1
|
Franz D, Richter A, Köhling R. Electrophysiological insights into deep brain stimulation of the network disorder dystonia. Pflugers Arch 2023; 475:1133-1147. [PMID: 37530804 PMCID: PMC10499667 DOI: 10.1007/s00424-023-02845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Deep brain stimulation (DBS), a treatment for modulating the abnormal central neuronal circuitry, has become the standard of care nowadays and is sometimes the only option to reduce symptoms of movement disorders such as dystonia. However, on the one hand, there are still open questions regarding the pathomechanisms of dystonia and, on the other hand, the mechanisms of DBS on neuronal circuitry. That lack of knowledge limits the therapeutic effect and makes it hard to predict the outcome of DBS for individual dystonia patients. Finding electrophysiological biomarkers seems to be a promising option to enable adapted individualised DBS treatment. However, biomarker search studies cannot be conducted on patients on a large scale and experimental approaches with animal models of dystonia are needed. In this review, physiological findings of deep brain stimulation studies in humans and animal models of dystonia are summarised and the current pathophysiological concepts of dystonia are discussed.
Collapse
Affiliation(s)
- Denise Franz
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Medical Center Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Deep brain stimulation in animal models of dystonia. Neurobiol Dis 2022; 175:105912. [DOI: 10.1016/j.nbd.2022.105912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
|
3
|
Nelson AB, Girasole AE, Lee HY, Ptáček LJ, Kreitzer AC. Striatal Indirect Pathway Dysfunction Underlies Motor Deficits in a Mouse Model of Paroxysmal Dyskinesia. J Neurosci 2022; 42:2835-2848. [PMID: 35165171 PMCID: PMC8973425 DOI: 10.1523/jneurosci.1614-20.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal involuntary movements, or dyskinesias, are seen in many neurologic diseases, including disorders where the brain appears grossly normal. This observation suggests that alterations in neural activity or connectivity may underlie dyskinesias. One influential model proposes that involuntary movements are driven by an imbalance in the activity of striatal direct and indirect pathway neurons (dMSNs and iMSNs, respectively). Indeed, in some animal models, there is evidence that dMSN hyperactivity contributes to dyskinesia. Given the many diseases associated with dyskinesia, it is unclear whether these findings generalize to all forms. Here, we used male and female mice in a mouse model of paroxysmal nonkinesigenic dyskinesia (PNKD) to assess whether involuntary movements are related to aberrant activity in the striatal direct and indirect pathways. In this model, as in the human disorder PNKD, animals experience dyskinetic attacks in response to caffeine or alcohol. Using optically identified striatal single-unit recordings in freely moving PNKD mice, we found a loss of iMSN firing during dyskinesia bouts. Further, chemogenetic inhibition of iMSNs triggered dyskinetic episodes in PNKD mice. Finally, we found that these decreases in iMSN firing are likely because of aberrant endocannabinoid-mediated suppression of glutamatergic inputs. These data show that striatal iMSN dysfunction contributes to the etiology of dyskinesia in PNKD, and suggest that indirect pathway hypoactivity may be a key mechanism for the generation of involuntary movements in other disorders.SIGNIFICANCE STATEMENT Involuntary movements, or dyskinesias, are part of many inherited and acquired neurologic syndromes. There are few effective treatments, most of which have significant side effects. Better understanding of which cells and patterns of activity cause dyskinetic movements might inform the development of new neuromodulatory treatments. In this study, we used a mouse model of an inherited human form of paroxysmal dyskinesia in combination with cell type-specific tools to monitor and manipulate striatal activity. We were able to narrow in on a specific group of neurons that causes dyskinesia in this model, and found alterations in a well-known form of plasticity in this cell type, endocannabinoid-dependent synaptic LTD. These findings point to new areas for therapeutic development.
