1
|
Li G, Luo Y, Zhang Q, Chen W, Lai K, Liu Y, Zheng Y. The RBPMS CreERT2-tdTomato mouse line for studying retinal and vascular relevant diseases. iScience 2023; 26:108111. [PMID: 37867934 PMCID: PMC10589894 DOI: 10.1016/j.isci.2023.108111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
RNA-binding protein with multiple splicing (RBPMS) plays a crucial role in cardiac mesoderm specification and cardiovascular development, as well as being a typical marker for whole retinal ganglion cells (RGCs). However, there is a lack of animal models to spatiotemporally trace the location and function of RBPMS-expressing cells in vivo. In this study, we develop a tamoxifen-inducible RBPMS-tdTomato reporter mouse line to track RBPMS-expressing cells during embryogenesis and adulthood. This mouse line allows us to identify and locate RBPMS-tdTomato-positive cells among various tissues, especially in RGCs and smooth muscle cells, which assist to simulate related retinal degenerative diseases, model and examine choroidal neovascularization non-invasively in vivo. Our results show that the RBPMSCreERT2-tdTomato mouse line is a valuable tool for lineage tracing, disease modeling, drug screening, as well as isolating specific target cells.
Collapse
Affiliation(s)
- Guilan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yuanting Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenfei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
- Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
2
|
Quan Y, Wu Y, Zhan Z, Yang Y, Chen X, Wu K, Yu M. Inhibition of the leucine-rich repeat protein lingo-1 enhances RGC survival in optic nerve injury. Exp Ther Med 2019; 19:619-629. [PMID: 31885701 PMCID: PMC6913235 DOI: 10.3892/etm.2019.8250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
Leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 1 (lingo-1) is selectively expressed on neurons and oligodendrocytes in the central nervous system and acts as a negative regulator in neural repair, implying a potential role in optic neuropathy. The aim of the present study was to determine whether adeno-associated virus serotype 2 (AAV2) vector-mediated transfer of lingo-1 short hairpin RNA could reduce nerve crush-induced axonal degeneration and enhance axonal regeneration following optic nerve (ON) injury in vivo. The expression of lingo-1 was knocked down in vivo using a green fluorescent protein (GFP)-tagged AAV2 encoding lingo-1 shRNA via intravitreal injection in adult Sprague-Dawley rats. Silencing effects of AAV2-lingo-1-shRNA were confirmed by detecting GFP labelling of RGCs, and by quantifying lingo-1 expression levels with reverse transcription-quantitative polymerase chain reaction and western blotting. Rats received an intravitreal injection of AAV2-lingo-1-shRNA or negative control shRNA. The ON crush (ONC) injury was performed 2 weeks after the intravitreal injection. RGC density, lesion volume of the injured ON and the visual electrophysiology [flash visual evoked potential (F-VEP)] at different time points post-injury were determined. Transduction with lingo-1-shRNA decreased lingo-1 expression levels and promoted RGC survival following ONC. Lingo-1-shRNA promoted ON tissue repair and functional recovery. The mechanism underlying the effect of AAV2-lingo-1-shRNA on RGCs may be the phosphorylation of protein kinase B (Akt) at Ser473 and activation of the Akt signaling pathway acting downstream of lingo-1. The results of the current study indicate that the inhibition of lingo-1 may enhance RGC survival and facilitate functional recovery following ON injury, representing a promising potential strategy for the repair of optic neuropathy.
