1
|
Schmaul S, Hanuscheck N, Bittner S. Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment. Biol Chem 2021; 402:1519-1530. [PMID: 34455729 DOI: 10.1515/hsz-2021-0256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
Astrocytes are key regulators of their surroundings by receiving and integrating stimuli from their local microenvironment, thereby regulating glial and neuronal homeostasis. Cumulating evidence supports a plethora of heterogenic astrocyte subpopulations that differ morphologically and in their expression patterns of receptors, transporters and ion channels, as well as in their functional specialisation. Astrocytic heterogeneity is especially relevant under pathological conditions. In experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), morphologically distinct astrocytic subtypes were identified and could be linked to transcriptome changes during different disease stages and regions. To allow for continuous awareness of changing stimuli across age and diseases, astrocytes are equipped with a variety of receptors and ion channels allowing the precise perception of environmental cues. Recent studies implicate the diverse repertoire of astrocytic ion channels - including transient receptor potential channels, voltage-gated calcium channels, inwardly rectifying K+ channels, and two-pore domain potassium channels - in sensing the brain state in physiology, inflammation and ischemia. Here, we review current evidence regarding astrocytic potassium and calcium channels and their functional contribution in homeostasis, neuroinflammation and stroke.
Collapse
Affiliation(s)
- Samantha Schmaul
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Nicholas Hanuscheck
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (rmn2), University Medical Centre of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, D-55131 Mainz, Germany
| |
Collapse
|
2
|
Mercado F, Almanza A, Rubio N, Soto E. Kir 4.1 inward rectifier potassium channel is upregulated in astrocytes in a murine multiple sclerosis model. Neurosci Lett 2018; 677:88-93. [PMID: 29705539 DOI: 10.1016/j.neulet.2018.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 10/17/2022]
Abstract
Multiple sclerosis (MS) is a high prevalence degenerative disease characterized at the cellular level by glial and neuronal cell death. The causes of cell death during the disease course are not fully understood. In this work we demonstrate that in a MS model induced by Theiler's murine encephalomyelitis virus (TMEV) infection, the inward rectifier (Kir) 4.1 potassium channel subunit is overexpressed in astrocytes. In voltage clamp experiments the inward current density from TMEV-infected astrocytes was significantly larger than in mock-infected ones. The cRNA hybridization analysis from mock- and TMEV-infected cells showed an upregulation of a potassium transport channel coding sequence. We validated this mRNA increase by RT-PCR and quantitative PCR using Kir 4.1 specific primers. Western blotting experiments confirmed the upregulation of Kir 4.1, and alignment between sequences provided the demonstration that the over-expressed gene encodes for a Kir family member. Flow cytometry showed that the Kir 4.1 protein is located mainly in the cell membrane in mock and TMEV-infected astrocytes. Our results demonstrate an increase in K+ inward current in TMEV-infected glial cells, this increment may reduce the neuronal depolarization, contributing to cell resilience mechanisms.
Collapse
Affiliation(s)
- Francisco Mercado
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Angélica Almanza
- Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | | | - Enrique Soto
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Pue México, CP 72000, Mexico.
| |
Collapse
|
3
|
Bernáldez J, Jiménez S, González LJ, Ferro JN, Soto E, Salceda E, Chávez D, Aguilar MB, Licea-Navarro A. A New Member of Gamma-Conotoxin Family Isolated from Conus princeps Displays a Novel Molecular Target. Toxins (Basel) 2016; 8:39. [PMID: 26861393 PMCID: PMC4773792 DOI: 10.3390/toxins8020039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022] Open
Abstract
A novel conotoxin, named as PiVIIA, was isolated from the venom of Conus princeps, a marine predatory cone snail collected in the Pacific Southern Coast of Mexico. Chymotryptic digest of the S-alkylated peptide in combination with liquid chromatography coupled to tandem mass spectrometry, were used to define the sequencing of this peptide. Eleven N-terminal amino acids were verified by automated Edman degradation. PiVIIA is a 25-mer peptide (CDAOTHYCTNYWγCCSGYCγHSHCW) with six cysteine residues forming three disulphide bonds, a hydroxyproline (O) and two gamma carboxyglutamic acid (γ) residues. Based on the arrangement of six Cys residues (C-C-CC-C-C), this conotoxin might belong to the O2-superfamily. Moreover, PiVIIA has a conserved motif (-γCCS-) that characterizes γ-conotoxins from molluscivorous Conus. Peptide PiVIIA has 45% sequence identity with γ-PnVIIA—the prototype of this family. Biological activity of PiVIIA was assessed by voltage-clamp recording in rat dorsal root ganglion neurons. Perfusion of PiVIIA in the µM range produces a significant increase in the Ca2+ currents, without significantly modifying the Na+, K+ or proton-gated acid sensing ionic currents. These results indicate that PiVIIA is a new conotoxin whose activity deserves further studies to define its potential use as a positive modulator of neuronal activity.
