1
|
Wang X, Tian W, Wang N, Yang X, Liu Z, Li L, Zhao T, Wang C, Zhang H, Yang H, Jia Y. Transcriptome analysis reveals the anticancer effects of fenbendazole on ovarian cancer: an in vitro and in vivo study. BMC Cancer 2024; 24:1593. [PMID: 39736624 DOI: 10.1186/s12885-024-13361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025] Open
Abstract
New treatment strategies for ovarian cancer, which is the deadliest female reproductive tract malignancy, are urgently needed. Here, we investigated the anticancer effects of fenbendazole (FBZ), a benzimidazole compound, on the regulation of apoptosis and mitotic catastrophe in A2780 and SKOV3 human epithelial ovarian cancer cells. Functional experiments, including Cell Counting Kit 8 (CCK-8), colony formation, and flow cytometry assays, were conducted to explore the effects of FBZ on the malignant biological behavior of A2780 and SKOV3 cells. RNA sequencing and western blotting were utilized to elucidate the underlying mechanisms by which FBZ affects cell apoptosis. We found that FBZ inhibited the proliferation and promoted the apoptosis of ovarian cancer cells in a dose-dependent manner. Furthermore, we reported the transcriptome profiling of FBZ-treated SKOV3 ovarian cancer cells. In all, 1747 differentially expressed genes (DEGs) were identified, including 944 downregulated and 803 upregulated genes. KEGG enrichment and Reactome enrichment analyses revealed that the DEGs were associated mainly with mitosis- and cell cycle-related pathways. Additionally, we found that FBZ may promote apoptosis via mitotic catastrophe. Finally, oral administration of FBZ inhibited tumor growth in a mouse model of xenograft ovarian cancer. Overall, these findings suggest that FBZ has therapeutic potential for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Wenda Tian
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Ning Wang
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Xiangqun Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Zhenyan Liu
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Lvzhou Li
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Taoyu Zhao
- Department of Obstetrics and Gynecology, Dehong Affiliated Hospital of Kunming Medical University, Dehong People's Hospital of Yunnan Province, Kunming, 678400, Yunnan, P. R. China
| | - Chuanlin Wang
- Department of Clinical Nutrition, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China
| | - Hongping Zhang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| | - Hongying Yang
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| | - Yue Jia
- Department of Gynecology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, 650118, Yunnan, P. R. China.
| |
Collapse
|
2
|
Fenbendazole Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice via Suppression of Fibroblast-to-Myofibroblast Differentiation. Int J Mol Sci 2022; 23:ijms232214088. [PMID: 36430565 PMCID: PMC9693227 DOI: 10.3390/ijms232214088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial lung disease with unknown etiology. Despite substantial progress in understanding the pathogenesis of pulmonary fibrosis and drug development, there is still no cure for this devastating disease. Fenbendazole (FBZ) is a benzimidazole compound that is widely used as an anthelmintic agent and recent studies have expanded the scope of its pharmacological effects and application prospect. This study demonstrated that FBZ treatment blunted bleomycin-induced lung fibrosis in mice. In vitro studies showed that FBZ inhibited the proliferation and migration of human embryo lung fibroblasts. Further studies showed that FBZ significantly inhibited glucose consumption, moderated glycolytic metabolism in fibroblasts, thus activated adenosine monophosphate-activated protein kinase (AMPK), and reduced the activation of the mammalian target of rapamycin (mTOR) pathway, thereby inhibiting transforming growth factor-β (TGF-β1)-induced fibroblast-to-myofibroblast differentiation and collagen synthesis. In summary, our data suggested that FBZ has potential as a novel treatment for pulmonary fibrosis.
Collapse
|
3
|
Abstract
Fenbendazole remains the drug of choice to treat pinworm infection in laboratory rodents. When fenbendazole was last reviewed (15 y ago), the literature supported the drug's lack of toxic effects at therapeutic levels, yet various demonstrated physiologic effects have the potential to alter research outcomes. Although more recent reports continue to reflect an overall discordancy of results, several studies support the premise that fenbendazole affects the bone marrow and the immune system. No effects on reproduction were reported in an extensive study that assessed common treatment protocols in mice, and food intake was unchanged in rats. Behavioral studies are sparse, with only a single report of a subtle change in a rotarod performance in mice. Notably, unexpected results in tumor models during facility treatment with fenbendazole have prompted preclinical and clinical studies of the potential roles of benzimidazoles in cancer.