Collapse
Affiliation(s)
- Yadan Quan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yali Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Zongyi Zhan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yangfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiaotao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Kaili Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Minbin Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
3
|
Lee ES, Lee JY, Kim GH, Jeon CJ. Identification of calretinin-expressing retinal ganglion cells projecting to the mouse superior colliculus. Cell Tissue Res 2018; 376:153-163. [PMID: 30506393 DOI: 10.1007/s00441-018-2964-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 11/29/2022]
Abstract
In mice, retinal ganglion cells (RGCs), which consist of around 30 subtypes, exclusively transmit retinal information to the relevant brain systems through parallel visual pathways. The superior colliculus (SC) receives the vast majority of this information from several RGC subtypes. The objective of the current study is to identify the types of calretinin (CR)-expressing RGCs that project to the SC in mice. To label RGCs, we performed CR immunoreactivity in the mouse retina after injections of fluorescent dye, dextran into mouse SC. Subsequently, the neurons double-labeled for dextran and CR were iontophoretically injected with the lipophilic dye, DiI, to characterize the detailed morphological properties of these cells. The analysis of various morphological parameters, including dendritic arborization, dendritic field size and stratification, indicated that, of the ten different types of CR-expressing RGCs in the retina, the double-labeled cells consisted of at least eight types of RGCs that projected to the SC. These cells tended to have small-medium field sizes. However, except for dendritic field size, the cells did not exhibit consistent characteristics for the other morphometric parameters examined. The combination of a tracer and single-cell injections after immunohistochemistry for a particular molecule provided valuable data that confirmed the presence of distinct subtypes of RGCs within multiple-labeled RGCs that projected to specific brain regions.
Collapse
Affiliation(s)
- Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair, USF Health, University of South Florida, Tampa, FL, 33612, USA
| | - Gil Hyun Kim
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
4
|
Oliveira FG, Nascimento-Júnior ESD, Cavalcante JC, Guzen FP, Cavalcante JDS, Soares JG, Cavalcanti JRLDP, Freitas LMD, Costa MSMDO, Andrade-da-Costa BLDS. Topographic specializations of catecholaminergic cells and ganglion cells and distribution of calcium binding proteins in the crepuscular rock cavy (Kerodon rupestris) retina. J Chem Neuroanat 2017; 90:57-69. [PMID: 29277705 DOI: 10.1016/j.jchemneu.2017.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/16/2023]
Abstract
The rock cavy (Kerodon rupestris) is a crepuscular Hystricomorpha rodent that has been used in comparative analysis of retinal targets, but its retinal organization remains to be investigated. In order to better characterize its visual system, the present study analyzed neurochemical features related to the topographic organization of catecholaminergic cells and ganglion cells, as well the distribution of calcium-binding proteins in the outer and inner retina. Retinal sections and/or wholemounts were processed using tyrosine hydroxylase (TH), GABA, calbindin, parvalbumin and calretinin immunohistochemistry or Nissl staining. Two types of TH-immunoreactive (TH-IR) cells were found which differ in soma size, dendritic arborization, intensity of TH immunoreactivity and stratification pattern in the inner plexiform layer. The topographic distribution of all TH-IR cells defines a visual streak along the horizontal meridian in the superior retina. The ganglion cells are also distributed in a visual streak and the visual acuity estimated considering their peak density is 4.13 cycles/degree. A subset of TH-IR cells express GABA or calbindin. Calretinin is abundant in most of retinal layers and coexists with calbindin in horizontal cells. Parvalbumin is less abundant and expressed by presumed amacrine cells in the INL and some ganglion cells in the GCL. The topographic distribution of TH-IR cells and ganglion cells in the rock cavy retina indicate a suitable adaptation for using a broad extension of its inferior visual field in aspects that involve resolution, adjustment to ambient light intensity and movement detection without specialized eye movements.
