1
|
Rehn S, Raymond JS, Boakes RA, Kendig MD, Leenaars CHC. Behavioural and physiological effects of binge eating: A systematic review and meta-analysis of animal models. Neurosci Biobehav Rev 2025; 173:106135. [PMID: 40222574 DOI: 10.1016/j.neubiorev.2025.106135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Binge eating is defined as eating abnormally large amounts in a brief period of time. Many animal studies have examined the behavioural and physiological effects of binge eating of high-fat, high-sugar foods to model the consequences of human binge eating. The present systematic review of 199 rodent studies sought to identify the behavioural and physiological consequences of binge eating and determine whether changes were specific to binge eating or to general effects of exposure to a palatable diet. A meta-analysis of 18 rodent studies revealed that binge eating produces greater anxiety-like behaviour on the Elevated Plus-Maze with a small effect size and significant funnel plot asymmetry, suggesting that the true effect size is overestimated. A history of binge-like access generally increases progressive ratio breakpoint for the binged food, without altering 'liking' as measured by lick microstructure, suggesting that dissociable effects on 'wanting' but not 'liking' accompany binge eating behaviour and contribute to its persistence. Binge eating appears to enhance compulsive food-seeking behaviour and prevent stress-induced reductions in intake but does not appear to alter depression-like behaviour or locomotor activity. Notably, binge eating may produce comparable metabolic impairments to those observed after extended continuous exposure to a palatable diet despite no overall effects on body weight outcomes in most studies.
Collapse
Affiliation(s)
- Simone Rehn
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Joel S Raymond
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, 94 Mallett Street, Camperdown, Sydney, NSW 2050, Australia; Department of Psychiatry and Brain Health Institute, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Robert A Boakes
- School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael D Kendig
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Cathalijn H C Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover 30625, Germany
| |
Collapse
|
2
|
McGraw JJ, Goldsmith RS, Cromwell HC. Altered reward sensitivity to sucrose outcomes prior to drug exposure in alcohol preferring rats. Pharmacol Biochem Behav 2024; 237:173724. [PMID: 38340990 DOI: 10.1016/j.pbb.2024.173724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Addiction involves key impairments in reward sensitivity (RS). The current study explored impaired RS to natural reward as a predisposing factor to addictive-like behavior. Alcohol preferring (P) rats are selectively bred based on significantly greater ethanol consumption and preference and offer the ability to inspect differences in subjects with a positive family history of addictive-like behavior. P rat's RS was compared to RS in the well-used Sprague-Dawley (SD) strain. To assess RS in a novel manner, instrumental incentive contrast, discrimination and consumption of sucrose solution were examined. Animals performed in a free operant situation for different sucrose concentration solutions using a block of 'mixed' trials with alternating outcome concentrations (e.g., 5 and 10 % sucrose) to change outcome value in a predictable manner. Animals also performed for reward in blocks of single outcome trials (5 or 10 or 20 or 40 % sucrose daily exposure) surrounding the mixed block. RS (e.g., reward discrimination and contrast effects between and within-sessions) was measured by changes in trials completed, instrumental response latency and consumption. P rats expressed an altered profile of RS with a greater tendency toward equivalent responding to different outcomes within the same session and an absence of incentive contrast from diverse reward comparisons. In contrast, SD animals expressed within-session reward discrimination and a subset of incentive contrast effects. These effects were moderated by food deprivation more consistently in SD compared to P rats. P rat alterations in processing natural rewards could predispose them to addictive-like behaviors including greater alcohol consumption and preference.
