1
|
Devesa J, Fresco C, Devesa A, Rodríguez A, de Souza D. Positive Evolution of a Child Suffering from Caudal Regression Syndrome and Agenesia Sacra After Treatment with Growth Hormone and Rehabilitation. Int J Mol Sci 2025; 26:1627. [PMID: 40004100 PMCID: PMC11855933 DOI: 10.3390/ijms26041627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Caudal regression syndrome (CRS) is a malformation that occurs during the fetal period, and is mainly characterized by the incomplete development of the spinal cord (SC), which is often accompanied by other developmental abnormalities. The present study was performed in a 2-month-old boy with CRS, born to a type I diabetic mother, who presented interruption of the SC at the L5-L4 level, pelvic dislocation, sacral agenesis, hypoplastic femurs, lack of innervation of the lower limbs (spastic paraplegia), and a neurogenic bladder and bowel. Given the positive results we obtained in a previous study in a similar case, this patient was treated with GH (0.04 mg/kg/day, 5 days/week), melatonin (20 mg/day), and rehabilitation. The treatment only lasted 18 months, due to family problems. Blood tests and physical examinations were performed every 3 months initially and then every 6 months. Interestingly, despite GH administration, the child presented low plasma glucose and IGF-I values, which did not increase throughout the treatment, although there was significant growth of the patient, also indicated by elevated plasma alkaline phosphatase values. At the end of treatment, the gross motor function test (GMFM)-88 score increased from 0.93 (on admission) to 47.94. Sensory responses appeared in the lower limbs, and the patient was able to move his leg muscles in all directions and control his sphincters. Ten months after discharge, the patient was able to walk only with the aid of a back walker. GH treatment did not produce any adverse effects. In summary, despite the short duration of treatment, GH plus rehabilitation has been useful in innervating distal areas below the level of the incomplete spinal cord in CRS. GH likely acted on ependymal neural stem cells, as the hormone does on neurogenic niches in the brain, and rehabilitation helped achieve near-full functionality.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, 15886 Teo, Spain
| | - Carla Fresco
- Physiotherapy, Medical Center Foltra, 15886 Teo, Spain;
| | - Ana Devesa
- BMRT, Medical Center Foltra, 15886 Teo, Spain;
| | - Ana Rodríguez
- Hydrotherapy and Physiotherapy, Medical Center Foltra, 15886 Teo, Spain;
| | | |
Collapse
|
2
|
González-Fernández C, González P, Maqueda A, Pérez V, Rodríguez FJ. Enhancing motor functional recovery in spinal cord injury through pharmacological inhibition of Dickkopf-1 with BHQ880 antibody. Biomed Pharmacother 2024; 176:116792. [PMID: 38795645 DOI: 10.1016/j.biopha.2024.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Mounting experimental evidence has underscored the remarkable role played by the Wnt family of proteins in the spinal cord functioning and therapeutic potential in spinal cord injury (SCI). We aim to provide a therapeutic prospect associated with the modulation of canonical Wnt signaling, examining the spatio-temporal expression pattern of Dickkopf-1 (Dkk1) and its neutralization after SCI. We employ an intraparenchymal injection of the clinically validated Dkk1-blocking antibody, BHQ880, to elucidate its effects in SCI. METHODS A rat model of contusion SCI was used. Histological analyses were performed, wherein Dkk1 protein was sought, and ELISA analyses were employed for Dkk1 detection in cerebrospinal fluid and serum. To ascertain the BHQ880 therapeutic effect, rats were subjected to SCI and then injected with the antibody in the lesion epicenter 24 hours post-injury (hpi). Subsequent evaluation of motor functional recovery extended up to 56 days post-injury (dpi). qRT-PCR and histological analyses were conducted. RESULTS We demonstrate the presence of Dkk1 in the healthy rat spinal cord, with pronounced alterations observed following injury, primarily concentrated in the epicenter regions. Notably, a significative upregulation of Dkk1 was detected at 24 hpi, peaking at 3 dpi and remaining elevated until 42 dpi. Moreover, we revealed that early administration of BHQ880 considerably improved motor functional recovery, promoted preservation of myelinated tissue, and reduced astroglial and microglia/macrophage reactivity. Furthermore, there was a decrease in the acute expression of different inflammatory genes. CONCLUSIONS Collectively, our findings highlight the therapeutic potential of BHQ880 treatment in the context of SCI.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| | - Pau González
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Alfredo Maqueda
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Virginia Pérez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Fundación Hospital Nacional de Parapléjicos Para la Investigación y la Integración, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain; Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, SESCAM, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), Carretera Finca la Peraleda, s/n, Toledo 45071, Spain.