Collapse
Affiliation(s)
- Carolyn Cray
- Division of Comparative Pathology and,Corresponding author.
| | - Norman H Altman
- Department of Pathology & Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
4
|
Inhibition of Bruton Tyrosine Kinase Reduces Neuroimmune Cascade and Promotes Recovery after Spinal Cord Injury. Int J Mol Sci 2021; 23:ijms23010355. [PMID: 35008785 PMCID: PMC8745213 DOI: 10.3390/ijms23010355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022] Open
Abstract
Microglia/astrocyte and B cell neuroimmune responses are major contributors to the neurological deficits after traumatic spinal cord injury (SCI). Bruton tyrosine kinase (BTK) activation mechanistically links these neuroimmune mechanisms. Our objective is to use Ibrutinib, an FDA-approved BTK inhibitor, to inhibit the neuroimmune cascade thereby improving locomotor recovery after SCI. Rat models of contusive SCI, Western blot, immunofluorescence staining imaging, flow cytometry analysis, histological staining, and behavioral assessment were used to evaluate BTK activity, neuroimmune cascades, and functional outcomes. Both BTK expression and phosphorylation were increased at the lesion site at 2, 7, 14, and 28 days after SCI. Ibrutinib treatment (6 mg/kg/day, IP, starting 3 h post-injury for 7 or 14 days) reduced BTK activation and total BTK levels, attenuated the injury-induced elevations in Iba1, GFAP, CD138, and IgG at 7 or 14 days post-injury without reduction in CD45RA B cells, improved locomotor function (BBB scores), and resulted in a significant reduction in lesion volume and significant improvement in tissue-sparing 11 weeks post-injury. These results indicate that Ibrutinib exhibits neuroprotective effects by blocking excessive neuroimmune responses through BTK-mediated microglia/astroglial activation and B cell/antibody response in rat models of SCI. These data identify BTK as a potential therapeutic target for SCI.
Collapse
|
5
|
Chang L, Zhu L. Dewormer drug fenbendazole has antiviral effects on BoHV-1 productive infection in cell cultures. J Vet Sci 2020; 21:e72. [PMID: 33016019 PMCID: PMC7533386 DOI: 10.4142/jvs.2020.21.e72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/22/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fenbendazole, a dewormer drug, is used widely in the clinical treatment of parasite infections in animals. Recent studies have shown that fenbendazole has substantial effects on tumor growth, immune responses, and inflammatory responses, suggesting that fenbendazole is a pluripotent drug. Nevertheless, the antiviral effects have not been reported. Fenbendazole can disrupt microtubules, which are essential for multiple viruses infections, suggesting that fenbendazole might have antiviral effects. OBJECTIVES This study examined whether fenbendazole could inhibit bovine herpesvirus 1 (BoHV-1) productive infection in cell cultures. METHODS The effects of fenbendazole on viral production, transcription of the immediate early (IE) genes, viron-associated protein expression, and the cellular signaling PLC-γ1/Akt pathway were assessed using distinct methods. RESULTS Fenbendazole could inhibit BoHV-1 productive infections significantly in MDBK cells in a dose-dependent manner. A time-of-addition assay indicated that fenbendazole affected both the early and late stages in the virus replication cycles. The transcription of IE genes, including BoHV-1 infected cell protein 0 (bICP0), bCP4, and bICP22, as well as the synthesis of viron-associated proteins, were disrupted differentially by the fenbendazole treatment. The treatment did not affect the cellular signaling pathway of PLC-γ1/Akt, a known cascade playing important roles in virus infection. CONCLUSIONS Overall, fenbendazole has antiviral effects on BoHV-1 replication.
