1
|
Montanari A, Caforio P, Paparella A, Casieri P, Nuzzi MC, Antonucci MF, Catacchio CR, Tampoia M, Gentile M, Bucci R, Cecinati V, Cellamare A, Antonacci F. Clinical and genomic profiling of a patient with a de novo ring chromosome 18: a case report highlighting autoimmune and neurological implications. Mol Cytogenet 2024; 17:31. [PMID: 39639321 PMCID: PMC11619688 DOI: 10.1186/s13039-024-00700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Ring chromosome 18 (r(18)) is a rare chromosomal abnormality characterized by the circular rearrangement of chromosome 18, which presents significant challenges in genotype-phenotype correlations due to variability in deletions across the 18p and 18q arms. We report the case of a pediatric patient with a de novo ring chromosome 18, diagnosed by karyotype analysis and confirmed by high-resolution SNP arrays. The patient exhibited pathogenic copy number variants (CNVs) in the 18p11.32p11.22 and 18q23 regions, involving 36 and 10 OMIM genes, respectively. Clinically, the patient presented with hypothyroidism secondary to autoimmune thyroiditis, autoimmune hepatitis type II, and genetic predisposition to celiac disease and insulin-dependent diabetes mellitus (IDDM) along with notable dysmorphic features. The 18q microdeletion encompasses the MBP gene, involved in the development and functionality of the nervous system, as supported by hypotonia and gliosis shown by the MRI. This case highlights the complex interplay between genetic imbalances on chromosome 18 and autoimmune phenotypes, emphasizing the need for ongoing research to elucidate underlying mechanisms and optimize clinical management for individuals with r(18).
Collapse
Affiliation(s)
- Annalaura Montanari
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Caforio
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy
| | - Annalisa Paparella
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Paola Casieri
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy
| | - Maria Cristina Nuzzi
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy
| | - Maria Fatima Antonucci
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy
| | - Claudia Rita Catacchio
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | - Marilina Tampoia
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy
| | - Mattia Gentile
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere - ASL Bari, Bari, Italy
| | - Roberta Bucci
- U.O.C. Laboratorio di Genetica Medica, PO Di Venere - ASL Bari, Bari, Italy
| | - Valerio Cecinati
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy
| | - Angelo Cellamare
- U.O.C Patologia Clinica - Sezione di Genetica Medica, Ospedale SS. Annunziata Taranto - ASL Taranto, Taranto, Italy.
| | - Francesca Antonacci
- Dipartimento di Bioscienze, Biotecnologie e Ambiente, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
2
|
Oliveira Volpe CM, Vaz T, Rocha-Silva F, Villar-Delfino PH, Nogueira-Machado JA. Is Galanin a Promising Therapeutic Resource for Neural and Nonneural Diseases? Curr Drug Targets 2021; 21:922-929. [PMID: 32096740 DOI: 10.2174/1389450121666200225112055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Galanin (GAL) constitutes a family of neuropeptides composed of four peptides: (i) galanin (GAL), (ii) galanin-message associated peptide (GAMP), (iii) galanin-like peptide (GALP), and (iv) alarin. GAL contains 29/30 amino acids, and its biological action occurs through the interactions with its various receptors (GALR1, GALR2, and GALR3). The neuropeptide GAL regulates several physiological and pathophysiological functions in the central nervous system, the peripheral nervous system, and the peripheral organs. GAL is secreted mainly by oligodendrocytes, astrocytes, and the gastrointestinal tract, and its effect depends on the interaction with its different receptors. These receptors are expressed mainly in the central, peripheral nervous systems and the intestines. OBJECTIVE The present review evaluates the role of GAL family in inflammatory diseases. An overview is given of the signaling and pharmacological effects due to the interaction between GAL and GALR in different cell types. The potential use of GAL as a therapeutic resource is critically discussed. CONCLUSION GAL is suggested to have an anti-inflammatory function in some situations and a proinflammatory function in others. The literature on GAL is controversial and currently not conclusive. This could be due to the complexity of the metabolic network signaling induced by the interactions between GAL and GALR. In the next future, GAL might be a promising therapeutic resource for several diseases, but its practical use for disease control is presently not advisable.