Collapse
Affiliation(s)
- Justin J McGraw
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, United States of America
| | - Robert S Goldsmith
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, United States of America
| | - Howard C Cromwell
- Department of Psychology and John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, United States of America.
| |
Collapse
|
3
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
4
|
Liu J, Dimitrov S, Sawangjit A, Born J, Ehrlich I, Hallschmid M. Short-term high-fat feeding induces a reversible net decrease in synaptic AMPA receptors in the hypothalamus. J Nutr Biochem 2021; 87:108516. [PMID: 33022406 DOI: 10.1016/j.jnutbio.2020.108516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/09/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
Dietary obesity compromises brain function, but the effects of high-fat food on synaptic transmission in hypothalamic networks, as well as their potential reversibility, are yet to be fully characterized. We investigated the impact of high-fat feeding on a hallmark of synaptic plasticity, i.e., the expression of glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) that contain the subunits GluA1 and GluA2, in hypothalamic and cortical synaptoneurosomes of male rats. In the main experiment (experiment 1), three days, but not one day of high-fat diet (HFD) decreased the levels of AMPAR GluA1 and GluA2 subunits, as well as GluA1 phosphorylation at Ser845, in hypothalamus but not cortex. In experiment 2, we compared the effects of the three-day HFD with those a three-day HFD followed by four recovery days of normal chow. This experiment corroborated the suppressive effect of high-fat feeding on hypothalamic but not cortical AMPAR GluA1, GluA2, and GluA1 phosphorylation at Ser845, and indicated that the effects are reversed by normal-chow feeding. High-fat feeding generally increased energy intake, body weight, and serum concentrations of insulin, leptin, free fatty acids, and corticosterone; only the three-day HFD increased wakefulness assessed via video analysis. Results indicate a reversible down-regulation of hypothalamic glutamatergic synaptic strength in response to short-term high-fat feeding. Preceding the manifestation of obesity, this rapid change in glutamatergic neurotransmission may underlie counter-regulatory efforts to prevent excess body weight gain, and therefore, represent a new target of interventions to improve metabolic control.
Collapse
Affiliation(s)
- Jianfeng Liu
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Stoyan Dimitrov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| | - Anuck Sawangjit
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Jan Born
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; Department of Neurobiology, Institute for Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Manfred Hallschmid
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University Tübingen (IDM), Tübingen, Germany.
| |
Collapse
|
5
|
Tapp DN, Zerkle HL, McMurray MS. Extent of food restriction affects probability but not delay-based decision-making. J Exp Anal Behav 2020; 114:179-192. [PMID: 32776567 DOI: 10.1002/jeab.624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 11/11/2022]
Abstract
Rodent studies on decision-making often use food rewards and food-restrict subjects in order to motivate performance. However, food restriction has widespread effects on brain and behavior, which depend on factors including extent of restriction and feeding schedule. These factors are well recognized for their effects on motivation, but may also cause effects on decision-making independent of motivation. We examined how the degree of weight-based food restriction in rats influenced decision-making on the probability and delay discounting tasks. Additionally, we examined how the method of food restriction (consistent amount vs. time constrained feeding schedule) influenced decision-making. Our results showed that the degree of weight-based food restriction significantly altered probability, but not delay discounting, and that these effects were not entirely explainable by differences in motivation. Additionally, the method of food restriction did not significantly influence discounting when animals were within the same range of weight-based restriction. Together, our findings suggest that the degree of food restriction may modulate the neural circuitry responsible for selective aspects of decision-making related to probability. Further, these data support the need for tight control and reporting of weight and feeding in studies relying on food restriction, and suggest that the effects of food restriction may be broader than previously considered.