Collapse
Affiliation(s)
- Johanna Bernáldez
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, Baja California, C.P. 22860, Mexico.
| | - Samanta Jiménez
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, Baja California, C.P. 22860, Mexico.
| | - Luis Javier González
- Laboratorio de Espectrometría de Masas, Departamento de Proteómica, Centro de Ingeniería Genética y Biotecnología, Avenida 31 e/158 y 190, Cubanacán, Playa, PO Box 6162. C.P. 10600, La Habana, Cuba.
| | - Jesús Noda Ferro
- Laboratorio de Espectrometría de Masas, Departamento de Proteómica, Centro de Ingeniería Genética y Biotecnología, Avenida 31 e/158 y 190, Cubanacán, Playa, PO Box 6162. C.P. 10600, La Habana, Cuba.
| | - Enrique Soto
- Instituto de Fisiología, Benemerita Universidad de Puebla, 14 sur 6301, CU, San Manuel, Puebla, Pue, C.P. 72570, Mexico.
| | - Emilio Salceda
- Instituto de Fisiología, Benemerita Universidad de Puebla, 14 sur 6301, CU, San Manuel, Puebla, Pue, C.P. 72570, Mexico.
| | - Daniela Chávez
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, Baja California, C.P. 22860, Mexico.
| | - Manuel B Aguilar
- Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, UNAM, Juriquilla, Queretaro, C.P. 76230, Mexico.
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, Baja California, C.P. 22860, Mexico.
| |
Collapse
|
4
|
Rubio N, Sanz-Rodriguez F. Overexpression of caspase 1 in apoptosis-resistant astrocytes infected with the BeAn Theiler's virus. J Neurovirol 2015; 22:316-26. [PMID: 26567013 DOI: 10.1007/s13365-015-0400-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/10/2015] [Accepted: 10/27/2015] [Indexed: 01/19/2023]
Abstract
In this study, we demonstrate the upregulation in the expression of caspases 1 and 11 by SJL/J mouse brain astrocytes infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV). The upregulation of both proteases hints at protection of astrocytic cells from apoptotic death. We therefore looked for the reason of the demonstrated absence of programmed cell death in BeAn-infected SJL/J astrocytes. Complementary RNA (cRNA) from mock- and TMEV-infected cells was hybridized to the whole murine genome U74v2 DNA microarray from Affymetrix. Those experiments demonstrated the upregulation of gene expression for caspases 1 and 11 in infected cells. We further confirmed and validated their messenger RNA (mRNA) increase by reverse transcriptase quantitative real-time PCR (qPCR). The presence of both enzymatically active caspases 1 and 11 was demonstrated in cell lysates using a colorimetric and fluorymetric assay, respectively. We also show that overexpressed caspase 11 activated caspase 1 after preincubation of cytosol in vitro following a time-dependent process. This induction was neutralized by an anti-caspase 11 polyclonal antibody. These results demonstrate the activation of the caspase 1 precursor by caspase 11 and suggest a new mechanism of protection of BeAn-infected astrocytes from apoptosis. The direct experimental evidence that the protection effect demonstrated in this article was mediated by caspase 1, is provided by the fact that its specific inhibitor Z-WEHD-FMK induced de novo apoptotic death.
Collapse
Affiliation(s)
- Nazario Rubio
- Instituto Cajal. C.S.I.C, Dr. Arce Avenue 37, 28002, Madrid, Spain.
| | | |
Collapse
|
5
|
Fleischer W, Theiss S, Slotta J, Holland C, Schnitzler A. High-frequency voltage oscillations in cultured astrocytes. Physiol Rep 2015; 3:3/5/e12400. [PMID: 25969464 PMCID: PMC4463829 DOI: 10.14814/phy2.12400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP.
Collapse
Affiliation(s)
- Wiebke Fleischer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stephan Theiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany RESULT Medical GmbH, Düsseldorf, Germany
| | - Johannes Slotta
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Christine Holland
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|