Collapse
Affiliation(s)
- Long Chang
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China
| | - Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou 225009, China.
| |
Collapse
|
6
|
Yu CG, Bondada V, Ghoshal S, Singh R, Pistilli CK, Dayaram K, Iqbal H, Sands M, Davis KL, Bondada S, Geddes JW. Repositioning Flubendazole for Spinal Cord Injury. J Neurotrauma 2019; 36:2618-2630. [PMID: 30747048 DOI: 10.1089/neu.2018.6160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We previously reported the serendipitous observation that fenbendazole, a benzimidazole anthelmintic, improved functional and pathological outcomes following thoracic spinal cord contusion injury in mice when administered pre-injury. Fenbendazole is widely used in veterinary medicine. However, it is not approved for human use and it was uncertain if only post-injury administration would offer similar benefits. In the present study we evaluated post-injury administration of a closely related, human anthelmintic drug, flubendazole, using a rat spinal cord contusion injury model. Flubendazole, administered i.p. 5 or 10 mg/kg day, beginning 3 h post-injury and daily thereafter for 2 or 4 weeks, resulted in improved locomotor function after contusion spinal cord injury (SCI) compared with vehicle-treated controls. Histological analysis of spinal cord sections showed that such treatment with flubendazole also reduced lesion volume and improved total tissue sparing, white matter sparing, and gray matter sparing. Flubendazole inhibited the activation of glial fibrillary acidic protein (GFAP); suppressed cyclin B1 expression and Bruton tyrosine kinase activation, markers of B cell activation/proliferation and inflammation; and reduced B cell autoimmune response. Together, these results suggest the use of the benzimidazole anthelmintic flubendazole as a potential therapeutic for SCI.
Collapse
Affiliation(s)
- Chen Guang Yu
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Vimala Bondada
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Sarbani Ghoshal
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Ranjana Singh
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Christina K Pistilli
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kavi Dayaram
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hina Iqbal
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Madison Sands
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Kate L Davis
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Subarrao Bondada
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - James W Geddes
- Spinal Cord and Brain Injury Research Center, Department of Neuroscience, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
7
|
Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11515-015-1373-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zhang N, Fang M, Chen H, Gou F, Ding M. Evaluation of spinal cord injury animal models. Neural Regen Res 2015; 9:2008-12. [PMID: 25598784 PMCID: PMC4283285 DOI: 10.4103/1673-5374.143436] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 11/19/2022] Open
Abstract
Because there is no curative treatment for spinal cord injury, establishing an ideal animal model is important to identify injury mechanisms and develop therapies for individuals suffering from spinal cord injuries. In this article, we systematically review and analyze various kinds of animal models of spinal cord injury and assess their advantages and disadvantages for further studies.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Haohao Chen
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
| | - Fangming Gou
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang Province, China
| | - Mingxing Ding
- Department of Medical Sciences, Jinhua Polytechnic, Jinhua, Zhejiang Province, China ; Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Gabr H, El-Kheir WA, Farghali HAMA, Ismail ZMK, Zickri MB, El Maadawi ZM, Kishk NA, Sabaawy HE. Intrathecal Transplantation of Autologous Adherent Bone Marrow Cells Induces Functional Neurological Recovery in a Canine Model of Spinal Cord Injury. Cell Transplant 2014; 24:1813-27. [PMID: 25199146 DOI: 10.3727/096368914x683025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spinal cord injury (SCI) results in demyelination of surviving axons, loss of oligodendrocytes, and impairment of motor and sensory functions. We have developed a clinical strategy of cell therapy for SCI through the use of autologous bone marrow cells for transplantation to augment remyelination and enhance neurological repair. In a preclinical large mammalian model of SCI, experimental dogs were subjected to a clipping contusion of the spinal cord. Two weeks after the injury, GFP-labeled autologous minimally manipulated adherent bone marrow cells (ABMCs) were transplanted intrathecally to investigate the safety and efficacy of autologous ABMC therapy. The effects of ABMC transplantation in dogs with SCI were determined using functional neurological scoring, and the integration of ABMCs into the injured cords was determined using histopathological and immunohistochemical investigations and electron microscopic analyses of sections from control and transplanted spinal cords. Our data demonstrate the presence of GFP-labeled cells in the injured spinal cord for up to 16 weeks after transplantation in the subacute SCI stage. GFP-labeled cells homed to the site of injury and were detected around white matter tracts and surviving axons. ABMC therapy in the canine SCI model enhanced remyelination and augmented neural regeneration, resulting in improved neurological functions. Therefore, autologous ABMC therapy appears to be a safe and promising therapy for spinal cord injuries.
Collapse
Affiliation(s)
- Hala Gabr
- Department of Hematology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|