| |
Collapse
|
3
|
Chen J, Fujita N, Takeda T, Hanyu W, Takatani H, Nakagawa T, Nishimura R. Canine bone marrow peri-adipocyte cells could therapeutically benefit acute spinal cord injury through migration and secretion of hepatocyte growth factor to inflammatory milieu. Exp Anim 2023; 72:19-29. [PMID: 35965078 PMCID: PMC9978132 DOI: 10.1538/expanim.22-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Spinal cord injury (SCI) is a common neurological disorder in dogs. A secondary injury that occurs in the acute phase causes expansion of inflammation, resulting in lesion extension and further loss of function. Mesenchymal stem cells (MSCs) have trophic effects and the ability to migrate toward injured tissues; therefore, MSC-based therapy is considered promising for the treatment of canine SCI. We recently reported that bone marrow peri-adipocyte cells (BM-PACs) can be obtained from canine bone marrow and have stem cell potential superior to that of conventional bone marrow MSCs (BMMSCs). However, their therapeutic potential for SCI have been still unknow. Here, we first evaluated the ability of BM-PACs to secrete hepatocyte growth factor (HGF) and their migration ability toward inflammatory milieu in vitro. BM-PACs can secrete HGF in response to pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and IL-1β, and exhibit migration ability toward these cytokines. Next, BM-PACs were intravenously administered into nude mice with acute SCI to analyze the homing ability and therapeutic effects of HGF secreted by BM-PACs. BM-PACs homed to the injured spinal cord, where the HGF expression level increased 7 days after administration. Intravenous administration of BM-PACs induced functional recovery and pathological improvement, indicated by less demyelinating area, more preserved axons, and less glial scar formation compared with the mice only received vehicle. These findings suggest that the intravenous administration of BM-PACs can be a novel therapeutic intervention for acute canine SCI.
Collapse
Affiliation(s)
- Junyan Chen
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Tae Takeda
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Wataru Hanyu
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Hirohide Takatani
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–0032, Japan
| |
Collapse
|
4
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, Rodríguez FJ. Frizzled 1 and Wnt1 as new potential therapeutic targets in the traumatically injured spinal cord. Cell Mol Life Sci 2020; 77:4631-4662. [PMID: 31900623 PMCID: PMC11104978 DOI: 10.1007/s00018-019-03427-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022]
Abstract
Despite the experimental evidence pointing to a significant role of the Wnt family of proteins in physiological and pathological rodent spinal cord functioning, its potential relevance in the healthy and traumatically injured human spinal cord as well as its therapeutic potential in spinal cord injury (SCI) are still poorly understood. To get further insight into these interesting issues, we first demonstrated by quantitative Real-Time PCR and simple immunohistochemistry that detectable mRNA expression of most Wnt components, as well as protein expression of all known Wnt receptors, can be found in the healthy human spinal cord, supporting its potential involvement in human spinal cord physiology. Moreover, evaluation of Frizzled (Fz) 1 expression by double immunohistochemistry showed that its spatio-temporal and cellular expression pattern in the traumatically injured human spinal cord is equivalent to that observed in a clinically relevant model of rat SCI and suggests its potential involvement in SCI progression/outcome. Accordingly, we found that long-term lentiviral-mediated overexpression of the Fz1 ligand Wnt1 after rat SCI improves motor functional recovery, increases myelin preservation and neuronal survival, and reduces early astroglial reactivity and NG2+ cell accumulation, highlighting the therapeutic potential of Wnt1 in this neuropathological situation.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de La Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | |
Collapse
|
5
|
González P, González-Fernández C, Campos-Martín Y, Mollejo M, Carballosa-Gautam M, Marcillo A, Norenberg M, García-Ovejero D, Rodríguez FJ. Spatio-temporal and Cellular Expression Patterns of PTK7 in the Healthy and Traumatically Injured Rat and Human Spinal Cord. Cell Mol Neurobiol 2020; 40:1087-1103. [PMID: 31974907 PMCID: PMC11448799 DOI: 10.1007/s10571-020-00794-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Despite the emerging role of protein tyrosine kinase 7 (PTK7) as a Wnt co-receptor and the relevant functions of the Wnt family of proteins in spinal cord injury (SCI), the potential involvement of PTK7 in SCI is currently unknown. As a first essential step to shed light on this issue, we evaluated the spatio-temporal and cellular expression patterns of PTK7 in healthy and traumatically injured rat and human spinal cords. In the uninjured rats, PTK7 expression was observed in the ependymal epithelium, endothelial cells, meningeal fibronectin-expressing cells, and specific axonal tracts, but not in microglia, astrocytes, neurons, oligodendrocytes, or NG2+ cells. After rat SCI, the mRNA expression of PTK7 was significantly increased, while its spatio-temporal and cellular protein expression patterns also suffered evident changes in the injured region. Briefly, the expression of PTK7 in the affected areas was observed in axons, reactive astrocytes, NG2+ and fibronectin-expressing cells, and in a subpopulation of reactive microglia/macrophages and blood vessels. Finally, in both healthy and traumatically injured human spinal cords, PTK7 expression pattern was similar to that observed in the rat, although some specific differences were found. In conclusion, we demonstrate for the first time that PTK7 is constitutively expressed in the healthy adult rat and human spinal cord and that its expression pattern clearly varied after rat and human SCI which, to our knowledge, constitutes the first experimental evidence pointing to the potential involvement of this co-receptor in physiological and pathological spinal cord functioning.