Collapse
Affiliation(s)
- Francisco Gilberto Oliveira
- Departamento de Ciências Biológicas, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri - URCA, Crato, CE, Brazil; Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Expedito Silva do Nascimento-Júnior
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Judney Cley Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Fausto Pierdoná Guzen
- Faculdade de Ciências da Saúde, Departamento de Ciências Biomédicas, Universidade do Estado do Rio Grande do Norte - UERN, Mossoró, RN, Brazil
| | - Jeferson de Souza Cavalcante
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil; Departamento de Fisiologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Joacil Germano Soares
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | | - Leandro Moura de Freitas
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | - Miriam Stela Maris de Oliveira Costa
- Departamento de Morfologia, Laboratório de Neuroanatomia, Centro de Biociências, Universidade Federal do Rio Grande do Norte - UFRN, Natal, RN, Brazil
| | | |
Collapse
|
5
|
Chandra AJ, Lee SCS, Grünert U. Thorny ganglion cells in marmoset retina: Morphological and neurochemical characterization with antibodies against calretinin. J Comp Neurol 2017; 525:3962-3974. [PMID: 28875500 DOI: 10.1002/cne.24319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/18/2017] [Accepted: 08/26/2017] [Indexed: 11/06/2022]
Abstract
In primates, over 17 morphological types of retinal ganglion cell have been distinguished by their dendritic morphology and stratification, but reliable markers for specific ganglion cell populations are still rare. The calcium binding protein calretinin is known to be expressed in the inner nuclear and the ganglion cell layer of marmoset retina, however, the specific cell type(s) expressing calretinin in the ganglion cell layer are yet to be determined. Here, we identified calretinin positive retinal ganglion cells in the common marmoset Callithrix jacchus. Double labeling with the ganglion cell marker RBPMS demonstrated that the large majority (80%) of the calretinin positive cells in the ganglion cell layer are ganglion cells, and 20% are displaced amacrine cells. The calretinin positive ganglion cells made up on average 12% of the total ganglion cell population outside of the foveal region and their proportion increased with eccentricity. Prelabeling with antibodies against calretinin and subsequent intracellular injection with DiI revealed that the large majority of the injected cells (n = 74) were either narrow thorny or broad thorny ganglion cells, 14 cells were displaced amacrine cells. Narrow thorny cells were further distinguished into outer and inner stratifying cells. In addition, weakly labeled cells with a large soma were identified as parasol ganglion cells. Our results show that three types of thorny ganglion cells in marmoset retina can be identified with antibodies against calretinin. Our findings are also consistent with the idea that the proportion of wide-field ganglion cell types increases in peripheral retina.
Collapse
Affiliation(s)
- Ashleigh J Chandra
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Sammy C S Lee
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia
| | - Ulrike Grünert
- Department of Clinical Ophthalmology, Save Sight Institute, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, New South Wales, 2000, Australia.,Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, 2000, Australia
| |
Collapse
|
6
|
Gu YN, Lee ES, Jeon CJ. Types and density of calbindin D28k-immunoreactive ganglion cells in mouse retina. Exp Eye Res 2016; 145:327-336. [PMID: 26874036 DOI: 10.1016/j.exer.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Single-cell injection after immunocytochemistry is a reliable technique for classifying neurons by their morphological structure and their expression of a particular protein. The aim of the present study was to classify the morphological types of calbindin D28k-immunoreactive retinal ganglion cells in the mouse using single-cell injection after immunocytochemistry, to estimate the density of calbindin D28k-immunoreactive retinal ganglion cells in the mouse retina. Calbindin D28k is an important calcium-binding protein that is widely expressed in the central nervous system. Calbindin D28k-immunoreactive retinal ganglion cells were identified by immunocytochemistry and then iontophoretically injected with the lipophilic dye, DiI. Subsequently, the injected cells were imaged by confocal microscopy to classify calbindin D28k-immunoreactive retinal ganglion cells based on their dendritic ramification depth within the inner plexiform layer, field size, and morphology. The cells were heterogeneous in morphology: monostratified or bistratified, with small to large dendritic field size and sparse to dense dendritic arbors. At least 10 different morphological types (CB1-CB10) of calbindin D28k-immunoreactive retinal ganglion cells were found in the mouse retina. The density of each cell type was quite variable (1.98-23.76%). The density of calbindin D28k-immunoreactive cells in the ganglion cell layer of the mouse retina was 562 cells/mm(2), 8.18% of calbindin D28k-immunoreactive cells were axon-less displaced amacrine cells, 91.82% were retinal ganglion cells, and approximately 18.17% of mouse retinal ganglion cells expressed calbindin D28k. The selective expression of calbindin D28k in cells with different morphologies may provide important data for further physiological studies of the mouse retina.