Collapse
|
6
|
The Emergence of a Stable Neuronal Ensemble from a Wider Pool of Activated Neurons in the Dorsal Medial Prefrontal Cortex during Appetitive Learning in Mice. J Neurosci 2019; 40:395-410. [PMID: 31727794 DOI: 10.1523/jneurosci.1496-19.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/21/2022] Open
Abstract
Animals selectively respond to environmental cues associated with food reward to optimize nutrient intake. Such appetitive conditioned stimulus-unconditioned stimulus (CS-US) associations are thought to be encoded in select, stable neuronal populations or neuronal ensembles, which undergo physiological modifications during appetitive conditioning. These ensembles in the medial prefrontal cortex (mPFC) control well-established, cue-evoked food seeking, but the mechanisms involved in the genesis of these ensembles are unclear. Here, we used male Fos-GFP mice that express green fluorescent protein (GFP) in recently behaviorally activated neurons, to reveal how dorsal mPFC neurons are recruited and modified to encode CS-US memory representations using an appetitive conditioning task. In the initial conditioning session, animals did not exhibit discriminated, cue-selective food seeking, but did so in later sessions indicating that a CS-US association was established. Using microprism-based in vivo 2-Photon imaging, we revealed that only a minority of neurons activated during the initial session was consistently activated throughout subsequent conditioning sessions and during cue-evoked memory recall. Notably, using ex vivo electrophysiology, we found that neurons activated following the initial session exhibited transient hyperexcitability. Chemogenetically enhancing the excitability of these neurons throughout subsequent conditioning sessions interfered with the development of reliable cue-selective food seeking, indicated by persistent, nondiscriminated performance. We demonstrate how appetitive learning consistently activates a subset of neurons to form a stable neuronal ensemble during the formation of a CS-US association. This ensemble may arise from a pool of hyperexcitable neurons activated during the initial conditioning session.SIGNIFICANCE STATEMENT Appetitive conditioning endows cues associated with food with the ability to guide food-seeking, through the formation of a food-cue association. Neuronal ensembles in the mPFC control established cue-evoked food-seeking. However, how neurons undergo physiological modifications and become part of an ensemble during conditioning remain unclear. We found that only a minority of dorsal mPFC neurons activated on the initial conditioning session became consistently activated during conditioning and memory recall. These initially activated neurons were also transiently hyperexcitable. We demonstrate the following: (1) how stable neuronal ensemble formation in the dorsal mPFC underlies appetitive conditioning; and (2) how this ensemble may arise from hyperexcitable neurons activated before the establishment of cue-evoked food seeking.
Collapse
|
7
|
Perampanel-induced weight gain depends on level of intellectual disability and its serum concentration. Epilepsy Res 2019; 152:1-6. [PMID: 30852339 DOI: 10.1016/j.eplepsyres.2019.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/28/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Body weight (BW) gain may be induced by perampanel (PER) administration, similar to the well-known adverse effects of valproic acid and gabapentin. Intellectual disability (ID) and serum PER concentration may be risk factors of BW gain. PURPOSE This study investigated how ID and serum PER concentration are associated with PER-induced BW gain. METHODS Subjects were 76 patients with epilepsy (41 men, aged 16-70 years). All patients were divided by intelligence quotient (IQ) into no ID (IQ ≥ 70, n = 24), mild to moderate ID (70 > IQ ≥35, n = 31), and severe to profound ID (IQ < 35, n = 21) groups. BW was measured before and 2, 4, 6, and 12 months after initiation of PER treatment, and serum PER concentration at 12 months. RESULTS BW gains in the mild to moderate ID group at 4, 6, and 12 months were significantly (p < 0.05) higher than in the no ID and in the severe to profound ID groups. At 12 months, BW gain was associated with serum PER concentrations in the no ID (p = 0.034) and the mild to moderate ID (p = 0.001) groups but not in the severe to profound ID group. Multiple linear regression analysis found BW gain at 12 months was positively correlated with the mild to moderate ID group (β = 0.373, p = 0.002) and serum PER concentration (β = 0.241, p = 0.047). CONCLUSIONS The mild to moderate ID group gained more BW than the no ID group, suggesting that PER-induced food intake was greater due to weaker behavioral control in the mild to moderate ID group. The present study suggests a linear correlation between serum PER concentration and BW change.
