1
|
Razzak I, Naz S, Alinejad-Rokny H, Nguyen TN, Khalifa F. A Cascaded Mutliresolution Ensemble Deep Learning Framework for Large Scale Alzheimer's Disease Detection Using Brain MRIs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:573-581. [PMID: 36322495 DOI: 10.1109/tcbb.2022.3219032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's is progressive and irreversible type of dementia, which causes degeneration and death of cells and their connections in the brain. AD worsens over time and greatly impacts patients' life and affects their important mental functions, including thinking, the ability to carry on a conversation, and judgment and response to environment. Clinically, there is no single test to effectively diagnose Alzheimer disease. However, computed tomography (CT) and magnetic resonance imaging (MRI) scans can be used to help in AD diagnosis by observing critical changes in the size of different brain areas, typically parietal and temporal lobes areas. In this work, an integrative mulitresolutional ensemble deep learning-based framework is proposed to achieve better predictive performance for the diagnosis of Alzheimer disease. Unlike ResNet, DenseNet and their variants proposed pipeline utilizes PartialNet in a hierarchical design tailored to AD detection using brain MRIs. The advantage of the proposed analysis system is that PartialNet diversified the depth and deep supervision. Additionally, it also incorporates the properties of identity mappings which makes it powerful in better learning due to feature reuse. Besides, the proposed ensemble PartialNet is better in vanishing gradient, diminishing forward-flow with low number of parameters and better training time in comparison to its counter network. The proposed analysis pipeline has been tested and evaluated on benchmark ADNI dataset collected from 379 subjects patients. Quantitative validation of the obtained results documented our framework's capability, outperforming state-of-the-art learning approaches for both multi-and binary-class AD detection.
Collapse
|
2
|
Malik I, Iqbal A, Gu YH, Al-antari MA. Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review. Diagnostics (Basel) 2024; 14:1281. [PMID: 38928696 PMCID: PMC11202897 DOI: 10.3390/diagnostics14121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological disorder that significantly impairs cognitive function, leading to memory loss and eventually death. AD progresses through three stages: early stage, mild cognitive impairment (MCI) (middle stage), and dementia. Early diagnosis of Alzheimer's disease is crucial and can improve survival rates among patients. Traditional methods for diagnosing AD through regular checkups and manual examinations are challenging. Advances in computer-aided diagnosis systems (CADs) have led to the development of various artificial intelligence and deep learning-based methods for rapid AD detection. This survey aims to explore the different modalities, feature extraction methods, datasets, machine learning techniques, and validation methods used in AD detection. We reviewed 116 relevant papers from repositories including Elsevier (45), IEEE (25), Springer (19), Wiley (6), PLOS One (5), MDPI (3), World Scientific (3), Frontiers (3), PeerJ (2), Hindawi (2), IO Press (1), and other multiple sources (2). The review is presented in tables for ease of reference, allowing readers to quickly grasp the key findings of each study. Additionally, this review addresses the challenges in the current literature and emphasizes the importance of interpretability and explainability in understanding deep learning model predictions. The primary goal is to assess existing techniques for AD identification and highlight obstacles to guide future research.
Collapse
Affiliation(s)
- Isra Malik
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 44000, Pakistan
| | - Ahmed Iqbal
- Department of Computer Science, Sir Syed Case Institute of Technology, Islamabad 45230, Pakistan
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Mugahed A. Al-antari
- Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| |
Collapse
|
3
|
Borchert RJ, Azevedo T, Badhwar A, Bernal J, Betts M, Bruffaerts R, Burkhart MC, Dewachter I, Gellersen HM, Low A, Lourida I, Machado L, Madan CR, Malpetti M, Mejia J, Michopoulou S, Muñoz-Neira C, Pepys J, Peres M, Phillips V, Ramanan S, Tamburin S, Tantiangco HM, Thakur L, Tomassini A, Vipin A, Tang E, Newby D, Ranson JM, Llewellyn DJ, Veldsman M, Rittman T. Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: A systematic review. Alzheimers Dement 2023; 19:5885-5904. [PMID: 37563912 DOI: 10.1002/alz.13412] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/18/2023] [Accepted: 06/02/2023] [Indexed: 08/12/2023]
Abstract
INTRODUCTION Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. METHODS We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. RESULTS A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. DISCUSSION The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. HIGHLIGHTS There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias.