Collapse
Affiliation(s)
- Alexandra B Nelson
- UCSF Neuroscience Graduate Program
- Department of Neurology, UCSF
- Kavli Institute for Fundamental Neuroscience
- UCSF Weill Institute for Neurosciences
| | - Allison E Girasole
- UCSF Neuroscience Graduate Program
- Department of Neurology, UCSF
- Kavli Institute for Fundamental Neuroscience
- UCSF Weill Institute for Neurosciences
| | | | - Louis J Ptáček
- UCSF Neuroscience Graduate Program
- Department of Neurology, UCSF
- Kavli Institute for Fundamental Neuroscience
- UCSF Weill Institute for Neurosciences
| | - Anatol C Kreitzer
- UCSF Neuroscience Graduate Program
- Department of Neurology, UCSF
- Department of Physiology, UCSF
- Kavli Institute for Fundamental Neuroscience
- UCSF Weill Institute for Neurosciences
- The Gladstone Institutes, San Francisco, California 94158
| |
Collapse
|
4
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
5
|
Heerdegen M, Zwar M, Franz D, Hörnschemeyer MF, Neubert V, Plocksties F, Niemann C, Timmermann D, Bahls C, van Rienen U, Paap M, Perl S, Lüttig A, Richter A, Köhling R. Mechanisms of pallidal deep brain stimulation: Alteration of cortico-striatal synaptic communication in a dystonia animal model. Neurobiol Dis 2021; 154:105341. [PMID: 33753292 DOI: 10.1016/j.nbd.2021.105341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
Pallidal deep brain stimulation (DBS) is an important option for patients with severe dystonias, which are thought to arise from a disturbance in striatal control of the globus pallidus internus (GPi). The mechanisms of GPi-DBS are far from understood. Although a disturbance of striatal function is thought to play a key role in dystonia, the effects of DBS on cortico-striatal function are unknown. We hypothesised that DBS, via axonal backfiring, or indirectly via thalamic and cortical coupling, alters striatal function. We tested this hypothesis in the dtsz hamster, an animal model of inherited generalised, paroxysmal dystonia. Hamsters (dystonic and non-dystonic controls) were bilaterally implanted with stimulation electrodes in the GPi. DBS (130 Hz), and sham DBS, were performed in unanaesthetised animals for 3 h. Synaptic cortico-striatal field potentials, as well as miniature excitatory postsynaptic currents (mEPSC) and firing properties of medium spiny striatal neurones were recorded in brain slice preparations obtained immediately after EPN-DBS. The main findings were as follows: a. DBS increased cortico-striatal evoked responses in healthy, but not in dystonic tissue. b. Commensurate with this, DBS increased inhibitory control of these evoked responses in dystonic, and decreased inhibitory control in healthy tissue. c. Further, DBS reduced mEPSC frequency strongly in dystonic, and less prominently in healthy tissue, showing that also a modulation of presynaptic mechanisms is likely involved. d. Cellular properties of medium-spiny neurones remained unchanged. We conclude that DBS leads to dampening of cortico-striatal communication, and restores intrastriatal inhibitory tone.
Collapse
Affiliation(s)
- Marco Heerdegen
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Monique Zwar
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | | | - Valentin Neubert
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany
| | - Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Christian Bahls
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany
| | - Maria Paap
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy und Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, Germany; Department of Ageing of Individuals and Society, University of Rostock, Germany.
| |
Collapse
|
6
|
Avchalumov Y, Piña-Crespo JC, Woodward JJ, Mandyam CD. Acute Ethanol Exposure Enhances Synaptic Plasticity in the Dorsal Striatum in Adult Male and Female Rats. Brain Plast 2020; 6:113-122. [PMID: 33680850 PMCID: PMC7903017 DOI: 10.3233/bpl-190097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background: Acute (ex vivo) and chronic (in vivo) alcohol exposure induces neuroplastic changes in the dorsal striatum, a
critical region implicated in instrumental learning. Objective: Sex differences are evident in alcohol reward and reinforcement, with
female rats consuming higher amount of alcohol in operant paradigms compared to male rats. However, sex differences in
the neuroplastic changes produced by acute alcohol in the dorsal striatum have been unexplored. Methods: Using electrophysiological
recordings from dorsal striatal slices obtained from adult male and female rats, we investigated the effects of ex vivo ethanol
exposure on synaptic transmission and synaptic plasticity. Ethanol (44 mM) enhanced basal synaptic transmission in both
sexes. Ethanol also enhanced long-term potentiation in both sexes. Other measures of synaptic plasticity including paired-pulse
ratio were unaltered by ethanol in both sexes. Results: The results suggest that alterations in synaptic plasticity induced by acute
ethanol, at a concentration associated with intoxication, could play an important role in alcohol-induced experience-dependent
modification of corticostriatal circuits underlying the learning of goal-directed instrumental actions and formation of habits
mediating alcohol seeking and taking. Conclusions: Taken together, understanding the mechanism(s) underlying alcohol induced changes
in corticostriatal function may lead to the development of more effective therapeutic agents to reduce habitual drinking and
seeking associated with alcohol use disorders.