Collapse
|
8
|
Alonso-Caraballo Y, Jorgensen ET, Brown T, Ferrario CR. Functional and structural plasticity contributing to obesity: roles for sex, diet, and individual susceptibility. Curr Opin Behav Sci 2018; 23:160-170. [PMID: 31058203 DOI: 10.1016/j.cobeha.2018.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of cortico-striatal pathways in cue-triggered motivational processes have been extensively studied. However, recent work has begun to examine the potential contribution of plasticity in these circuits to obesity. Despite the inclusion of women in human obesity studies examining neurobehavioral alterations in cue-triggered motivation, preclinical studies have focused mainly on male subjects. This lack of female subjects in preclinical research had led to a gap in the basic understanding of the neural mechanisms underlying over-eating in females. In this review, we highlight recent work from our lab and others that has begun to elucidate how diet, obesity, and individual susceptibility to weight gain influence functional and structural plasticity within the nucleus accumbens and prefrontal cortex in adult rats. As is the case throughout neuroscience, studies of females or sex differences are largely lacking in this area. Thus, below we describe preliminary neurobehavioral results from female studies in our labs and point out areas for future investigation.
Collapse
Affiliation(s)
| | | | - Travis Brown
- Neuroscience Program, University of Wyoming, Laramie, WY.,Pharmaceutical Science, University of Wyoming, Laramie, WY
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Derman RC, Ferrario CR. Junk-food enhances conditioned food cup approach to a previously established food cue, but does not alter cue potentiated feeding; implications for the effects of palatable diets on incentive motivation. Physiol Behav 2018; 192:145-157. [PMID: 29555195 DOI: 10.1016/j.physbeh.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/11/2018] [Accepted: 03/11/2018] [Indexed: 01/04/2023]
Abstract
Efforts to stem the global rise in obesity have been minimally effective, perhaps in part because our understanding of the psychological and behavioral drivers of obesity is limited. It is well established that stimuli that are paired with palatable foods can powerfully influence food-seeking and feeding behaviors. However, how consumption of sugary, fatty "junk-foods" affects these motivational responses to food cues is poorly understood. Here, we determined the effects of short- and long-term "junk-food" consumption on the expression of cue potentiated feeding and conditioned food cup approach to Pavlovian conditioned stimuli (CS). Further, to determine the degree to which effects of "junk-food" were selective to Pavlovian motivational processes, we varied the predictive validity of the CS by including training groups conditioned with unique CS-US contingencies ranging from -1.0 to +1.0. "Junk-food" did not enhance cue potentiated feeding in any group, but expression of this potentiation effect varied with the CS-US contingency independent of diet. In contrast, "junk-food" consistently enhanced conditioned approach to the food cup; this effect was dependent on the previously established CS-US contingency. That is, consumption of "junk-food" following training enhanced approach to the food cup only in response to CSs with previously positive CS-US contingencies. This was accompanied by reduced motivation for the US itself. Together these data show that "junk-food" consumption selectively enhances incentive motivational responses to previously established food CSs, without altering cue potentiated feeding induced by these same CSs, and in the absence of enhanced motivation for food itself.
Collapse
Affiliation(s)
- Rifka C Derman
- University of Michigan, Department of Pharmacology, United States
| | - Carrie R Ferrario
- University of Michigan, Department of Pharmacology, United States; Neuroscience Graduate Program, University of Michigan, United States.