Collapse
Affiliation(s)
- Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain.
| | | | | | - Manuela Mollejo
- Department of Pathology, Hospital Virgen de la Salud, Toledo, Spain
| | | | - Alexander Marcillo
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | - Michael Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, USA
| | | | | |
Collapse
|
6
|
González-Fernández C, Gonzalez P, Andres-Benito P, Ferrer I, Rodríguez FJ. Wnt Signaling Alterations in the Human Spinal Cord of Amyotrophic Lateral Sclerosis Cases: Spotlight on Fz2 and Wnt5a. Mol Neurobiol 2019; 56:6777-6791. [PMID: 30924074 DOI: 10.1007/s12035-019-1547-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with no cure, and elucidation of the mechanisms mediating neuronal death in this neuropathology is crucial to develop effective treatments. It has recently been demonstrated in animal models that the Wnt family of proteins is involved in this neuropathology, although its potential involvement in case of humans is almost unknown. We analyzed the expression of Wnt signaling components in healthy and ALS human spinal cords by quantitative RT-PCR, and we found that most Wnt ligands, modulators, receptors, and co-receptors were expressed in healthy controls. Moreover, we observed clear alterations in the mRNA expression of different components of this family of proteins in human spinal cord tissue from ALS cases. Specifically, we detected a significant increase in the mRNA levels of Wnt3, Wnt4, Fz2, and Fz8, together with several non-significant increases in the mRNA expression of other genes such as Wnt2b, Wnt5a, Fz3, Lrp5, and sFRP3. Based on these observations and on previous reports of studies performed in animal models, we evaluated with immunohistochemistry the protein expression patterns of Fz2 and Fz5 receptors and their main ligand Wnt5a in control samples and ALS cases. No substantial changes were observed in Fz5 protein expression pattern in ALS samples. However, we detected an increase in the amount of Fz2+ astrocytes in the borderline between gray and white matter at the ventral horn in ALS samples. Finally, Wnt5a expression was observed in neurons and astrocytes in both control and ALS samples, although Wnt5a immunolabeling in astroglial cells was significantly increased in ALS spinal cords in the same region where changes in Fz2 were observed. Altogether, these observations strongly suggest that the Wnt family of proteins, and more specifically Fz2 and Wnt5a, might be involved in human ALS pathology.
