1
|
Gutiérrez MC, Comas Mutis RG, Perondi MC, Calfa GD, Valdomero A. Perinatal Protein Restriction Induces Anhedonic-Like Behavior: Disturbed Hippocampal Neurotrophic Signaling and Neuronal Structural Plasticity in Adult Offspring. Hippocampus 2025; 35:e70003. [PMID: 39949067 DOI: 10.1002/hipo.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 05/09/2025]
Abstract
Early protein malnutrition has been shown to affect the brain reward circuitry, leading to enduring molecular, neurochemical, and behavioral alterations. This study explored how maternal protein restriction contributes to anhedonia, a key depression symptom, focusing on the hippocampal BDNF-TrkB signaling and structural plasticity changes in the CA1 subregion of the dorsal hippocampus (DH). To achieve our goal, adult rats submitted to a protein restriction schedule from the 14th day of gestation up to 30 days of age (PR-rats) were subjected to the sucrose preference test (SPT) and compared with animals fed a normoprotein diet. Immediately after SPT, we assessed the levels of BDNF and its receptor TrkB and structural plasticity changes. Interestingly, PR-rats showed a significant decrease in sucrose preference. Furthermore, perinatal protein-restriction-induced anhedonia correlated with decreased BDNF and p-TrkB levels in the DH, alongside reduced dendritic spine density in CA1 pyramidal neurons, particularly mature spines (i.e., stubby and mushroom spines). These findings suggest that decreased hippocampal BDNF-TrkB signaling accompanied by structural remodeling in the CA1 pyramidal neurons may contribute to the reduced ability of undernourished animals to respond to rewarding stimuli, increasing their vulnerability to anhedonia later in life.
Collapse
Affiliation(s)
- María C Gutiérrez
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Ramiro G Comas Mutis
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - María C Perondi
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Gastón D Calfa
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| | - Analía Valdomero
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), Córdoba, Argentina
| |
Collapse
|
2
|
Fabianová K, Babeľová J, Fabian D, Popovičová A, Martončíková M, Raček A, Račeková E. Maternal High-Energy Diet during Pregnancy and Lactation Impairs Neurogenesis and Alters the Behavior of Adult Offspring in a Phenotype-Dependent Manner. Int J Mol Sci 2022; 23:ijms23105564. [PMID: 35628378 PMCID: PMC9146615 DOI: 10.3390/ijms23105564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.
Collapse
Affiliation(s)
- Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
- Correspondence:
| | - Janka Babeľová
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Dušan Fabian
- Centre of Biosciences, Institute of Animal Physiology, Slovak Academy of Sciences, Šoltésovej 4-6, 040 01 Košice, Slovakia; (J.B.); (D.F.)
| | - Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia; (A.P.); (M.M.); (A.R.); (E.R.)
| |
Collapse
|
3
|
Grzęda E, Matuszewska J, Ziarniak K, Gertig-Kolasa A, Krzyśko- Pieczka I, Skowrońska B, Sliwowska JH. Animal Foetal Models of Obesity and Diabetes - From Laboratory to Clinical Settings. Front Endocrinol (Lausanne) 2022; 13:785674. [PMID: 35197931 PMCID: PMC8858803 DOI: 10.3389/fendo.2022.785674] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/26/2022] Open
Abstract
The prenatal period, during which a fully formed newborn capable of surviving outside its mother's body is built from a single cell, is critical for human development. It is also the time when the foetus is particularly vulnerable to environmental factors, which may modulate the course of its development. Both epidemiological and animal studies have shown that foetal programming of physiological systems may alter the growth and function of organs and lead to pathology in adulthood. Nutrition is a particularly important environmental factor for the pregnant mother as it affects the condition of offspring. Numerous studies have shown that an unbalanced maternal metabolic status (under- or overnutrition) may cause long-lasting physiological and behavioural alterations, resulting in metabolic disorders, such as obesity and type 2 diabetes (T2DM). Various diets are used in laboratory settings in order to induce maternal obesity and metabolic disorders, and to alter the offspring development. The most popular models are: high-fat, high-sugar, high-fat-high-sugar, and cafeteria diets. Maternal undernutrition models are also used, which results in metabolic problems in offspring. Similarly to animal data, human studies have shown the influence of mothers' diets on the development of children. There is a strong link between the maternal diet and the birth weight, metabolic state, changes in the cardiovascular and central nervous system of the offspring. The mechanisms linking impaired foetal development and adult diseases remain under discussion. Epigenetic mechanisms are believed to play a major role in prenatal programming. Additionally, sexually dimorphic effects on offspring are observed. Therefore, further research on both sexes is necessary.
