanisms of stress urinary incontinence (SUI) and bladder pain syndrome/interstitial cystitis (BPS/IC). The interaction between BDNF and glutamate receptors affects both bladder and external urethral sphincter function during micturition. Clinical findings indicate reduced BDNF levels in antepartum and postpartum women, potentially correlating with postpartum SUI. Experiments with animal models demonstrate that BDNF is decreased after simulated childbirth injury, thereby impeding the recovery of injured nerves and the restoration of continence. Treatment with exogenous BDNF facilitates neural recovery and the restoration of continence. Serotonin and noradrenaline reuptake inhibitors, used to treat both depression and SUI, result in enhanced BDNF levels. Understanding the neurophysiological roles of BDNF in maintaining normal urinary function and in the pathogenesis of SUI and BPS/IC could lead to future therapies based on these mechanisms.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Changhai Hospital, Shanghai, PR China
| | - Christopher J Chermansky
- Department of Urology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital of TMMU, Chongqing, PR China
| | - Margot S Damaser
- Department of Biomedical Engineering, The Cleveland Clinic, 9500 Euclid Avenue ND20, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Pinto R, Lopes T, Costa D, Barros S, Silva J, Silva C, Cruz C, Dinis P, Cruz F. Ulcerative and nonulcerative forms of bladder pain syndrome/interstitial cystitis do not differ in symptom intensity or response to onabotulinum toxin A. Urology 2014; 83:1030-4. [PMID: 24767520 DOI: 10.1016/j.urology.2014.01.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/07/2014] [Accepted: 01/14/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To determine whether intratrigonal Onabotulinum toxin A (OnabotA) injection produces a different symptomatic outcome and duration of effect on ulcerative (Ulc) and nonulcerative (NUlc) bladder pain syndrome/interstitial cystitis (BPS/IC) patients and to compare the urinary levels of neurotrophines (NGF, BDNF, and GDNF) in response to OnabotA. METHODS Ten Ulc and 14 NUlc bladder pain syndrome/interstitial cystitis patients were included in this study. OnabotA (100 U) was injected in 10 trigonal sites, each receiving 10 U in 1 mL of saline. Outcome measures included pain visual analog scale (0-10), a 3-day voiding chart, O'Leary-Sant Score (OSS), and quality of life (QoL) from International Prostate Symptoms Score assessed before treatment, 1 month after injection, and every 3 months afterwards. Urinary NGF, BDNF, and GDNF were accessed using ELISA, at same time points. Treatment duration was determined at the time patients requested another injection. RESULTS Patients had a mean age of 40 ± 12 years in the Ulc and 47 ± 13 years in the NUlc group (ns). Mean values at baseline of pain intensity, frequency, nocturia, OSS, QoL, and urinary NGF, BDNF, GDNF were identical in the 2 groups. Patients with the Ulc phenotype had a longer duration of symptoms (28.8 ± 11 vs 19.2 ± 8 months, P = .018). Both groups responded equally to OnabotA, with significant improvements in pain intensity, frequency, nocturia, OSS, QoL, and urinary NGF, BDNF, GDNF. The effect lasted for 9 ± 2.8 (Ulc) and 10.5 ± 2 (NUlc) months. CONCLUSION In this cohort, Ulc and NUlc patients had similar symptoms at baseline and comparable clinical response to intratrigonal OnabotA. These findings suggest that pain may not be directly related with ulcers themselves.
Collapse
Affiliation(s)
- Rui Pinto
- Department of Urology, Centro Hospitalar de São João, Portugal; Faculty of Medicine of Porto, Portugal; Institute of Cell and Molecular Biology, University of Porto, Portugal.
