1
|
Abstract
GABAB receptors are implicated in numerous central nervous system-based behaviours and mechanisms, including cognitive processing in preclinical animal models. Homeostatic changes in the expression and function of these receptors across brain structures have been found to affect cognitive processing. Numerous preclinical studies have focused on the role of GABAB receptors in learning, memory and cognition per se with some interesting, although sometimes contradictory, findings. The majority of the existing clinical literature focuses on alterations in GABAB receptor function in conditions and disorders whose main symptomatology includes deficits in cognitive processing. The aim of this chapter is to delineate the role of GABAB receptors in cognitive processes in health and disease of animal models and human clinical populations. More specifically, this review aims to present literature on the role of GABAB receptors in animal models with cognitive deficits, especially those of learning and memory. Further, it aims to capture the progress and advances of research studies on the effects of GABAB receptor compounds in neurodevelopmental and neurodegenerative conditions with cognitive dysfunctions. The neurodevelopmental conditions covered include autism spectrum disorders, fragile X syndrome and Down's syndrome and the neurodegenerative conditions discussed are Alzheimer's disease, epilepsy and autoimmune anti-GABAB encephalitis. Although some findings are contradictory, results indicate a possible therapeutic role of GABAB receptor compounds for the treatment of cognitive dysfunction and learning/memory impairments for some of these conditions, especially in neurodegeneration. Moreover, future research efforts should aim to develop selective GABAB receptor compounds with minimal, if any, side effects.
Collapse
|
2
|
Khakpoor M, Vaseghi S, Mohammadi-Mahdiabadi-Hasani MH, Nasehi M. The effect of GABA-B receptors in the basolateral amygdala on passive avoidance memory impairment induced by MK-801 in rats. Behav Brain Res 2021; 409:113313. [PMID: 33891976 DOI: 10.1016/j.bbr.2021.113313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/19/2022]
Abstract
MK-801 (dizocilpine) is a potent non-competitive N-methyl-[D]-aspartate (NMDA) receptor antagonist that affects cognitive function, learning, and memory. As we know, NMDA receptors are significantly involved in memory function, as well as GABA (Gamma-Aminobutyric acid) receptors. In this study, we aimed to discover the effect of GABA-B receptors in the basolateral amygdala (BLA) on MK-801-induced memory impairment. We used 160 male Wistar rats. The shuttle box was used to evaluate passive avoidance memory and locomotion apparatus was used to evaluate locomotor activity. MK-801 (0.125, 0.25, and 0.5 μg/rat), baclofen (GABA-B agonist, 0.0001, 0.001, and 0.01 μg/rat) and phaclofen (GABA-B antagonist, 0.0001, 0.001, and 0.01 μg/rat) were injected intra-BLA, after the training. The results showed that MK-801 at the dose of 0.5 μg/rat, baclofen at the doses of 0.001 and 0.01 μg/rat, and phaclofen at the doses of 0.001 and 0.01 μg/rat, impaired passive avoidance memory. Locomotor activity did not alter in all groups. Furthermore, the subthreshold dose of both baclofen (0.0001 μg/rat) and phaclofen (0.0001 μg/rat) restored the impairment effect of MK-801 (0.5 μg/rat) on memory. Also, both baclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 μg/rat) and phaclofen (0.0001 μg/rat) potentiated the impairment effect of MK-801 (0.125 and 0.25 μg/rat) on passive avoidance memory. In conclusion, our results indicated that BLA GABA-B receptors can alter the effect of NMDA inactivation on passive avoidance memory.
Collapse
Affiliation(s)
- Mitra Khakpoor
- Department of Basic Science, Farhangian University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Roubertoux PL, Tordjman S, Caubit X, di Cristopharo J, Ghata A, Fasano L, Kerkerian-Le Goff L, Gubellini P, Carlier M. Construct Validity and Cross Validity of a Test Battery Modeling Autism Spectrum Disorder (ASD) in Mice. Behav Genet 2019; 50:26-40. [PMID: 31542842 DOI: 10.1007/s10519-019-09970-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022]
Abstract
Modeling in other organism species is one of the crucial stages in ascertaining the association between gene and psychiatric disorder. Testing Autism Spectrum Disorder (ASD) in mice is very popular but construct validity of the batteries is not available. We presented here the first factor analysis of a behavioral model of ASD-like in mice coupled with empirical validation. We defined fourteen measures aligning mouse-behavior measures with the criteria defined by DSM-5 for the diagnostic of ASD. Sixty-five mice belonging to a heterogeneous pool of genotypes were tested. Reliability coefficients vary from .68 to .81. The factor analysis resulted in a three- factor solution in line with DSM criteria: social behavior, stereotypy and narrowness of the field of interest. The empirical validation with mice sharing a haplo-insufficiency of the zinc-finger transcription factor TSHZ3/Tshz3 associated with ASD shows the discriminant power of the highly loaded items.