Collapse
Affiliation(s)
- Carlos González-Fernández
- Molecular Neurology Group, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071, Toledo, Spain
| | - Pau Gonzalez
- Molecular Neurology Group, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071, Toledo, Spain
| | - Pol Andres-Benito
- Department of Pathology and Experimental Therapeutics, Service of Pathologic Anatomy, IDIBELL-Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Service of Pathologic Anatomy, IDIBELL-Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Francisco Javier Rodríguez
- Molecular Neurology Group, Hospital Nacional de Parapléjicos (HNP), Finca la Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
7
|
Castany S, Gris G, Vela JM, Verdú E, Boadas-Vaello P. Critical role of sigma-1 receptors in central neuropathic pain-related behaviours after mild spinal cord injury in mice. Sci Rep 2018; 8:3873. [PMID: 29497125 PMCID: PMC5832850 DOI: 10.1038/s41598-018-22217-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/19/2018] [Indexed: 02/06/2023] Open
Abstract
Sigma-1 receptor (σ1R) knockout (KO) CD1 mice, generated by homologous recombination, and separate pharmacological studies in wild type (WT) mice were done to investigate the role of this receptor in the development of pain-related behaviours (thermal hyperalgesia and mechanical allodynia) in mice after spinal cord contusion injury (SCI) - a model of central neuropathic pain. The modulatory effect of σ1R KO on extracellular mediators and signalling pathways in the spinal cord was also investigated. In particular, changes in the expression of inflammatory cytokines (tumour necrosis factor TNF-α, interleukin IL-1β) and both the expression and activation (phosphorylation) of the N-methyl-D-aspartate receptor subunit 2B (NR2B-NMDA) and extracellular signal-regulated kinases (ERK1/2) were analysed. Compared with WT mice, both mechanical and thermal hypersensitivity were attenuated in σ1R KO mice following SCI. Accordingly, treatment of WT mice with the σ1R antagonist MR309 (previously developed as E-52862; S1RA) after SCI exerted antinociceptive effects (i.e. reduced mechanical allodynia and thermal hyperalgesia). Attenuated nociceptive responses in σ1R KO were accompanied by reduced expression of TNF- α and IL-1β as well as decreased activation/phosphorylation of NR2B-NMDA receptors and ERK1/2. These findings suggest that σ1R may modulate central neuropathic pain and point to regulation of sensitization-related phenomena as a possible mechanism.
Collapse
Affiliation(s)
- Sílvia Castany
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Georgia Gris
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - José Miguel Vela
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Barcelona, Catalonia, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain.
| | - Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Universitat de Girona (UdG), Girona, Spain.
| |
Collapse
|
8
|
Wang JY, Gao YH, Qiao LN, Zhang JL, Duan-mu CL, Yan YX, Chen SP, Liu JL. Repeated electroacupuncture treatment attenuated hyperalgesia through suppression of spinal glial activation in chronic neuropathic pain rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:74. [PMID: 29466978 PMCID: PMC5822602 DOI: 10.1186/s12906-018-2134-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/09/2018] [Indexed: 02/14/2023]
Abstract
Background Cumulated evidence reveals that glial cells in the spinal cord play an important role in the development of chronic neuropathic pain and are also complicated in the analgesic effect of EA intervention. But the roles of microgliacytes and astrocytes of spinal cord in the process of EA analgesia remain unknown. Methods A total of 120 male Wistar rats were used in the present study. The neuropathic pain model was established by chronic constrictive injury (CCI) of the sciatic nerve. The rats were randomly divided into sham group, CCI group, and sham CCI + EA group, and CCI + EA group. EA was applied to bilateral Zusanli (ST36)-Yanlingquan (GB34). The mechanical (both time and force responses) and thermal pain thresholds (PTs) of the bilateral hind-paws were measured. The number of microgliacytes and activity of astrocytes in the dorsal horns (DHs) of lumbar spinal cord (L4–5) were examined by immunofluorescence staining, and the expression of glial fibrillary acidic protein (GFAP) protein was detected by western blot. Results Following CCI, both mechanical and thermal PTs of the ipsilateral hind-paw were significantly decreased beginning from the 3rd day after surgery (P < 0.05), and the mechanical PT of the contralateral hind-paw was considerably decreased from the 6th day on after surgery (P < 0.05). CCI also significantly upregulated the number of Iba-1 labeled microgliacytes and the fluorescence intensity of glial fibrillary acidic protein (GFAP) -labeled astrocyte in the superficial laminae of DHs on bilateral sides (P < 0.05). After repeated EA, the mechanical and thermal PTs at bilateral hind-paws were significantly relieved (P < 0.05). The increased of number of microgliacytes was markedly suppressed by 2 days’ EA intervention, and the average fluorescence intensity was suppressed by 2 weeks’ EA. The expression of GFAP protein were down-regulated by 1 and 2 weeks’ EA treatment, respectively (P < 0.05). Conclusions Repeated EA can relieve neuropathic pain and mirror-image pain in chronic neuropathic pain rats, which is probably associated with its effect in downregulating glial cell activation of the lumbar spinal cord, the microgliacyte first and astrocyte later.
Collapse
|
9
|
Song HL, Zhang X, Wang WZ, Liu RH, Zhao K, Liu MY, Gong WM, Ning B. Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway. Neural Regen Res 2018; 13:128-134. [PMID: 29451217 PMCID: PMC5840978 DOI: 10.4103/1673-5374.217349] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen's method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.