| | - Tiago Lopes
- Department of Urology, Centro Hospitalar de São João, Portugal; Faculty of Medicine of Porto, Portugal; Institute of Cell and Molecular Biology, University of Porto, Portugal
| | - Daniel Costa
- Department of Urology, Centro Hospitalar de São João, Portugal
| | | | - João Silva
- Department of Urology, Centro Hospitalar de São João, Portugal; Faculty of Medicine of Porto, Portugal
| | - Carlos Silva
- Department of Urology, Centro Hospitalar de São João, Portugal; Faculty of Medicine of Porto, Portugal
| | - Célia Cruz
- Faculty of Medicine of Porto, Portugal; Institute of Cell and Molecular Biology, University of Porto, Portugal
| | - Paulo Dinis
- Department of Urology, Centro Hospitalar de São João, Portugal; Faculty of Medicine of Porto, Portugal; Institute of Cell and Molecular Biology, University of Porto, Portugal
| | - Francisco Cruz
- Department of Urology, Centro Hospitalar de São João, Portugal; Faculty of Medicine of Porto, Portugal; Institute of Cell and Molecular Biology, University of Porto, Portugal
| |
Collapse
|
19
|
Pan XQ, Malykhina AP. Estrous cycle dependent fluctuations of regulatory neuropeptides in the lower urinary tract of female rats upon colon-bladder cross-sensitization. PLoS One 2014; 9:e94872. [PMID: 24788240 PMCID: PMC4006778 DOI: 10.1371/journal.pone.0094872] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/20/2014] [Indexed: 12/30/2022] Open
Abstract
Co-morbidity of bladder, bowel, and non-specific pelvic pain symptoms is highly prevalent in women. Little evidence is present on modulation of pelvic pain syndromes by sex hormones, therefore, the objective of this study was to clarify the effects of hormonal fluctuations within the estrous cycle on regulatory neuropeptides in female rats using a model of neurogenic bladder dysfunction. The estrous cycle in female rats (Sprague-Dawley, 230-250 g) was assessed by vaginal smears and weight of uterine horns. Neurogenic bladder dysfunction was induced by a single inflammatory insult to the distal colon. Protein expression of calcitonin gene related peptide (CGRP), substance P (SP), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) in the pelvic organs, sensory ganglia and lumbosacral spinal cord was compared in rats in proestrus (high estrogen) vs diestrus (low estrogen). Under normal physiological conditions, concentration of SP and CGRP was similar in the distal colon and urinary bladder during all phases of the estrous cycle, however, acute colitis induced a significant up-regulation of CGRP content in the colon (by 63%) and urinary bladder (by 54%, p≤0.05 to control) of rats in proestrus. These changes were accompanied by a significant diminution of CGRP content in L6-S2 DRG after colonic treatment, likely associated with its release in the periphery. In rats with high estrogen at the time of testing (proestrus), experimental colitis caused a significant up-regulation of BDNF colonic content from 26.1±8.5 pg/ml to 83.4±32.5 pg/ml (N = 7, p≤0.05 to control) and also induced similar effects on BDNF in the urinary bladder which was also up-regulated by 5-fold in rats in proestrus (p≤0.05 to respective control). Our results demonstrate estrous cycle dependent fluctuations of regulatory neuropeptides in the lower urinary tract upon colon-bladder cross-sensitization, which may contribute to pain fluctuations in female patients with neurogenic bladder pain.