Collapse
Affiliation(s)
| | - Sylvie Tordjman
- Paris Descartes Univ, CNRS, LPP, Paris, France
- Rennes 1 Univ, PHUPEA, Rennes, France
| | | | | | | | | | | | | | - Michèle Carlier
- Aix Marseille Univ, CNRS, LPC, Marseille, France.
- Aix-Marseille Université CNRS UMR 7290 Psychologie Cognitive, Fédération de Recherche 3C - Comportement Cerveau Cognition, Case D, Bât 9 - St Charles, 3 Place Victor Hugo, 13003, Marseille, France.
| |
Collapse
|
5
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
6
|
Khanegheini A, Meftahi GH, Zarrindast MR, Afarinesh MR, Sahraei H, Jahromi GP, Shahyad S. Involvement of CA1 GABAA Receptors in Ketamine-Induced Impairment of Spatial and Non-Spatial Novelty Detection in Mice. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
The role of calcium-calmodulin-dependent protein kinase II in modulation of spatial memory in morphine sensitized rats. Behav Brain Res 2018; 359:298-303. [PMID: 30428335 DOI: 10.1016/j.bbr.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
Abstract
It has been shown that drug addiction and memory system are related but the signaling cascades underlying this interaction is not completely revealed yet. It has been demonstrated that binding of Calcium-calmodulin-dependent protein kinase II (CaMKII) to NMDA receptor is important in the memory process. The main objective of the study was to evaluate the role of CaMKII on the spatial memory of rats which previously were sensitized by morphine. The effect of CaMKII inhibitor (KN-93) on memory changes was investigated by hippocampal microinjection of KN-93 on the morphine-sensitized rats. Also, the role of the NMDA receptor in memory retention by KN-93 on the morphine sensitized rat was investigated with NMDA agonist and antagonist. Sensitization was induced by morphine injection (once daily for 3 days) followed by 5 days free of the drug before the trial phase. For the evaluation of spatial memory, the Morris Water Maze test (MWM) was used. Results showed that pre-trial administration of morphine, induced amnesia in MWM (p < 0.05). Also, three days pretreatment with morphine (20 mg/kg) followed by five days washout period, caused to enhance memory retrieval in confront with a pre-trial challenging dose of morphine (5 mg/kg). In addition, KN-93 administration during induction phase in morphine sensitization phenomena facilitated morphine-induced memory retention. In addition, inhibition of the NMDA receptor and KN-93 during the induction phase did not improve memory. However; intra-CA1 co-administration of KN-93 and NMDA during the induction phase of morphine sensitization resulted in improving spatial memory. It can be concluded that the effect of CaMKII on memory retention in morphine-sensitized rats depends on NMDA receptor.
Collapse
|
8
|
Zarrabian S, Nasehi M, Farrahizadeh M, Zarrindast MR. The role of CA3 GABA B receptors on anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 with respect to Ca 2+ ions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:515-524. [PMID: 28800869 DOI: 10.1016/j.pnpbp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023]
Abstract
Glutamatergic and GABAergic systems play key roles in the hippocampus and affect the pathogenesis of anxiety- and memory-related processes. Some investigations have assessed the role of balancing the function of these two systems in different areas of the central nervous system (CNS) as an approach to manage the related disorders. We investigated the anxiety and avoidance memory states using the test-retest protocol in the elevated plus maze to understand the role of GABAB receptors (GABABRs) in relation to the NMDA receptor blockade by D-AP5 (an NMDA receptor antagonist). Also, we examined the function of Ca2+ ions by blocking its entrance to the cell using SKF96365 (a Ca2+ channel blocker). The drugs were injected into the CA3 region before the test. Our data showed that D-AP5 induced anxiolytic-like behaviors and impaired the avoidance memory. Injection of baclofen (a GABABR agonist), but not phaclofen (a GABABR antagonist) induced anxiolytic-like behaviors. Neither baclofen nor phaclofen altered avoidance memory-related behaviors. When baclofen was injected before D-AP5, it potentiated the anxiolytic-like behaviors induced by D-AP5, but counteracted its effect on avoidance memory. Phaclofen pretreatment attenuated D-AP5-induced anxiolytic-like behaviors, but potentiated its effect on avoidance memory. The effect of baclofen application before D-AP5 on anxiety and phaclofen application before D-AP5 on avoidance memory at the heist doses were accompanied by a decrease in locomotion. The application of SKF96365 did not alter anxiety-like behaviors but induced avoidance memory impairment. SKF96365 application before the combination of baclofen and D-AP5 counteracted the effects produced by the combination of baclofen and D-AP5 on anxiety and memory states. Our findings showed that the CA3 GABABRs had a critical role in anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 and confirmed the role of Ca2+ ions in the observed results.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Maryam Farrahizadeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Nasehi M, Alaghmandan-Motlagh N, Ebrahimi-Ghiri M, Nami M, Zarrindast MR. The interaction between hippocampal GABA-B and cannabinoid receptors upon spatial change and object novelty discrimination memory function. Psychopharmacology (Berl) 2017; 234:3117-3128. [PMID: 28779310 DOI: 10.1007/s00213-017-4688-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 07/08/2017] [Indexed: 12/13/2022]