Collapse
Affiliation(s)
- Emilia Grzęda
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Julia Matuszewska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
| | - Kamil Ziarniak
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- Molecular and Cell Biology Unit, Poznań University of Medical Sciences, Poznań, Poland
| | - Anna Gertig-Kolasa
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Izabela Krzyśko- Pieczka
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Bogda Skowrońska
- Department of Paediatric Diabetes and Obesity, Poznań University of Medical Sciences, Poznań, Poland
| | - Joanna H. Sliwowska
- Laboratory of Neurobiology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Joanna H. Sliwowska,
| |
Collapse
|
4
|
Diz-Chaves Y, Toba L, Fandiño J, González-Matías LC, Garcia-Segura LM, Mallo F. The GLP-1 analog, liraglutide prevents the increase of proinflammatory mediators in the hippocampus of male rat pups submitted to maternal perinatal food restriction. J Neuroinflammation 2018; 15:337. [PMID: 30518432 PMCID: PMC6282252 DOI: 10.1186/s12974-018-1370-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Perinatal maternal malnutrition is related to altered growth of tissues and organs. The nervous system development is very sensitive to environmental insults, being the hippocampus a vulnerable structure, in which altered number of neurons and granular cells has been observed. Moreover, glial cells are also affected, and increased expression of proinflammatory mediators has been observed. We studied the effect of Glucagon-like peptide-1 receptor (GLP-1R) agonists, liraglutide, which have very potent metabolic and neuroprotective effects, in order to ameliorate/prevent the glial alterations present in the hippocampus of the pups from mothers with food restriction during pregnancy and lactation (maternal perinatal food restriction—MPFR). Methods Pregnant Sprague-Dawley rats were randomly assigned to 50% food restriction (FR; n = 12) or ad libitum controls (CT, n = 12) groups at day of pregnancy 12 (GD12). From GD14 to parturition, pregnant FR and CT rats were treated with liraglutide (100 μg/kg) or vehicle. At postnatal day 21 and before weaning, 48 males and 45 females (CT and MPFR) were sacrificed. mRNA expression levels of interleukin-1β (IL1β), interleukin-6 (IL-6), nuclear factor-κβ, major histocompatibility complex-II (MHCII), interleukin 10 (IL10), arginase 1 (Arg1), and transforming growth factor (TGFβ) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 and GFAP-immunoreactivity were assessed by immunocytochemistry. Results The mRNA expression IL1β, IL6, NF-κB, and MHCII increased in the hippocampus of male but not in female pups from MPFR. In addition, there was an increase in the percentage of GFAP and Iba1-immupositive cells in the dentate gyrus compared to controls, indicating an inflammatory response in the brain. On the other hand, liraglutide treatment prevented the neuroinflammatory process, promoting the production of anti-inflammatory molecules such as IL10, TGFβ, and arginase 1, and decreasing the number and reactivity of microglial cells and astrocytes in the hippocampus of male pups. Conclusion Therefore, the GLP-1 analog, liraglutide, emerges as neuroprotective drug that minimizes the harmful effects of maternal food restriction, decreasing neuroinflammation in the hippocampus in a very early stage.
Collapse
Affiliation(s)
- Y Diz-Chaves
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain.
| | - L Toba
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - J Fandiño
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L C González-Matías
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Avenida Doctor Arce 37, E-28002, Madrid, Spain.,Centro de Investigación en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - F Mallo
- Laboratory of Endocrinology, Biomedical Research Center (CINBIO), University of Vigo, Campus As Lagoas-Marcosende, E-36310, Vigo (Pontevedra), Spain
| |
Collapse
|
5
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
6
|
Influence of catch up growth on spatial learning and memory in a mouse model of intrauterine growth restriction. PLoS One 2017; 12:e0177468. [PMID: 28542302 PMCID: PMC5443512 DOI: 10.1371/journal.pone.0177468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 04/27/2017] [Indexed: 01/21/2023] Open
Abstract
Background Intrauterine growth restriction (IUGR) and rapid postnatal weight gain or catch up growth (CUG) increase the susceptibility to metabolic syndrome during adult life. Longitudinal studies have also revealed a high incidence of learning difficulties in children with IUGR. The aim of the present study was to investigate the effect of nutrition and CUG on learning memory in an IUGR animal model. We hypothesized that synaptic protein expression and transcription, an essential mechanism for memory consolidation, might be affected by intrauterine undernutrition. Methods IUGR was induced by 50% maternal caloric undernutrition throughout late gestation. During the suckling period, dams were either fed ad libitum or food restricted. The pups were divided into: Normal prenatal diet-Normal postnatal diet (NN), Restricted prenatal diet- Normal postnatal diet + catch up growth (RN+), Normal prenatal diet-Restricted postnatal diet (NR) and Restricted prenatal diet-Restricted postnatal diet (RR). At 4 weeks of age, memory was assessed via a water maze test. To evaluate synaptic function, 2 specific synaptic proteins (postsynaptic density-95 [PSD95], synaptophysin) as well as insulin receptors (IR) were tested by Western Blot and quantitative polymerase chain reaction (qPCR). Brain-derived neurotrophic factor and serum insulin levels were also studied. Results and conclusions The RN+ group presented a learning curve similar to the NN animals. The RR animals without CUG showed learning disabilities. PSD95 was lower in the RR group than in the NN and RN+ mice. In contrast, synaptophysin was similar in all groups. IR showed an inverse expression pattern to that of the PSD95. In conclusion, perinatal nutrition plays an important role in learning. CUG after a period of prenatal malnutrition seems to improve learning skills. The functional alterations observed might be related to lower PSD95 activity and a possible dysfunction in the hormone regulation of synaptic plasticity.
