1
|
Wang Y, Xu L, Liu MZ, Hu DD, Fang F, Xu DJ, Zhang R, Hua XX, Li JB, Zhang L, Huang LN, Mu D. Norepinephrine modulates wakefulness via α1 adrenoceptors in paraventricular thalamic nucleus. iScience 2021; 24:103015. [PMID: 34522858 PMCID: PMC8426266 DOI: 10.1016/j.isci.2021.103015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022] Open
Abstract
Norepinephrine (NE) neurons in the locus coeruleus (LC) play key roles in modulating sleep and wakefulness. Recent studies have revealed that the paraventricular thalamic nucleus (PVT) is a critical wakefulness-controlling nucleus in mice. However, the effects of NE on PVT neurons remain largely unknown. Here, we investigated the mechanisms of NE modulating wakefulness in the PVT by using viral tracing, behavioral tests, slice electrophysiology, and optogenetics techniques. We found that the PVT-projecting LC neurons had few collateral projections to other brain nuclei. Behavioral tests showed that specific activation of the LC-PVT projections or microinjection of NE into the PVT accelerated emergence from general anesthesia and enhanced locomotion activity. Moreover, brain slice recording results indicated that NE increased the activity of the PVT neurons mainly by increasing the frequency of spontaneous excitatory postsynaptic currents via α1 adrenoceptors. Thus, our results demonstrate that NE modulates wakefulness via α1 adrenoceptors in the PVT.
Collapse
Affiliation(s)
- Yan Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Ling Xu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Ming-Zhe Liu
- Department of Respiratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Dan-Dan Hu
- Tongji University School of Medicine, Shanghai, China
| | - Fang Fang
- Department of Endocrinology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dao-Jie Xu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Rui Zhang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Xiao-Xiao Hua
- Tongji University School of Medicine, Shanghai, China
| | - Jin-Bao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Ling Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Li-Na Huang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| | - Di Mu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Song Jiang Road, Shanghai 201620, China
| |
Collapse
|
2
|
Tsuda S, Golam M, Hou J, Nelson R, Bernavil P, Richardson K, Wang KKW, Thompson F, Bose P. Altered monoaminergic levels, spasticity, and balance disability following repetitive blast-induced traumatic brain injury in rats. Brain Res 2020; 1747:147060. [PMID: 32828734 PMCID: PMC10424094 DOI: 10.1016/j.brainres.2020.147060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Spasticity and balance disability are major complications following traumatic brain injury (TBI). Although monoaminergic inputs provide critical adaptive neuromodulations to the motor system, data are not available regarding the levels of monoamines in the brain regions related to motor functions following repetitive blast TBI (bTBI). The objective of this study was to determine if mild, repetitive bTBI results in spasticity/balance deficits and if these are correlated with altered levels of norepinephrine, dopamine, and serotonin in the brain regions related to the motor system. Repetitive bTBI was induced by a blast overpressure wave in male rats on days 1, 4, and 7. Following bTBI, physiological/behavioral tests were conducted and tissues in the central motor system (i.e., motor cortex, locus coeruleus, vestibular nuclei, and lumbar spinal cord) were collected for electrochemical detection of norepinephrine, dopamine, and serotonin by high-performance liquid chromatography. The results showed that norepinephrine was significantly increased in the locus coeruleus and decreased in the vestibular nuclei, while dopamine was significantly decreased in the vestibular nuclei. On the other hand, serotonin was significantly increased in the motor cortex and the lumbar spinal cord. Because these monoamines play important roles in regulating the excitability of neurons, these results suggest that mild, repetitive bTBI-induced dysregulation of monoaminergic inputs in the central motor system could contribute to spasticity and balance disability. This is the first study to report altered levels of multiple monoamines in the central motor system following acute mild, repetitive bTBI.