Abstract
RATIONALE Previous studies have postulated functional links between GABA and cannabinoid systems in the hippocampus. The aim of the present study was to investigate any possible interaction between these systems in spatial change and object novelty discrimination memory consolidation in the dorsal hippocampus (CA1 region) of NMRI mice. METHODS Assessment of the spatial change and object novelty discrimination memory function was carried out in a non-associative task. The experiment comprised mice exposure to an open field containing five objects followed by the examination of their reactivity to object displacement (spatial change) and object substitution (object novelty) after three sessions of habituation. RESULTS Our results showed that the post-training intraperitoneal administration of the higher dose of ACPA (0.02 mg/kg) impaired both spatial change and novelty discrimination memory functions. Meanwhile, the higher dose of GABA-B receptor agonist, baclofen, impaired the spatial change memory by itself. Moreover, the post-training intra-CA1 microinjection of a subthreshold dose of baclofen increased the ACPA effect on spatial change and novelty discrimination memory at a lower and higher dose, respectively. On the other hand, the lower and higher but not mid-level doses of GABA-B receptor antagonist, phaclofen, could reverse memory deficits induced by ACPA. However, phaclofen at its mid-level dose impaired the novelty discrimination memory and whereas the higher dose impaired the spatial change memory. CONCLUSIONS Based on our findings, GABA-B receptors in the CA1 region appear to modulate the ACPA-induced cannabinoid CB1 signaling upon spatial change and novelty discrimination memory functions.
Collapse
Affiliation(s)
- Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | | | | | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Neuroscience Laboratory (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran. .,School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. .,Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran. .,Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| |
Collapse
|
10
|
Wu N, Wang F, Jin Z, Zhang Z, Wang LK, Zhang C, Sun T. Effects of GABA B receptors in the insula on recognition memory observed with intellicage. Behav Brain Funct 2017; 13:7. [PMID: 28416021 PMCID: PMC5392977 DOI: 10.1186/s12993-017-0125-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insular function has gradually become a topic of intense study in cognitive research. Recognition memory is a commonly studied type of memory in memory research. GABABR has been shown to be closely related to memory formation. In the present study, we used intellicage, which is a new intelligent behavioural test system, and a bilateral drug microinjection technique to inject into the bilateral insula, to examine the relationship between GABABR and recognition memory. METHODS Male Sprague-Dawley rats were randomly divided into control, Sham, Nacl, baclofen and CGP35348 groups. Different testing procedures were employed using intellicage to detect changes in rat recognition memory. The expression of GABABR (GB1, GB2) in the insula of rats was determined by immunofluorescence and western blotting at the protein level. In addition, the expression of GABABR (GB1, GB2) was detected by RT-PCR at the mRNA level. RESULTS The results of the intellicage test showed that recognition memory was impaired in terms of position learning, punitive learning and punitive reversal learning by using baclofen and CGP35348. In position reversal learning, no significant differences were found in terms of cognitive memory ability between the control groups and the CGP and baclofen groups. Immunofluorescence data showed GABABR (GB1, GB2) expression in the insula, while data from RT-PCR and western blot analysis demonstrated that the relative expression of GB1 and GB2 was significantly increased in the baclofen group compared with the control groups. In the CGP35348 group, the expression of GB1 and GB2 was significantly decreased, but there was no significant difference in GB1 or GB2 expression in the control groups. CONCLUSIONS GABABR expression in the insula plays an important role in the formation of recognition memory in rats.