| |
Collapse
|
10
|
Enhancement of a visual reinforcer by D-amphetamine and nicotine in adult rats: relation to habituation and food restriction. Psychopharmacology (Berl) 2018; 235:803-814. [PMID: 29199358 DOI: 10.1007/s00213-017-4796-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVES Nicotine and D-amphetamine can strengthen reinforcing effects of unconditioned visual stimuli. We investigated whether these reinforcement-enhancing effects reflect a slowing of stimulus habituation and depend on food restriction. METHODS Adult male rats pressed an active lever to illuminate a cue light during daily 60-min sessions. Depending on the experiment, rats were challenged with fixed or varying doses of D-amphetamine (0.25-2 mg/kg IP) and nicotine (0.025-0.2 mg/kg SC) or with the tobacco constituent norharman (0.03-10 μg/kg IV). Experiment 1 tested for possible reinforcement-enhancing effects of D-amphetamine and norharman. Experiment 2 investigated whether nicotine and amphetamine inhibited the spontaneous within-session decline in lever pressing. Experiment 3 assessed the effects of food restriction. RESULTS Amphetamine (0.25-1 mg/kg) and nicotine (0.1 mg/kg) increased active lever pressing specifically (two- to threefold increase). The highest doses of nicotine and amphetamine also affected inactive lever responding (increase and decrease, respectively). With the visual reinforcer omitted, responding was largely extinguished. Neither drug appeared to slow habituation, as assessed by the within-session decline in lever pressing, and reinforcement-enhancing effects still occurred if the drugs were given after this decline had occurred. Food restriction enhanced the reinforcement-enhancing effect of amphetamine but not that of nicotine. CONCLUSIONS Responding remained goal-directed after several weeks of testing. Low doses of D-amphetamine and nicotine produced reinforcement enhancement even in free-feeding subjects, independent of the spontaneous within-session decline in responding. Reinforcement enhancement by amphetamine, but not nicotine, was enhanced by concurrent subchronic food restriction.
Collapse
|
11
|
Derman RC, Ferrario CR. Enhanced incentive motivation in obesity-prone rats is mediated by NAc core CP-AMPARs. Neuropharmacology 2017; 131:326-336. [PMID: 29291424 PMCID: PMC6010194 DOI: 10.1016/j.neuropharm.2017.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 11/07/2022]
Abstract
Studies in humans suggest that stronger incentive motivational responses to Pavlovian food cues may drive over-consumption leading to and maintaining obesity, particularly in susceptible individuals. However, whether this enhanced incentive motivation emerges as a consequence of obesity or rather precedes obesity is unknown. Moreover, while human imaging studies have provided important information about differences in striatal responsiveness between susceptible and non-susceptible individuals, the neural mechanisms mediating these behavioral differences are unknown. The Nucleus Accumbens (NAc) mediates cue-triggered reward seeking and activity in the NAc is enhanced in obesity-susceptible populations. Therefore here, we used selectively-bred obesity-prone and obesity-resistant rats to examine intrinsic differences in incentive motivation, and the role of NAc AMPARs in the expression of these behaviors prior to obesity. We found that obesity-prone rats exhibit robust cue-triggered food-seeking (Pavlovian-to-instrumental transfer, PIT). Using intra-NAc infusion of AMPAR antagonists, we show that this behavior is selectively mediated by CP-AMPARs in the NAc core. Additionally, biochemical data suggest that this is due in part to experience-induced increases in CP-AMPAR surface expression in the NAc of obesity-prone rats. In contrast, in obesity-resistant rats PIT was weak and unreliable and training did not increase NAc AMPAR surface expression. Collectively, these data show that food cues acquire greater incentive motivational control in obesity-susceptible populations prior to the development of obesity. This provides support to the idea that enhanced intrinsic incentive motivation may be a contributing factor, rather than a consequence of obesity. In addition, these data demonstrate a novel role for experience-induced up-regulation of NAc CP-AMPARs in PIT, pointing to potential mechanistic parallels between the processes leading to addiction and to obesity.
Collapse
Affiliation(s)
- Rifka C Derman
- Department of Pharmacology, University of Michigan, United States
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, United States; Neuroscience Graduate Program, University of Michigan, United States.