Collapse
Affiliation(s)
- Shigeharu Tsuda
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Anesthesiology, College of Medicine, University of Florida, 1600 SW Archer Rd m509, Gainesville, FL 32610-0254, USA
| | - Mustafa Golam
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Physiological Sciences, University of Florida, 1333 Center Dr, Gainesville, FL 32603, USA
| | - Jiamei Hou
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Anesthesiology, College of Medicine, University of Florida, 1600 SW Archer Rd m509, Gainesville, FL 32610-0254, USA
| | - Rachel Nelson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA
| | - Phillip Bernavil
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA
| | - Kenneth Richardson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA
| | - Kevin K W Wang
- Department of Emergency Medicine, University of Florida, 1329 SW 16th Street, Suite 5270, Gainesville, FL 32610, USA
| | - Floyd Thompson
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Physiological Sciences, University of Florida, 1333 Center Dr, Gainesville, FL 32603, USA; Department of Neuroscience, University of Florida, 1149 Newell Dr, Gainesville, FL 32610, USA
| | - Prodip Bose
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Rd, Gainesville 32608-1197, USA; Department of Anesthesiology, College of Medicine, University of Florida, 1600 SW Archer Rd m509, Gainesville, FL 32610-0254, USA; Department of Neurology, University of Florida, 1149 Newell Dr, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Bajracharya JL, Subedi A, Pokharel K, Bhattarai B. The effect of intraoperative lidocaine versus esmolol infusion on postoperative analgesia in laparoscopic cholecystectomy: a randomized clinical trial. BMC Anesthesiol 2019; 19:198. [PMID: 31684867 PMCID: PMC6829809 DOI: 10.1186/s12871-019-0874-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023] Open
Abstract
Background As a part of multimodal analgesia for laparoscopic cholecystectomy, both intraoperative lidocaine and esmolol facilitate postoperative analgesia. Our objective was to compare these two emerging strategies that challenge the use of intraoperative opioids. We aimed to assess if intraoperative esmolol infusion is not inferior to lidocaine infusion for opioid consumption after laparoscopic cholecystectomy. Methods In this prospective, randomized, double-blind, non-inferiority clinical trial, 90 female patients scheduled for elective laparoscopic cholecystectomy received either intravenous (IV) lidocaine bolus 1.5 mg/kg at induction followed by an infusion (1.5 mg/ kg/h) or IV bolus of esmolol 0.5 mg/kg at induction followed by an infusion (5–15 μg/kg/min) till the end of surgery. Remaining aspect of anesthesia followed a standard protocol apart from no intraoperative opioid supplementation. Postoperatively, patients received either morphine or tramadol IV to maintain visual analogue scale (VAS) scores ≤3. The primary outcome was opioid consumption (in morphine equivalents) during the first 24 postoperative hours. Pain and sedation scores, time to first perception of pain and void, and occurrence of nausea/vomiting were secondary outcomes measured up to 24 h postoperatively. Results Two patients in each group were excluded from the analysis. The postoperative median (IQR) morphine equivalent consumption in patients receiving esmolol was 1 (0–1.5) mg compared to 1.5 (1–2) mg in lidocaine group (p = 0.27). The median pain scores at various time points were similar between the two groups (p > 0.05). More patients receiving lidocaine were sedated in the post-anesthesia care unit (PACU) than those receiving esmolol (p < 0.05); however, no difference was detected later. Conclusion Infusion of esmolol is not inferior to lidocaine in terms of opioid requirement and pain severity in the first 24 h after surgery. Patients receiving lidocaine were more sedated during their stay in PACU than those receiving esmolol. Trial registration ClinicalTrials.gov- NCT02327923. Date of registration: December 31, 2014.
Collapse
Affiliation(s)
| | - Asish Subedi
- Department of Anesthesiology & Critical Care Medicine, BP Koirala Institute of Health Sciences, BPKIHS, Dharan, Nepal.
| | - Krishna Pokharel
- Department of Anesthesiology & Critical Care Medicine, BPKIHS, Dharan, Nepal
| | | |
Collapse
|
4
|
Peng SY, Zhuang QX, Zhang YX, Zhang XY, Wang JJ, Zhu JN. Excitatory effect of norepinephrine on neurons in the inferior vestibular nucleus and the underlying receptor mechanism. J Neurosci Res 2016; 94:736-48. [PMID: 27121461 DOI: 10.1002/jnr.23745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/26/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The central noradrenergic system, originating mainly from the locus coeruleus in the brainstem, plays an important role in many physiological functions, including arousal and attention, learning and memory, anxiety, and nociception. However, little is known about the roles of norepinephrine (NE) in somatic motor control. Therefore, using extracellular recordings on rat brainstem slices and quantitative real-time RT-PCR, we investigate the effect and mechanisms of NE on neuronal activity in the inferior vestibular nucleus (IVN), the largest nucleus in the vestibular nuclear complex, which holds an important position in integration of information signals controlling body posture. Here, we report that NE elicits an excitatory response on IVN neurons in a concentration-dependent manner. Activation of α1 - and β2 -adrenergic receptors (ARs) induces an increase in firing rate of IVN neurons, whereas activation of α2 -ARs evokes a decrease in firing rate of IVN neurons. Therefore, the excitation induced by NE on IVN neurons is a summation of the excitatory components mediated by coactivation of α1 - and β2 -ARs and the inhibitory component induced by α2 -ARs. Accordingly, α1 -, α2 -, and β2 -AR mRNAs are expressed in the IVN. Although β1 -AR mRNAs are also detected, they are not involved in the direct electrophysiological effect of NE on IVN neurons. All these results demonstrate that NE directly regulates the activity of IVN neurons via α1 -, α2 -, and β2 -ARs and suggest that the central noradrenergic system may actively participate in IVN-mediated vestibular reflexes and postural control. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shi-Yu Peng
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xing Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yong-Xiao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Biological Science and Technology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Beta-adrenergic antagonists during general anesthesia reduced postoperative pain: a systematic review and a meta-analysis of randomized controlled trials. J Anesth 2015; 29:934-43. [DOI: 10.1007/s00540-015-2041-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/21/2015] [Indexed: 12/11/2022]
|