Collapse
Affiliation(s)
| | - Juan C Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Research Institute, La Jolla, CA, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
7
|
Functional Metaplasticity of Hippocampal Schaffer Collateral-CA1 Synapses Is Reversed in Chronically Epileptic Rats. Neural Plast 2017; 2017:8087401. [PMID: 29098091 PMCID: PMC5642871 DOI: 10.1155/2017/8087401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/27/2017] [Accepted: 08/27/2017] [Indexed: 11/17/2022] Open
Abstract
Spatial learning and associating spatial information with individual experience are crucial for rodents and higher mammals. Hence, studying the cellular and molecular cascades involved in the key mechanism of information storage in the brain, synaptic plasticity, has led to enormous knowledge in this field. A major open question applies to the interdependence between synaptic plasticity and its behavioral correlates. In this context, it has become clear that behavioral aspects may impact subsequent synaptic plasticity, a phenomenon termed behavioral metaplasticity. Here, we trained control and pilocarpine-treated chronically epileptic rats of two different age groups (adolescent and adult) in a spatial memory task and subsequently tested long-term potentiation (LTP) in vitro at Schaffer collateral-CA1 synapses. As expected, memory acquisition in the behavioral task was significantly impaired both in pilocarpine-treated animals and in adult controls. Accordingly, these groups, without being tested in the behavioral training task, showed reduced CA1-LTP levels compared to untrained young controls. Spatial memory training significantly reduced subsequent CA1-LTP in vitro in the adolescent control group yet enhanced CA1-LTP in the adult pilocarpine-treated group. Such training in the adolescent pilocarpine-treated and adult control groups resulted in intermediate changes. Our study demonstrates age-dependent functional metaplasticity following a spatial memory training task and its reversal under pathological conditions.
Collapse
|
8
|
Hamann M, Plank J, Richter F, Bode C, Smiljanic S, Creed M, Nobrega JN, Richter A. Alterations of M1 and M4 acetylcholine receptors in the genetically dystonic (dt sz) hamster and moderate antidystonic efficacy of M1 and M4 anticholinergics. Neuroscience 2017; 357:84-98. [PMID: 28596119 DOI: 10.1016/j.neuroscience.2017.05.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/28/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
Striatal cholinergic dysfunction has been suggested to play a critical role in the pathophysiology of dystonia. In the dtsz hamster, a phenotypic model of paroxysmal dystonia, M1 antagonists exerted moderate antidystonic efficacy after acute systemic administration. In the present study, we examined the effects of the M4 preferring antagonist tropicamid and whether long-term systemic or acute intrastriatal injections of the M1 preferring antagonist trihexyphenidyl are more effective in mutant hamsters. Furthermore, M1 and M4 receptors were analyzed by autoradiography and immunohistochemistry. Tropicamide retarded the onset of dystonic attacks, as previously observed after acute systemic administration of trihexyphenidyl. Combined systemic administration of trihexyphenidyl (30mg/kg) and tropicamide (15mg/kg) reduced the severity in acute trials and delayed the onset of dystonia during long-term treatment. In contrast, acute striatal microinjections of trihexyphenidyl, tropicamid or the positive allosteric M4 receptor modulator VU0152100 did not exert significant effects. Receptor analyses revealed changes of M1 receptors in the dorsomedial striatum, suggesting that the cholinergic system is involved in abnormal striatal plasticity in dtsz hamsters, but the pharmacological data argue against a crucial role on the phenotype in this animal model. However, antidystonic effects of tropicamide after systemic administration point to a novel therapeutic potential of M4 preferring anticholinergics for the treatment of dystonia.
