1
|
Vasu SO, Kaphzan H. Direct Current Stimulation Modulates Synaptic Facilitation via Distinct Presynaptic Calcium Channels. Int J Mol Sci 2023; 24:16866. [PMID: 38069188 PMCID: PMC10706473 DOI: 10.3390/ijms242316866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a subthreshold neurostimulation technique known for ameliorating neuropsychiatric conditions. The principal mechanism of tDCS is the differential polarization of subcellular neuronal compartments, particularly the axon terminals that are sensitive to external electrical fields. Yet, the underlying mechanism of tDCS is not fully clear. Here, we hypothesized that direct current stimulation (DCS)-induced modulation of presynaptic calcium channel conductance alters axon terminal dynamics with regard to synaptic vesicle release. To examine the involvement of calcium-channel subtypes in tDCS, we recorded spontaneous excitatory postsynaptic currents (sEPSCs) from cortical layer-V pyramidal neurons under DCS while selectively inhibiting distinct subtypes of voltage-dependent calcium channels. Blocking P/Q or N-type calcium channels occluded the effects of DCS on sEPSCs, demonstrating their critical role in the process of DCS-induced modulation of spontaneous vesicle release. However, inhibiting T-type calcium channels did not occlude DCS-induced modulation of sEPSCs, suggesting that despite being active in the subthreshold range, T-type calcium channels are not involved in the axonal effects of DCS. DCS modulates synaptic facilitation by regulating calcium channels in axon terminals, primarily via controlling P/Q and N-type calcium channels, while T-type calcium channels are not involved in this mechanism.
Collapse
Affiliation(s)
| | - Hanoch Kaphzan
- Sagol Department of Neurobiology, University of Haifa, Haifa 3103301, Israel
| |
Collapse
|
2
|
The role of axonal voltage-gated potassium channels in tDCS. Brain Stimul 2022; 15:861-869. [DOI: 10.1016/j.brs.2022.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
|
3
|
Vasu SO, Kaphzan H. Calcium channels control tDCS-induced spontaneous vesicle release from axon terminals. Brain Stimul 2022; 15:270-282. [DOI: 10.1016/j.brs.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
|
4
|
Schöpf CL, Ablinger C, Geisler SM, Stanika RI, Campiglio M, Kaufmann WA, Nimmervoll B, Schlick B, Brockhaus J, Missler M, Shigemoto R, Obermair GJ. Presynaptic α 2δ subunits are key organizers of glutamatergic synapses. Proc Natl Acad Sci U S A 2021; 118:e1920827118. [PMID: 33782113 PMCID: PMC8040823 DOI: 10.1073/pnas.1920827118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.
Collapse
Affiliation(s)
- Clemens L Schöpf
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Cornelia Ablinger
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Stefanie M Geisler
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Pharmacology and Toxicology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Ruslan I Stanika
- Division of Physiology, Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Benedikt Nimmervoll
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bettina Schlick
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
- Division of Physiology, Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
| |
Collapse
|
5
|
Marcantoni A, Calorio C, Hidisoglu E, Chiantia G, Carbone E. Cav1.2 channelopathies causing autism: new hallmarks on Timothy syndrome. Pflugers Arch 2020; 472:775-789. [PMID: 32621084 DOI: 10.1007/s00424-020-02430-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Cav1.2 L-type calcium channels play key roles in long-term synaptic plasticity, sensory transduction, muscle contraction, and hormone release. De novo mutations in the gene encoding Cav1.2 (CACNA1C) causes two forms of Timothy syndrome (TS1, TS2), characterized by a multisystem disorder inclusive of cardiac arrhythmias, long QT, autism, and adrenal gland dysfunction. In both TS1 and TS2, the missense mutation G406R is on the alternatively spliced exon 8 and 8A coding for the IS6-helix of Cav1.2 and is responsible for the penetrant form of autism in most TS individuals. The mutation causes specific gain-of-function changes to Cav1.2 channel gating: a "leftward shift" of voltage-dependent activation, reduced voltage-dependent inactivation, and a "leftward shift" of steady-state inactivation. How this occurs and how Cav1.2 gating changes alter neuronal firing and synaptic plasticity is still largely unexplained. Trying to better understanding the molecular basis of Cav1.2 gating dysfunctions leading to autism, here, we will present and discuss the properties of recently reported typical and atypical TS phenotypes and the effective gating changes exhibited by missense mutations associated with long QTs without extracardiac symptoms, unrelated to TS. We will also discuss new emerging views achieved from using iPSCs-derived neurons and the newly available autistic TS2-neo mouse model, both appearing promising for understanding neuronal mistuning in autistic TS patients. We will also analyze and describe recent proposals of molecular pathways that might explain mistuned Ca2+-mediated and Ca2+-independent excitation-transcription signals to the nucleus. Briefly, we will also discuss possible pharmacological approaches to treat autism associated with L-type channelopathies.