| |
Collapse
|
12
|
Shariff M, Klenowski P, Morgan M, Patkar O, Mu E, Bellingham M, Belmer A, Bartlett SE. Binge-like sucrose consumption reduces the dendritic length and complexity of principal neurons in the adolescent rat basolateral amygdala. PLoS One 2017; 12:e0183063. [PMID: 28813474 PMCID: PMC5558950 DOI: 10.1371/journal.pone.0183063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 07/28/2017] [Indexed: 11/18/2022] Open
Abstract
A compelling body of evidence suggests that the worldwide obesity epidemic is underpinned by excessive sugar consumption, typified by the modern western diet. Furthermore, evidence is beginning to emerge of maladaptive changes in the mesolimbic reward pathway of the brain in relation to excess sugar consumption that highlights the importance of examining this neural circuitry in an attempt to understand and subsequently mitigate the associated morbidities with obesity. While the basolateral amygdala (BLA) has been shown to mediate the reinforcing properties of drugs of abuse, it has also been shown to play an important role in affective and motivated behaviours and has been shown to undergo maladaptive changes in response to drugs of abuse and stress. Given the overlap in neural circuitry affected by drugs of abuse and sucrose, we sought to examine the effect of short- and long-term binge-like sucrose consumption on the morphology of the BLA principal neurons using an intermittent-access two-bottle choice paradigm. We used Golgi-Cox staining to impregnate principal neurons from the BLA of short- (4 week) and long-term (12 week) sucrose consuming adolescent rats and compared these to age-matched water controls. Our results indicate possibly maladaptive changes to the dendritic architecture of BLA principal neurons, particularly on apical dendrites following long-term sucrose consumption. Specifically, our results show reduced total dendritic arbor length of BLA principal neurons following short- and long-term sucrose consumption. Additionally, we found that long-term binge-like sucrose consumption caused a significant reduction in the length and complexity of apical dendrites. Taken together, our results highlight the differences between short- and long-term binge-like sucrose consumption on BLA principal neuron morphology and are suggestive of a perturbation in the diverse synaptic inputs to these neurons.
Collapse
Affiliation(s)
- Masroor Shariff
- Institute of Health and Biomedical Innovation at Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Paul Klenowski
- Institute of Health and Biomedical Innovation at Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Michael Morgan
- Institute of Health and Biomedical Innovation at Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Omkar Patkar
- Institute of Health and Biomedical Innovation at Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Erica Mu
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark Bellingham
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation at Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation at Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
13
|
Fat-enriched rather than high-fructose diets promote whitening of adipose tissue in a sex-dependent manner. J Nutr Biochem 2017; 49:22-29. [PMID: 28863366 DOI: 10.1016/j.jnutbio.2017.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/25/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a critical regulator of energy metabolism and an effector organ of excessive caloric intake. We studied the effects of high-fructose (HFruD), high-fat (HFD) and mixed high-sucrose and high-fat diet (HFHSD) on adipocyte morphology and biology and consecutive metabolic effects in male and female C57BL/6 mice. Forty male and 40 female mice were randomly assigned to one of four dietary groups and fed for 10 weeks ad libitum. After 10 weeks of feeding, mice were analyzed in regard to glucose metabolism, insulin sensitivity and alteration in adipocyte morphology and function. Weight gain and diminished insulin sensitivity in HFD- and HFHSD-fed mice were accompanied by increased adipocyte size and a shift in size distribution towards larger adipocytes in all mice. The latter effect was also found but less pronounced in HFruD-fed mice, while insulin sensitivity and body weight remained unaffected. In male mice, expansion of white adipocytes along with decreased uncoupling protein 1 (UCP-1) expression and alterations of mitochondrial biogenesis was found after HFD and HFHSD feeding, while in female mice, UCP-1 expression was also reduced in the HFruD dietary group. Diet-induced cellular alterations were less pronounced in female mice. Our data demonstrate that high-fat rather than high fructose consumption drives metabolically disadvantageous alterations of adipocyte differentiation involving whitening and insulin resistance in a sex-dependent manner with most deleterious effects seen upon administration of combined sucrose and fat-enriched diet in male mice.