Collapse
Affiliation(s)
- Robin J Borchert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - AmanPreet Badhwar
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
- Centre de recherche de l'Institut Universitaire de Gériatrie (CRIUGM), Montreal, Canada
| | - Jose Bernal
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthew Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | | | - Ilse Dewachter
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Audrey Low
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Luiza Machado
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Jhony Mejia
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Sofia Michopoulou
- Imaging Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Carlos Muñoz-Neira
- Research into Memory, Brain sciences and dementia Group (ReMemBr Group), Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Artificial Intelligence & Computational Neuroscience Group (AICN Group), Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jack Pepys
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Marion Peres
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Siddharth Ramanan
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, UK
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Tomassini
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | - Eugene Tang
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Danielle Newby
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Michele Veldsman
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Razzak I, Naz S, Ashraf A, Khalifa F, Bouadjenek MR, Mumtaz S. Mutliresolutional ensemble PartialNet for Alzheimer detection using magnetic resonance imaging data. INT J INTELL SYST 2022. [DOI: 10.1002/int.22856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Imran Razzak
- School of Information Technology, Deakin University Geelong Victoria Australia
| | - Saeeda Naz
- Department of Computer Science Govt Girls Postgraduate College No. 1 Abbotabad, HED, KP Pakistan
| | - Abida Ashraf
- Department of Computer Science Govt Girls Postgraduate College No. 1 Abbotabad, HED, KP Pakistan
| | - Fahmi Khalifa
- Electronics and Communications Engineering Mansoura University Mansoura Egypt
| | | | - Shahid Mumtaz
- Instituto de Telecomunicações Aveiro Aveiro Portugal
| |
Collapse
|
5
|
Wang SH, Zhou Q, Yang M, Zhang YD. ADVIAN: Alzheimer's Disease VGG-Inspired Attention Network Based on Convolutional Block Attention Module and Multiple Way Data Augmentation. Front Aging Neurosci 2021; 13:687456. [PMID: 34220487 PMCID: PMC8250430 DOI: 10.3389/fnagi.2021.687456] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 11/23/2022] Open
Abstract
Aim: Alzheimer's disease is a neurodegenerative disease that causes 60-70% of all cases of dementia. This study is to provide a novel method that can identify AD more accurately. Methods: We first propose a VGG-inspired network (VIN) as the backbone network and investigate the use of attention mechanisms. We proposed an Alzheimer's Disease VGG-Inspired Attention Network (ADVIAN), where we integrate convolutional block attention modules on a VIN backbone. Also, 18-way data augmentation is proposed to avoid overfitting. Ten runs of 10-fold cross-validation are carried out to report the unbiased performance. Results: The sensitivity and specificity reach 97.65 ± 1.36 and 97.86 ± 1.55, respectively. Its precision and accuracy are 97.87 ± 1.53 and 97.76 ± 1.13, respectively. The F1 score, MCC, and FMI are obtained as 97.75 ± 1.13, 95.53 ± 2.27, and 97.76 ± 1.13, respectively. The AUC is 0.9852. Conclusion: The proposed ADVIAN gives better results than 11 state-of-the-art methods. Besides, experimental results demonstrate the effectiveness of 18-way data augmentation.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- School of Mathematics and Actuarial Science, University of Leicester, Leicester, United Kingdom
| | - Qinghua Zhou
- School of Informatics, University of Leicester, Leicester, United Kingdom
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Dong Zhang
- Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Nanjing, China
- School of Informatics, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
6
|
Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. Classification of Alzheimer's disease using ensemble of deep neural networks trained through transfer learning. IEEE J Biomed Health Inform 2021; 26:1453-1463. [PMID: 34033550 DOI: 10.1109/jbhi.2021.3083274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Deep learning; transfer learning; ensemble learning; Alzheimer's disease.