Collapse
Affiliation(s)
- Andrea Marcantoni
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Chiara Calorio
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Enis Hidisoglu
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Giuseppe Chiantia
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy
| | - Emilio Carbone
- Department of Drug Science, Laboratory of Cellular and Molecular Neuroscience, N.I.S. Centre, Corso Raffaello 30, 10125, Torino, Italy.
| |
Collapse
|
6
|
Florenzano F, Veronica C, Ciasca G, Ciotti MT, Pittaluga A, Olivero G, Feligioni M, Iannuzzi F, Latina V, Maria Sciacca MF, Sinopoli A, Milardi D, Pappalardo G, Marco DS, Papi M, Atlante A, Bobba A, Borreca A, Calissano P, Amadoro G. Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget 2017; 8:64745-64778. [PMID: 29029390 PMCID: PMC5630290 DOI: 10.18632/oncotarget.17371] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/11/2017] [Indexed: 12/14/2022] Open
Abstract
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer's disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration.
Collapse
Affiliation(s)
| | | | - Gabriele Ciasca
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Maria Teresa Ciotti
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | - Anna Pittaluga
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Gunedalina Olivero
- Department of Pharmacy, Pharmacology and Toxicology Section, University of Genoa, Genoa, Viale Cembrano, Italy
| | - Marco Feligioni
- European Brain Research Institute, Rome, Italy
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | | | | | | | | | - Danilo Milardi
- Institute of Biostructures and Bioimaging, CNR, Catania, Italy
| | | | - De Spirito Marco
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Massimiliano Papi
- Institute of Physics, Catholic University of the Sacred Heart, Largo F Vito 1, Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Bobba
- Institute of Biomembranes and Bioenergetics, CNR, Bari, Italy
- Center of Excellence for Biomedical Research, University of Genoa, Genoa, Viale Benedetto XV, Italy
| | - Antonella Borreca
- Institute of Cellular Biology and Neuroscience, CNR, IRCSS Santa Lucia Foundation, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
7
|
Jackson RE, Burrone J. Visualizing Presynaptic Calcium Dynamics and Vesicle Fusion with a Single Genetically Encoded Reporter at Individual Synapses. Front Synaptic Neurosci 2016; 8:21. [PMID: 27507942 PMCID: PMC4960916 DOI: 10.3389/fnsyn.2016.00021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/13/2016] [Indexed: 01/08/2023] Open
Abstract
Synaptic transmission depends on the influx of calcium into the presynaptic compartment, which drives neurotransmitter release. Genetically encoded reporters are widely used tools to understand these processes, particularly pHluorin-based reporters that report vesicle exocytosis and endocytosis through pH dependent changes in fluorescence, and genetically encoded calcium indicators (GECIs) that exhibit changes in fluorescence upon binding to calcium. The recent expansion of the color palette of available indicators has made it possible to image multiple probes simultaneously within a cell. We have constructed a single molecule reporter capable of concurrent imaging of both presynaptic calcium influx and exocytosis, by fusion of sypHy, the vesicle associated protein synaptophysin containing a GFP-based pHluorin sensor, with the red-shifted GECI R-GECO1. Due to the fixed stoichiometry of the two probes, the ratio of the two responses can also be measured, providing an all optical correlate of the calcium dependence of release. Here, we have characterized stimulus-evoked sypHy-RGECO responses of hippocampal synapses in vitro, exploring the effects of different stimulus strengths and frequencies as well as variations in external calcium concentrations. By combining live sypHy-RGECO imaging with post hoc fixation and immunofluorescence, we have also investigated correlations between structural and functional properties of synapses.
Collapse
Affiliation(s)
| | - Juan Burrone
- Centre for Developmental Neurobiology, King’s College LondonLondon, UK
| |
Collapse
|
8
|
Eckenstaler R, Lessmann V, Brigadski T. CAPS1 effects on intragranular pH and regulation of BDNF release from secretory granules in hippocampal neurons. J Cell Sci 2016; 129:1378-90. [PMID: 26869227 DOI: 10.1242/jcs.178251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/08/2016] [Indexed: 01/19/2023] Open
Abstract
The secretory protein brain-derived neurotrophic factor (BDNF) is assumed to be a key factor for the induction of synaptic plasticity processes in neurons. However, the molecular mechanisms for activity-dependent release of the protein largely remain elusive. Here, we demonstrate the relevance of the priming factor CAPS1 (also known as CADPS) for the maturation and exocytosis of BDNF-containing secretory granules, as well as for neurotransmitter release from synaptic vesicles. Using live-cell imaging and RNA silencing methods, we show that CAPS1 has a previously unrecognized function in regulating the intragranular pH of BDNF-containing secretory granules. Furthermore, our results demonstrate that acute single-cell knockdown of CAPS1 with unaltered expression in neighboring neurons leads to a strong reduction in the number of fusion-competent secretory granules and to a significant decrease of released BDNF following exocytosis in dendrites of CAPS1-deficient neurons. In addition, our results show a reduction in synaptic vesicle turnover after CAPS1 knockdown without affecting the density of active boutons in hippocampal neurons. Thus, our results reveal new functions of endogenous CAPS1 in the BDNF secretory granule life cycle, thereby representing a new mechanism of neuronal plasticity.