Collapse
|
14
|
Camacho A, Montalvo-Martinez L, Cardenas-Perez RE, Fuentes-Mera L, Garza-Ocañas L. Obesogenic diet intake during pregnancy programs aberrant synaptic plasticity and addiction-like behavior to a palatable food in offspring. Behav Brain Res 2017; 330:46-55. [DOI: 10.1016/j.bbr.2017.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 02/07/2023]
|
15
|
Ouyang J, Carcea I, Schiavo JK, Jones KT, Rabinowitsch A, Kolaric R, Cabeza de Vaca S, Froemke RC, Carr KD. Food restriction induces synaptic incorporation of calcium-permeable AMPA receptors in nucleus accumbens. Eur J Neurosci 2017; 45:826-836. [PMID: 28112453 PMCID: PMC5359088 DOI: 10.1111/ejn.13528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/14/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022]
Abstract
Chronic food restriction potentiates behavioral and cellular responses to drugs of abuse and D-1 dopamine receptor agonists administered systemically or locally in the nucleus accumbens (NAc). However, the alterations in NAc synaptic transmission underlying these effects are incompletely understood. AMPA receptor trafficking is a major mechanism for regulating synaptic strength, and previous studies have shown that both sucrose and d-amphetamine rapidly alter the abundance of AMPA receptor subunits in the NAc postsynaptic density (PSD) in a manner that differs between food-restricted and ad libitum fed rats. In this study we examined whether food restriction, in the absence of reward stimulus challenge, alters AMPAR subunit abundance in the NAc PSD. Food restriction was found to increase surface expression and, specifically, PSD abundance, of GluA1 but not GluA2, suggesting synaptic incorporation of GluA2-lacking Ca2+-permeable AMPARs (CP-AMPARs). Naspm, an antagonist of CP-AMPARs, decreased the amplitude of evoked EPSCs in NAc shell, and blocked the enhanced locomotor response to local microinjection of the D-1 receptor agonist, SKF-82958, in food-restricted, but not ad libitum fed, subjects. Although microinjection of the D-2 receptor agonist, quinpirole, also induced greater locomotor activation in food-restricted than ad libitum fed rats, this effect was not decreased by Naspm. Taken together, the present findings are consistent with the synaptic incorporation of CP-AMPARs in D-1 receptor-expressing medium spiny neurons in NAc as a mechanistic underpinning of the enhanced responsiveness of food-restricted rats to natural rewards and drugs of abuse.
Collapse
Affiliation(s)
- Jiangyong Ouyang
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Ioana Carcea
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Otolaryngology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Neuroscience/Physiology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Jennifer K. Schiavo
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Otolaryngology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Neuroscience/Physiology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Kymry T. Jones
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Ariana Rabinowitsch
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Rhonda Kolaric
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Soledad Cabeza de Vaca
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Otolaryngology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Neuroscience/Physiology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| | - Kenneth D. Carr
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, New York 10016
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 First Avenue, New York, New York 10016
| |
Collapse
|
16
|
Nucleus Accumbens AMPA Receptor Trafficking Upregulated by Food Restriction: An Unintended Target for Drugs of Abuse and Forbidden Foods. Curr Opin Behav Sci 2016; 9:32-39. [PMID: 26744733 DOI: 10.1016/j.cobeha.2015.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
There is a high rate of comorbidity between eating disorders and substance abuse, and specific evidence that weight-loss dieting can increase risk for binge pathology, rebound excessive weight gain, and initiation and relapse to drug abuse. The present overview discusses basic science findings indicating that chronic food restriction induces dopamine conservation, compensatory upregulation of D-1 dopamine receptor signaling, and synaptic incorporation of calcium-permeable glutamatergic AMPA receptors in nucleus accumbens. Evidence is presented which indicates that these neuroadaptations account for increased incentive effects of food, drugs, and associated environments during food restriction. In addition, these same neuroadaptations underlie upregulation of sucrose- and psychostimulant-induced trafficking of AMPA receptors to the nucleus accumbens postsynaptic density, which may be a mechanistic basis of enduring maladaptive behavior.
Collapse
|