Collapse
Affiliation(s)
- Melanie Hamann
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Schubertstrasse 81, BFS, 35392 Giessen, Germany.
| | - Jagoda Plank
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany
| | - Sinisa Smiljanic
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Meaghan Creed
- Neuroimaging Research Section, Centre for Addiction and Mental Health, Toronto, Canada
| | - José N Nobrega
- Institute of Pharmacology and Toxicology, Department of Veterinary Medicine, Freie Universität Berlin, Koserstrasse 20, 14195 Berlin, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 15, Leipzig, Germany.
| |
Collapse
|
9
|
Bode C, Richter F, Spröte C, Brigadski T, Bauer A, Fietz S, Fritschy JM, Richter A. Altered postnatal maturation of striatal GABAergic interneurons in a phenotypic animal model of dystonia. Exp Neurol 2017; 287:44-53. [PMID: 27780732 DOI: 10.1016/j.expneurol.2016.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/30/2016] [Accepted: 10/21/2016] [Indexed: 01/05/2023]
Abstract
GABAergic disinhibition has been suggested to play a critical role in the pathophysiology of several basal ganglia disorders, including dystonia, a common movement disorder. Previous studies have shown a deficit of striatal GABAergic interneurons (IN) in the dtsz mutant hamster, one of the few phenotypic animal models of dystonia. However, mechanisms underlying this deficit are largely unknown. In the present study, we investigated the migration and maturation of striatal IN during postnatal development (18days of age) and at age of highest severity of dystonia (33days of age) in this hamster model. In line with previous findings, the density of GAD67-positive IN and the level of parvalbumin mRNA, a marker for fast spiking GABAergic IN, were lower in the dtsz mutant than in control hamsters. However, an unaltered density of Nkx2.1 labeled cells and Nkx2.1 mRNA level suggested that the migration of GABAergic IN into the striatum was not retarded. Therefore, different factors that indicate maturation of GABAergic IN were determined. While mRNA of the KCC2 cation/chloride transporters and the cytosolic carboanhydrase VII, used as markers for the so called GABA switch, as well as BDNF were unaltered, we found a reduced number of IN expressing the alpha1 subunit of the GABAA-receptor (37.5%) in dtsz hamsters at an age of 33days, but not after spontaneous remission of dystonia at an age of 90days. Since IN shift expression from alpha2 to alpha1 subunits during postnatal maturation, this result together with a decreased parvalbumin mRNA expression suggest a delayed maturation of striatal GABAergic IN in this animal model, which might underlie abnormal neuronal activity and striatal plasticity.
Collapse
Affiliation(s)
- Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| | - Christine Spröte
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Tanja Brigadski
- Institute for Physiology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Center of Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany
| | - Anne Bauer
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Simone Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich 8057, Switzerland
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
10
|
Girasole AE, Nelson AB. Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov Disord 2015; 30:1306-18. [PMID: 26227561 DOI: 10.1002/mds.26340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Allison E Girasole
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| |
Collapse
|
11
|
Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet 2015; 96:657-65. [PMID: 25799108 PMCID: PMC4385177 DOI: 10.1016/j.ajhg.2015.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/06/2015] [Indexed: 12/20/2022] Open
Abstract
Reports of primary isolated dystonia inherited in an autosomal-recessive (AR) manner, often lumped together as “DYT2 dystonia,” have appeared in the scientific literature for several decades, but no genetic cause has been identified to date. Using a combination of homozygosity mapping and whole-exome sequencing in a consanguineous kindred affected by AR isolated dystonia, we identified homozygous mutations in HPCA, a gene encoding a neuronal calcium sensor protein found almost exclusively in the brain and at particularly high levels in the striatum, as the cause of disease in this family. Subsequently, compound-heterozygous mutations in HPCA were also identified in a second independent kindred affected by AR isolated dystonia. Functional studies suggest that hippocalcin might play a role in regulating voltage-dependent calcium channels. The identification of mutations in HPCA as a cause of AR primary isolated dystonia paves the way for further studies to assess whether “DYT2 dystonia” is a genetically homogeneous condition or not.