Collapse
Affiliation(s)
- Ya-Nan Gu
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea.
| |
Collapse
|
7
|
Lee SCS, Weltzien F, Madigan MC, Martin PR, Grünert U. Identification of AⅡ amacrine, displaced amacrine, and bistratified ganglion cell types in human retina with antibodies against calretinin. J Comp Neurol 2015; 524:39-53. [PMID: 26053777 DOI: 10.1002/cne.23821] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022]
Abstract
Antibodies against calretinin are markers for one type of rod pathway interneuron (AⅡ amacrine cell) in the retina of some but not all mammalian species. The AⅡ cells play a crucial role in night-time (scotopic) vision and have been proposed as a target for optogenetic restoration of vision in retinal disease. In the present study we aimed to characterize the AⅡ cells in human retina. Postmortem human donor eyes were obtained with ethical approval and processed for calretinin immunofluorescence. Calretinin-positive somas in the inner nuclear and the ganglion cell layer were filled with the lipophilic dye DiI. The large majority (over 80%) of calretinin-immunoreactive cells is located in the inner nuclear layer, is immunopositive for glycine transporter 1, and shows the typical morphology of AⅡ amacrine cells. In addition, a small proportion of calretinin-positive cells in the inner nuclear layer and in the ganglion cell layer is glutamic acid decarboxylase-positive and shows the morphology of widefield amacrine cells (stellate, semilunar, and thorny amacrine cells). About half of the calretinin cells in the ganglion cell layer are bistratified ganglion cells resembling the small bistratified (presumed blue-ON/yellow-OFF) and the G17 ganglion cell previously described in primates. We conclude that in human retina, antibodies against calretinin can be used to identify AⅡ amacrine cells in the inner nuclear layer as well as widefield amacrine and small bistratified ganglion cells in the ganglion cell layer.
Collapse
Affiliation(s)
- Sammy C S Lee
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Felix Weltzien
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Paul R Martin
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Australian Research Council Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of Sydney, Australia
| |
Collapse
|
8
|
Jeong MJ, Jeon CJ. Localization of melanopsin-immunoreactive cells in the Mongolian gerbil retina. Neurosci Res 2015; 100:6-16. [PMID: 26083722 DOI: 10.1016/j.neures.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/19/2015] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian rhythm and pupil responses. The purpose of this study was to reveal the organization of melanopsin-immunoreactive (IR) neurons in the Mongolian gerbil retina using immunocytochemistry. Melanopsin-IR cells were primarily located in the ganglion cell layer (GCL; M1c; 75.15%). Many melanopsin-IR cells were also observed in the inner nuclear layer (INL; M1d; 22.28%). The M1c and M1d cell types extended their dendritic processes into the OFF sublayer of the inner plexiform layer (IPL). We rarely observed bistratified cells (M3; 2.56%) with dendrites in both the ON and OFF sublayers of the IPL. Surprisingly, we did not observe M2 cells which are well observed in other rodents. Melanopsin-IR cell somas were small to medium in size and had large dendritic fields. They had 2-5 primary dendrites that branched sparingly and had varicosities. Melanopsin-IR cell density was very low: they comprised 0.50% of the total ganglion cell population. Moreover, none of the melanopsin-IR cells expressed calbindin-D28K, calretinin, or parvalbumin. These results suggest that in the Mongolian gerbil, melanopsin-IR cells are expressed in a very small RGC subpopulation, and are independent of calcium-binding proteins-containing RGCs.
Collapse
Affiliation(s)
- Mi-Jin Jeong
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Daegu 702-701, South Korea.
| |
Collapse
|