Collapse
Affiliation(s)
- Robert Eckenstaler
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany Center of Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Tanja Brigadski
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany Center of Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| |
Collapse
|
9
|
Zhou MH, Bavencoffe A, Pan HL. Molecular Basis of Regulating High Voltage-Activated Calcium Channels by S-Nitrosylation. J Biol Chem 2015; 290:30616-23. [PMID: 26507659 DOI: 10.1074/jbc.m115.685206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Nitric oxide (NO) is involved in a variety of physiological processes, such as vasoregulation and neurotransmission, and has a complex role in the regulation of pain transduction and synaptic transmission. We have shown previously that NO inhibits high voltage-activated Ca(2+) channels in primary sensory neurons and excitatory synaptic transmission in the spinal dorsal horn. However, the molecular mechanism involved in this inhibitory action remains unclear. In this study, we investigated the role of S-nitrosylation in the NO regulation of high voltage-activated Ca(2+) channels. The NO donor S-nitroso-N-acetyl-DL-penicillamine (SNAP) rapidly reduced N-type currents when Cav2.2 was coexpressed with the Cavβ1 or Cavβ3 subunits in HEK293 cells. In contrast, SNAP only slightly inhibited P/Q-type and L-type currents reconstituted with various Cavβ subunits. SNAP caused a depolarizing shift in voltage-dependent N-type channel activation, but it had no effect on Cav2.2 protein levels on the membrane surface. The inhibitory effect of SNAP on N-type currents was blocked by the sulfhydryl-specific modifying reagent methanethiosulfonate ethylammonium. Furthermore, the consensus motifs of S-nitrosylation were much more abundant in Cav2.2 than in Cav1.2 and Cav2.1. Site-directed mutagenesis studies showed that Cys-805, Cys-930, and Cys-1045 in the II-III intracellular loop, Cys-1835 and Cys-2145 in the C terminus of Cav2.2, and Cys-346 in the Cavβ3 subunit were nitrosylation sites mediating NO sensitivity of N-type channels. Our findings demonstrate that the consensus motifs of S-nitrosylation in cytoplasmically accessible sites are critically involved in post-translational regulation of N-type Ca(2+) channels by NO. S-Nitrosylation mediates the feedback regulation of N-type channels by NO.
Collapse
Affiliation(s)
- Meng-Hua Zhou
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Alexis Bavencoffe
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience and Pain Research, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
10
|
Geisler S, Schöpf CL, Obermair GJ. Emerging evidence for specific neuronal functions of auxiliary calcium channel α₂δ subunits. Gen Physiol Biophys 2014; 34:105-118. [PMID: 25504062 DOI: 10.4149/gpb_2014037] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/06/2014] [Indexed: 11/08/2022]
Abstract
In nerve cells the ubiquitous second messenger calcium regulates a variety of vitally important functions including neurotransmitter release, gene regulation, and neuronal plasticity. The entry of calcium into cells is tightly regulated by voltage-gated calcium channels, which consist of a heteromultimeric complex of a pore forming α₁, and the auxiliary β and α₂δ subunits. Four genes (Cacna2d1-4) encode for the extracellular membrane-attached α₂δ subunits (α₂δ-1 to α₂δ-4), out of which three isoforms (α₂δ-1 to -3) are strongly expressed in the central nervous system. Over the years a wealth of studies has demonstrated the classical role of α₂δ subunits in channel trafficking and calcium current modulation. Recent studies in specialized neuronal cell systems propose roles of α₂δ subunits beyond the classical view and implicate α₂δ subunits as important regulators of synapse formation. These findings are supported by the identification of novel human disease mutations associated with α₂δ subunits and by the fact that α₂δ subunits are the target of the anti-epileptic and anti-allodynic drugs gabapentin and pregabalin. Here we review the recently emerging evidence for specific as well as redundant neuronal roles of α₂δ subunits and discuss the mechanisms for establishing and maintaining specificity.
Collapse
Affiliation(s)
- Stefanie Geisler
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clemens L Schöpf
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|