Collapse
|
7
|
Diagnosis of Alzheimer's Disease Severity with fMRI Images Using Robust Multitask Feature Extraction Method and Convolutional Neural Network (CNN). COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5514839. [PMID: 34007305 PMCID: PMC8100410 DOI: 10.1155/2021/5514839] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/07/2021] [Accepted: 04/07/2021] [Indexed: 01/03/2023]
Abstract
The automatic diagnosis of Alzheimer's disease plays an important role in human health, especially in its early stage. Because it is a neurodegenerative condition, Alzheimer's disease seems to have a long incubation period. Therefore, it is essential to analyze Alzheimer's symptoms at different stages. In this paper, the classification is done with several methods of machine learning consisting of K-nearest neighbor (KNN), support vector machine (SVM), decision tree (DT), linear discrimination analysis (LDA), and random forest (RF). Moreover, novel convolutional neural network (CNN) architecture is presented to diagnose Alzheimer's severity. The relationship between Alzheimer's patients' functional magnetic resonance imaging (fMRI) images and their scores on the MMSE is investigated to achieve the aim. The feature extraction is performed based on the robust multitask feature learning algorithm. The severity is also calculated based on the Mini-Mental State Examination score, including low, mild, moderate, and severe categories. Results show that the accuracy of the KNN, SVM, DT, LDA, RF, and presented CNN method is 77.5%, 85.8%, 91.7%, 79.5%, 85.1%, and 96.7%, respectively. Moreover, for the presented CNN architecture, the sensitivity of low, mild, moderate, and severe status of Alzheimer patients is 98.1%, 95.2%,89.0%, and 87.5%, respectively. Based on the findings, the presented CNN architecture classifier outperforms other methods and can diagnose the severity and stages of Alzheimer's disease with maximum accuracy.
Collapse
|
8
|
Al-Khuzaie FEK, Bayat O, Duru AD. Diagnosis of Alzheimer Disease Using 2D MRI Slices by Convolutional Neural Network. Appl Bionics Biomech 2021; 2021:6690539. [PMID: 33623535 PMCID: PMC7872776 DOI: 10.1155/2021/6690539] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022] Open
Abstract
There are many kinds of brain abnormalities that cause changes in different parts of the brain. Alzheimer's disease is a chronic condition that degenerates the cells of the brain leading to memory asthenia. Cognitive mental troubles such as forgetfulness and confusion are one of the most important features of Alzheimer's patients. In the literature, several image processing techniques, as well as machine learning strategies, were introduced for the diagnosis of the disease. This study is aimed at recognizing the presence of Alzheimer's disease based on the magnetic resonance imaging of the brain. We adopted a deep learning methodology for the discrimination between Alzheimer's patients and healthy patients from 2D anatomical slices collected using magnetic resonance imaging. Most of the previous researches were based on the implementation of a 3D convolutional neural network, whereas we incorporated the usage of 2D slices as input to the convolutional neural network. The data set of this research was obtained from the OASIS website. We trained the convolutional neural network structure using the 2D slices to exhibit the deep network weightings that we named as the Alzheimer Network (AlzNet). The accuracy of our enhanced network was 99.30%. This work investigated the effects of many parameters on AlzNet, such as the number of layers, number of filters, and dropout rate. The results were interesting after using many performance metrics for evaluating the proposed AlzNet.