Collapse
|
7
|
Moody L, Chen H, Pan YX. Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Adv Nutr 2017; 8:337-350. [PMID: 28298276 PMCID: PMC5347110 DOI: 10.3945/an.116.014209] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The perinatal period is a window of heightened plasticity that lays the groundwork for future anatomic, physiologic, and behavioral outcomes. During this time, maternal diet plays a pivotal role in the maturation of vital organs and the establishment of neuronal connections. However, when perinatal nutrition is either lacking in specific micro- and macronutrients or overloaded with excess calories, the consequences can be devastating and long lasting. The brain is particularly sensitive to perinatal insults, with several neurologic and psychiatric disorders having been linked to a poor in utero environment. Diseases characterized by learning and memory impairments, such as autism, schizophrenia, and Alzheimer disease, are hypothesized to be attributed in part to environmental factors, and evidence suggests that the etiology of these conditions may date back to very early life. In this review, we discuss the role of the early-life diet in shaping cognitive outcomes in offspring. We explore the endocrine and immune mechanisms responsible for these phenotypes and discuss how these systemic factors converge to change the brain's epigenetic landscape and regulate learning and memory across the lifespan. Through understanding the maternal programming of cognition, critical steps may be taken toward preventing and treating diseases that compromise learning and memory.
Collapse
Affiliation(s)
| | - Hong Chen
- Division of Nutritional Sciences,,Department of Food Science and Human Nutrition, and
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, .,Department of Food Science and Human Nutrition, and.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
8
|
Waworuntu RV, Hanania T, Boikess SR, Rex CS, Berg BM. Early life diet containing prebiotics and bioactive whey protein fractions increased dendritic spine density of rat hippocampal neurons. Int J Dev Neurosci 2016; 55:28-33. [DOI: 10.1016/j.ijdevneu.2016.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/02/2016] [Accepted: 09/03/2016] [Indexed: 01/15/2023] Open
Affiliation(s)
| | | | | | | | - Brian M. Berg
- Mead Johnson Pediatric Nutrition InstituteEvansvilleINUnited States
| |
Collapse
|
9
|
Marinho de Souza TK, E Silva-Gondim MB, Rodrigues MCA, Guedes RCA. The facilitating effect of unfavorable lactation on the potentiation of electrocorticogram after spreading depression in awake and anesthetized adult rats. Nutr Neurosci 2016; 21:16-24. [PMID: 27442245 DOI: 10.1080/1028415x.2016.1210878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Cortical spreading depression (CSD) is a brain excitability-related phenomenon that can be affected by unfavorable conditions of lactation and by anesthetic agents. We have previously demonstrated that after CSD the electrocorticogram (ECoG) amplitude increases significantly (ECoG potentiation). Here, we investigated this potentiation in awake and anesthetized adult rats that were previously suckled among different lactation conditions. METHODS Newborn rats were suckled in litters with 6 pups or 12 pups (L6 or L12 condition, respectively). At adulthood, we evaluated the ECoG potentiation after CSD at two cortical points (one point near, and another remote to the CSD-eliciting site). The amplitude of the ECoG waves was averaged with the support of an algorithm implemented in Matlab™ software. In both L6 and L12 condition, awake animals were compared with anesthetized groups that received either tribromoethanol- or urethane + chloralose-anesthesia. RESULTS L12 rats presented significantly lower body- and brain weights than L6 rats (P < 0.01), indicating a nutritional deficiency. The anesthetized L6 groups presented with ECoG potentiation (P < 0.05) only in the near cortical recording point (28.0% and 32.6% increase for the tribromoethanol and urethane + chloralose groups, respectively), whereas the L12 groups displayed ECoG potentiation in both near (67.0% and 55.0%) and remote points (37.0% and 20.0%), in comparison with the baseline values (before CSD). DISCUSSION The results suggest a facilitating effect of unfavorable lactation on the potentiation of ECoG after spreading depression in anesthetized adult rats. The potential implications for the human neurological health remain to be investigated.
Collapse
Affiliation(s)
| | | | | | - Rubem Carlos Araújo Guedes
- a Department of Nutrition , Universidade Federal de Pernambuco , BR-50670901 , Recife - Pernambuco , Brazil
| |
Collapse
|