Collapse
Affiliation(s)
- Hong-Liang Song
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiang Zhang
- Hospital Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Wen-Zhao Wang
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Rong-Han Liu
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Kai Zhao
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Ming-Yuan Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Wei-Ming Gong
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Bin Ning
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
10
|
Teh DBL, Prasad A, Jiang W, Ariffin MZ, Khanna S, Belorkar A, Wong L, Liu X, All AH. Transcriptome Analysis Reveals Neuroprotective aspects of Human Reactive Astrocytes induced by Interleukin 1β. Sci Rep 2017; 7:13988. [PMID: 29070875 PMCID: PMC5656635 DOI: 10.1038/s41598-017-13174-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Reactive astrogliosis is a critical process in neuropathological conditions and neurotrauma. Although it has been suggested that it confers neuroprotective effects, the exact genomic mechanism has not been explored. The prevailing dogma of the role of astrogliosis in inhibition of axonal regeneration has been challenged by recent findings in rodent model’s spinal cord injury, demonstrating its neuroprotection and axonal regeneration properties. We examined whether their neuroprotective and axonal regeneration potentials can be identify in human spinal cord reactive astrocytes in vitro. Here, reactive astrogliosis was induced with IL1β. Within 24 hours of IL1β induction, astrocytes acquired reactive characteristics. Transcriptome analysis of over 40000 transcripts of genes and analysis with PFSnet subnetwork revealed upregulation of chemokines and axonal permissive factors including FGF2, BDNF, and NGF. In addition, most genes regulating axonal inhibitory molecules, including ROBO1 and ROBO2 were downregulated. There was no increase in the gene expression of “Chondroitin Sulfate Proteoglycans” (CSPGs’) clusters. This suggests that reactive astrocytes may not be the main CSPG contributory factor in glial scar. PFSnet analysis also indicated an upregulation of “Axonal Guidance Signaling” pathway. Our result suggests that human spinal cord reactive astrocytes is potentially neuroprotective at an early onset of reactive astrogliosis.
Collapse
Affiliation(s)
- Daniel Boon Loong Teh
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore
| | - Ankshita Prasad
- Department of Biomedical Engineering, National University of Singapore, E4, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Wenxuan Jiang
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mohd Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Abha Belorkar
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Limsoon Wong
- Department of Computer Science, National University of Singapore, 13 Computing Drive, Singapore, 117417, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| | - Angelo H All
- Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore, 28 Medical Drive, 5-COR, Singapore, 117456, Singapore. .,Department of Biomedical Engineering and Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA. .,Department of Neurology, Johns Hopkins School of Medicine, 701C Rutland Avenue 720, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Kozareva DA, Hueston CM, Ó'Léime CS, Crotty S, Dockery P, Cryan JF, Nolan YM. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus. J Neuroimmunol 2017; 331:87-96. [PMID: 28844503 DOI: 10.1016/j.jneuroim.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Suzanne Crotty
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Peter Dockery
- Department of Anatomy, National University of Ireland, Galway, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
12
|
Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome. Int J Mol Sci 2017; 18:ijms18010230. [PMID: 28124993 PMCID: PMC5297859 DOI: 10.3390/ijms18010230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/02/2023] Open
Abstract
Caudal regression syndrome (CRS) is a malformation occurring during the fetal period and mainly characterized by an incomplete development of the spinal cord (SC), which is often accompanied by other developmental anomalies. We studied a 9-month old child with CRS who presented interruption of the SC at the L2–L3 level, sacral agenesis, a lack of innervation of the inferior limbs (flaccid paraplegia), and neurogenic bladder and bowel. Given the known positive effects of growth hormone (GH) on neural stem cells (NSCs), we treated him with GH and rehabilitation, trying to induce recovery from the aforementioned sequelae. The Gross Motor Function Test (GMFM)-88 test score was 12.31%. After a blood analysis, GH treatment (0.3 mg/day, 5 days/week, during 3 months and then 15 days without GH) and rehabilitation commenced. This protocol was followed for 5 years, the last GH dose being 1 mg/day. Blood analysis and physical exams were performed every 3 months initially and then every 6 months. Six months after commencing the treatment the GMFM-88 score increased to 39.48%. Responses to sensitive stimuli appeared in most of the territories explored; 18 months later sensitive innervation was complete and the patient moved all muscles over the knees and controlled his sphincters. Three years later he began to walk with crutches, there was plantar flexion, and the GMFM-88 score was 78.48%. In summary, GH plus rehabilitation may be useful for innervating distal areas below the level of the incomplete spinal cord in CRS. It is likely that GH acted on the ependymal SC NSCs, as the hormone does in the neurogenic niches of the brain, and rehabilitation helped to achieve practically full functionality.
Collapse
|