Collapse
Affiliation(s)
- Caroline Maria Oliveira Volpe
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - Tatiana Vaz
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - Fabiana Rocha-Silva
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - Pedro Henrique Villar-Delfino
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| | - José Augusto Nogueira-Machado
- Nucleo de Pos-Graduacao e Pesquisa, Hospital Santa Casa de Belo Horizonte, Rua Domingos Vieira 590, Santa Efigenia, 30150-240, Belo Horizonte, MG, Brazil
| |
Collapse
|
3
|
The effect of galanin gene polymorphism rs948854 on the severity of multiple sclerosis: A significant association with the age of onset. Mult Scler Relat Disord 2020; 37:101439. [DOI: 10.1016/j.msard.2019.101439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 01/15/2023]
|
4
|
Lammert DB, Miedema D, Ochotorena J, Dosa N, Petropoulou K, Lebel RR, Sakonju A. Central and peripheral dysmyelination in a 3-year-old girl with ring chromosome 18. Clin Case Rep 2019; 7:2087-2091. [PMID: 31788257 PMCID: PMC6878035 DOI: 10.1002/ccr3.2426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022] Open
Abstract
Myelin basic protein (MBP) contributes to peripheral and central nervous system myelin. Developmental myelinopathies exist on a clinical spectrum, but MBP is not included on leukodystrophy or CMT gene panels. This ring chromosome 18 case presents serial MRI and EMG/NCS, shedding light on the early clinical course of the disorder.
Collapse
Affiliation(s)
- Dawn Brianna Lammert
- Department of PediatricsJohns Hopkins HospitalBaltimoreMaryland
- Present address:
Department of PediatricsJohns Hopkins HospitalBaltimoreMaryland
| | | | - Josiree Ochotorena
- Child and Adolescent Health AssociatesSamaritan Health SystemsWatertownNew York
| | - Nienke Dosa
- Center for Development, Behavior, and GeneticsSUNY Upstate Medical UniversitySyracuseNew York
| | | | - Roger Robert Lebel
- Center for Development, Behavior, and GeneticsSUNY Upstate Medical UniversitySyracuseNew York
| | - Ai Sakonju
- Department of NeurologySUNY Upstate Medical UniversitySyracuseNew York
| |
Collapse
|
5
|
A non-functional galanin receptor-2 in a multiple sclerosis patient. THE PHARMACOGENOMICS JOURNAL 2018; 19:72-82. [PMID: 30131588 DOI: 10.1038/s41397-018-0032-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/26/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022]
Abstract
Multiple Sclerosis (MS) is an inflammatory neurodegenerative disease that affects approximately 2.5 million people globally. Even though the etiology of MS remains unknown, it is accepted that it involves a combination of genetic alterations and environmental factors. Here, after performing whole exome sequencing, we found a MS patient harboring a rare and homozygous single nucleotide variant (SNV; rs61745847) of the G-protein coupled receptor (GPCR) galanin-receptor 2 (GALR2) that alters an important amino acid in the TM6 molecular toggle switch region (W249L). Nuclear magnetic resonance imaging showed that the hypothalamus (an area rich in GALR2) of this patient exhibited an important volumetric reduction leading to an enlarged third ventricle. Ex vivo experiments with patient-derived blood cells (AKT phosphorylation), as well as studies in recombinant cell lines expressing the human GALR2 (calcium mobilization and NFAT mediated gene transcription), showed that galanin (GAL) was unable to stimulate cell signaling in cells expressing the variant GALR2 allele. Live cell confocal microscopy showed that the GALR2 mutant receptor was primarily localized to intracellular endosomes. We conclude that the W249L SNV is likely to abrogate GAL-mediated signaling through GALR2 due to the spontaneous internalization of this receptor in this patient. Although this homozygous SNV was rare in our MS cohort (1:262 cases), our findings raise the potential importance of impaired neuroregenerative pathways in the pathogenesis of MS, warrant future studies into the relevance of the GAL/GALR2 axis in MS and further suggest the activation of GALR2 as a potential therapeutic route for this disease.
Collapse
|
6
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
7
|
Guerrero-García JDJ, Godínez-Rubí M, Ortuño-Sahagún D. Multiple Sclerosis in Search for Biomarkers: Gender as a Variable in the Equation. ACTA ACUST UNITED AC 2018. [DOI: 10.3233/nib-170126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Marisol Godínez-Rubí
- Laboratorio de Investigación en Patología, Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Daniel Ortuño-Sahagún
- Laboratorio de Neuroinmunobiología Molecular, Instituto de Investigación en Ciencias Biomédicas (IICB), C.U.C.S., Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|