Collapse
Affiliation(s)
- Nan Wu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhe Jin
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Zhen Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Lian-Kun Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Chun Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia, China. .,Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
11
|
Nasehi M, Saadati N, Khakpai F, Zarrindast MR. Possible involvement of the CA1 GABAergic system on harmaline induced memory consolidation deficit. Brain Res Bull 2017; 130:101-106. [DOI: 10.1016/j.brainresbull.2017.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 12/30/2022]
|
12
|
Nasehi M, Rostam-Nezhad E, Ebrahimi-Ghiri M, Zarrindast MR. Interaction between hippocampal serotonin and cannabinoid systems in reactivity to spatial and object novelty detection. Behav Brain Res 2017; 317:272-278. [DOI: 10.1016/j.bbr.2016.09.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 12/12/2022]
|
13
|
Nasehi M, Mafi F, Ebrahimi-Ghiri M, Zarrindast MR. Function of opioidergic and dopaminergic antagonists on both spatial and object novelty detection deficits induced in rodent model of hepatic encephalopathy. Behav Brain Res 2016; 313:58-66. [DOI: 10.1016/j.bbr.2016.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/05/2016] [Accepted: 07/07/2016] [Indexed: 01/27/2023]
|
14
|
Beiranvand A, Nasehi M, Zarrindast MR, Moghaddasi M. Involvement of medial prefrontal cortex alpha-2 adrenoceptors on memory acquisition deficit induced by arachidonylcyclopropylamide, a cannabinoid CB1 receptor agonist, in rats; possible involvement of Ca2+ channels. J Psychopharmacol 2016; 30:945-54. [PMID: 27317021 DOI: 10.1177/0269881116652585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Functional interactions between cannabinoid and alpha-2 adrenergic systems in cognitive control in the medial prefrontal cortex (mPFC) seem possible. The present study evaluated the possible role of alpha-2 adrenoceptors of the prefrontal cortex on effect of arachidonylcyclopropylamide (ACPA), a cannabinoid CB1 receptor (CB1R) agonist, in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the mPFC, trained in a step-through task, and tested 24 h after training to measure step-through latency. Results indicate that pre-training microinjection of ACPA (0.05 and 0.5 μg/rat) and clonidine (alpha-2 adrenoceptor agonist; 1 and 2 μg/rat) reduce memory acquisition. Pre-training subthreshold dose of clonidine (0.5 µg/rat) restored memory-impairing effect of ACPA (0.05 and 0.5 µg/rat). On the other hand, pre-training administration of the alpha-2 adrenoceptor antagonist yohimbine in all doses used (0.5, 1, and 2 μg/rat) did not affect memory acquisition by itself, while a subthreshold dose of yohimbine (2 µg/rat) potentiated memory impairment induced by ACPA (0.005 µg/rat). Finally, a subthreshold dose of SKF96365 (a Ca(2+) channel blocker) blocked clonidine and yohimbine effect of memory responses induced by ACPA. In conclusion, these data indicate that mPFC alpha-2 adrenoceptors play an important role in ACPA-induced amnesia and Ca(2+) channels have a critical role this phenomenon.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mehrnoush Moghaddasi
- Razi Herbal Medicines Research Center, Department of Physiology, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
15
|
Ketamine abuse potential and use disorder. Brain Res Bull 2016; 126:68-73. [DOI: 10.1016/j.brainresbull.2016.05.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
|
16
|
The effect of CA1 α2 adrenergic receptors on memory retention deficit induced by total sleep deprivation and the reversal of circadian rhythm in a rat model. Neurobiol Learn Mem 2016; 133:53-60. [DOI: 10.1016/j.nlm.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/24/2023]
|
17
|
Role of GABA(B) receptors in learning and memory and neurological disorders. Neurosci Biobehav Rev 2016; 63:1-28. [PMID: 26814961 DOI: 10.1016/j.neubiorev.2016.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 01/13/2023]
Abstract
Although it is evident from the literature that altered GABAB receptor function does affect behavior, these results often do not correspond well. These differences could be due to the task protocol, animal strain, ligand concentration, or timing of administration utilized. Because several clinical populations exhibit learning and memory deficits in addition to altered markers of GABA and the GABAB receptor, it is important to determine whether altered GABAB receptor function is capable of contributing to the deficits. The aim of this review is to examine the effect of altered GABAB receptor function on synaptic plasticity as demonstrated by in vitro data, as well as the effects on performance in learning and memory tasks. Finally, data regarding altered GABA and GABAB receptor markers within clinical populations will be reviewed. Together, the data agree that proper functioning of GABAB receptors is crucial for numerous learning and memory tasks and that targeting this system via pharmaceuticals may benefit several clinical populations.
Collapse
|