Collapse
|
12
|
Avchalumov Y, Sander SE, Richter F, Porath K, Hamann M, Bode C, Kirschstein T, Köhling R, Richter A. Role of striatal NMDA receptor subunits in a model of paroxysmal dystonia. Exp Neurol 2014; 261:677-84. [PMID: 25139804 DOI: 10.1016/j.expneurol.2014.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/05/2014] [Accepted: 08/12/2014] [Indexed: 11/25/2022]
Abstract
Dystonia is a movement disorder in which abnormal plasticity in the basal ganglia has been hypothesized to play a critical role. In a model of paroxysmal dystonia, the dt(sz) mutant hamster, previous studies indicated striatal dysfunctions, including an increased long-term potentiation (LTP). Beneficial effects were exerted by subunit-unspecific antagonists at NMDA receptors, which blocked LTP. NR2B subtype selective antagonists aggravated dystonia after systemic treatment in dt(sz) hamsters, suggesting that beneficial effects involved the NR2A receptor subtype. In the present study, NVP-AAM077, an antagonist with preferential activity on NR2A-containing NMDA receptors, exerted significant antidystonic effects in mutant hamsters after systemic administration (20 and 30mg/kg i.p.) and delayed the onset of a dystonic episode after intrastriatal injections (0.12 and 0.24μg). As shown by present electrophysiological examinations in corticostriatal slices of dt(sz) hamsters and non-dystonic control hamsters, NVP-AAM077 (50nM) completely blocked LTP in dt(sz) slices, but did not exert significant effects on LTP in non-dystonic controls. In contrast, the NR2B antagonist Ro 25-6981 (1-10μmol) reduced LTP to a lower extent in dt(sz) mutant hamsters than in control animals. By using quantitative RT-PCR, the NR2A/NR2B ratio was found to be increased in the striatum, but not in the cortex of mutant hamsters in comparison to non-dystonic controls. These data indicate that NR2A-mediated activation may be involved in the pathophysiology of paroxysmal dystonia. Since significant antidystonic effects were observed after systemic administration of NVP-AAM077 already at well tolerated doses, antagonists with preferential activity on NR2A-containing NMDA receptors could be interesting candidates for the treatment of dystonia.
Collapse
Affiliation(s)
- Yosef Avchalumov
- Oscar-Langendorff-Institute of Physiology, University of Rostock, D-18057 Rostock, Germany
| | - Svenja E Sander
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Free University of Berlin, 10195 Berlin, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, University of Rostock, D-18057 Rostock, Germany
| | - Melanie Hamann
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Free University of Berlin, 10195 Berlin, Germany
| | - Christoph Bode
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, University of Rostock, D-18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, University of Rostock, D-18057 Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
13
|
Genetic animal models of dystonia: common features and diversities. Prog Neurobiol 2014; 121:91-113. [PMID: 25034123 DOI: 10.1016/j.pneurobio.2014.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/06/2014] [Accepted: 07/03/2014] [Indexed: 01/13/2023]
Abstract
Animal models are pivotal for studies of pathogenesis and treatment of disorders of the central nervous system which in its complexity cannot yet be modeled in vitro or using computer simulations. The choice of a specific model to test novel therapeutic strategies for a human disease should be based on validity of the model for the approach: does the model reflect symptoms, pathogenesis and treatment response present in human patients? In the movement disorder dystonia, prior to the availability of genetically engineered mice, spontaneous mutants were chosen based on expression of dystonic features, including abnormal muscle contraction, movements and postures. Recent discovery of a number of genes and gene products involved in dystonia initiated research on pathogenesis of the disorder, and the creation of novel models based on gene mutations. Here we present a review of current models of dystonia, with a focus on genetic rodent models, which will likely be first choice in the future either for pathophysiological or for preclinical drug testing or both. In order to help selection of a model depending on expression of a specific feature of dystonia, this review is organized by symptoms and current knowledge of pathogenesis of dystonia. We conclude that albeit there is increasing need for research on pathogenesis of the disease and development of improved models, current models do replicate features of dystonia and are useful tools to develop urgently demanded treatment for this debilitating disorder.
Collapse
|