Collapse
Affiliation(s)
- Xiao-Qing Pan
- Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, Pennsylvania, United States of America
| | - Anna P. Malykhina
- Division of Urology, Department of Surgery, University of Pennsylvania, Glenolden, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
20
|
Coelho A, Oliveira R, Rossetto O, Cruz C, Cruz F, Avelino A. Intrathecal administration of botulinum toxin type A improves urinary bladder function and reduces pain in rats with cystitis. Eur J Pain 2014; 18:1480-9. [DOI: 10.1002/ejp.513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 11/06/2022]
Affiliation(s)
- A. Coelho
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| | - R. Oliveira
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
| | - O. Rossetto
- Department of Biomedical Sciences; University of Padova; Italy
| | - C.D. Cruz
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| | - F. Cruz
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
- Department of Urology; Hospital de São João; Porto Portugal
| | - A. Avelino
- Department of Experimental Biology; Faculty of Medicine; University of Porto; Portugal
- IBMC; Instituto for Molecular and Cell Biology; University of Porto; Portugal
| |
Collapse
|
21
|
Qiao LY, Yu SJ, Kay JC, Xia CM. In vivo regulation of brain-derived neurotrophic factor in dorsal root ganglia is mediated by nerve growth factor-triggered Akt activation during cystitis. PLoS One 2013; 8:e81547. [PMID: 24303055 PMCID: PMC3841217 DOI: 10.1371/journal.pone.0081547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/24/2013] [Indexed: 12/18/2022] Open
Abstract
The role of brain-derived neurotrophic factor (BDNF) in sensory hypersensitivity has been suggested; however the molecular mechanisms and signal transduction that regulate BDNF expression in primary afferent neurons during visceral inflammation are not clear. Here we used a rat model of cystitis and found that the mRNA and protein levels of BDNF were increased in the L6 dorsal root ganglia (DRG) in response to bladder inflammation. BDNF up-regulation in the L6 DRG was triggered by endogenous nerve growth factor (NGF) because neutralization of NGF with a specific NGF antibody reduced BDNF levels during cystitis. The neutralizing NGF antibody also subsequently reduced cystitis-induced up-regulation of the serine/threonine kinase Akt activity in L6 DRG. To examine whether the NGF-induced Akt activation led to BDNF up-regulation in DRG in cystitis, we found that in cystitis the phospho-Akt immunoreactivity was co-localized with BDNF in L6 DRG, and prevention of the endogenous Akt activity in the L6 DRG by inhibition of phosphoinositide 3-kinase (PI3K) with a potent inhibitor LY294002 reversed cystitis-induced BDNF up-regulation. Further study showed that application of NGF to the nerve terminals of the ganglion-nerve two-compartmented preparation enhanced BDNF expression in the DRG neuronal soma; which was reduced by pre-treatment of the ganglia with the PI3K inhibitor LY294002 and wortmannin. These in vivo and in vitro experiments indicated that NGF played an important role in the activation of Akt and subsequent up-regulation of BDNF in the sensory neurons in visceral inflammation such as cystitis.
Collapse
Affiliation(s)
- Li-Ya Qiao
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
- * E-mail:
| | - Sharon J. Yu
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jarren C. Kay
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Chun-Mei Xia
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
22
|
Cruz CD. Neurotrophins in bladder function: what do we know and where do we go from here? Neurourol Urodyn 2013; 33:39-45. [PMID: 23775873 DOI: 10.1002/nau.22438] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/30/2013] [Indexed: 12/19/2022]
Abstract
AIMS Neurotrophins (NTs) have attracted considerable attention in the urologic community. The reason for this resides in the recognition of their ability to induce plastic changes of the neuronal circuits that govern bladder function. In many pathologic states, urinary symptoms, including urgency and urinary frequency, reflect abnormal activity of bladder sensory afferents that results from neuroplastic changes. Accordingly, in pathologies associated with increased sensory input, such as the overactive bladder syndrome (OAB) or bladder pain syndrome/interstitial cystitis (BPS/IC), significant amounts of NTs have been found in the bladder wall. METHODS Here, current knowledge about the importance of NTs in bladder function will be reviewed, with a focus on the most well-studied NTs, nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). RESULTS Both NTs are present in the bladder and regulate bladder sensory afferents and urothelial cells. Experimental models of bladder dysfunction show that upregulation of these NTs is strongly linked to bladder hyperactivity and, in some cases, pain. NT manipulation has been tested in animal models of bladder dysfunction, and recently, NGF downregulation, achieved by administration of a monoclonal antibody, has also been tested in patients with BPS/IC and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). NTs have also been found in high quantities in the urine of OAB and BPS/IC patients, raising the possibility of NTs serving as biomarkers. CONCLUSIONS Available data show that our knowledge of NTs has greatly increased in recent years and that some results may have future clinical application.
Collapse
Affiliation(s)
- Célia Duarte Cruz
- Department of Experimental Biology, Faculty of Medicine of Porto, University of Porto, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|