Collapse
Affiliation(s)
| | - Oguz Bayat
- Graduate School of Science and Engineering, Altinbas University, Istanbul, Turkey
| | - Adil D. Duru
- Department of Physical Education and Sports Teaching, University of Marmara, Istanbul, Turkey
| |
Collapse
|
9
|
Automated detection of Alzheimer's disease using bi-directional empirical model decomposition. Pattern Recognit Lett 2020. [DOI: 10.1016/j.patrec.2020.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Wen J, Thibeau-Sutre E, Diaz-Melo M, Samper-González J, Routier A, Bottani S, Dormont D, Durrleman S, Burgos N, Colliot O. Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation. Med Image Anal 2020; 63:101694. [PMID: 32417716 DOI: 10.1016/j.media.2020.101694] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
Abstract
Numerous machine learning (ML) approaches have been proposed for automatic classification of Alzheimer's disease (AD) from brain imaging data. In particular, over 30 papers have proposed to use convolutional neural networks (CNN) for AD classification from anatomical MRI. However, the classification performance is difficult to compare across studies due to variations in components such as participant selection, image preprocessing or validation procedure. Moreover, these studies are hardly reproducible because their frameworks are not publicly accessible and because implementation details are lacking. Lastly, some of these papers may report a biased performance due to inadequate or unclear validation or model selection procedures. In the present work, we aim to address these limitations through three main contributions. First, we performed a systematic literature review. We identified four main types of approaches: i) 2D slice-level, ii) 3D patch-level, iii) ROI-based and iv) 3D subject-level CNN. Moreover, we found that more than half of the surveyed papers may have suffered from data leakage and thus reported biased performance. Our second contribution is the extension of our open-source framework for classification of AD using CNN and T1-weighted MRI. The framework comprises previously developed tools to automatically convert ADNI, AIBL and OASIS data into the BIDS standard, and a modular set of image preprocessing procedures, classification architectures and evaluation procedures dedicated to deep learning. Finally, we used this framework to rigorously compare different CNN architectures. The data was split into training/validation/test sets at the very beginning and only the training/validation sets were used for model selection. To avoid any overfitting, the test sets were left untouched until the end of the peer-review process. Overall, the different 3D approaches (3D-subject, 3D-ROI, 3D-patch) achieved similar performances while that of the 2D slice approach was lower. Of note, the different CNN approaches did not perform better than a SVM with voxel-based features. The different approaches generalized well to similar populations but not to datasets with different inclusion criteria or demographical characteristics. All the code of the framework and the experiments is publicly available: general-purpose tools have been integrated into the Clinica software (www.clinica.run) and the paper-specific code is available at: https://github.com/aramis-lab/AD-DL.
Collapse
Affiliation(s)
- Junhao Wen
- Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France; Inria, Aramis project-team, Paris F-75013, France
| | - Elina Thibeau-Sutre
- Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France; Inria, Aramis project-team, Paris F-75013, France
| | - Mauricio Diaz-Melo
- Inria, Aramis project-team, Paris F-75013, France; Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France
| | - Jorge Samper-González
- Inria, Aramis project-team, Paris F-75013, France; Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France
| | - Alexandre Routier
- Inria, Aramis project-team, Paris F-75013, France; Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France
| | - Simona Bottani
- Inria, Aramis project-team, Paris F-75013, France; Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France
| | - Didier Dormont
- Inria, Aramis project-team, Paris F-75013, France; Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France; Department of Neuroradiology, AP-HP, Hôpital de la PitiéSalpêtrière, Paris F-75013, France
| | - Stanley Durrleman
- Inria, Aramis project-team, Paris F-75013, France; Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France
| | - Ninon Burgos
- Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France; Inria, Aramis project-team, Paris F-75013, France
| | - Olivier Colliot
- Institut du Cerveau et de la Moelleépinière, ICM, Paris F-75013, France; SorbonneUniversité, ParisF-75013,France; Inserm, U 1127, Paris F-75013, France; CNRS, UMR 7225, Paris F-75013, France; Inria, Aramis project-team, Paris F-75013, France; Department of Neuroradiology, AP-HP, Hôpital de la PitiéSalpêtrière, Paris F-75013, France; Department of Neurology, AP-HP, Hôpital de la PitiéSalpêtrière, Paris F-75013, France.
| | | | | |
Collapse
|
11
|
Supervised meta-heuristic extreme learning machine for multiple sclerosis detection based on multiple feature descriptors in MR images. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2699-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, Lin CT. Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING, COMMUNICATIONS, AND APPLICATIONS 2020; 16:1-35. [DOI: 10.1145/3344998] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/01/2019] [Indexed: 08/30/2023]
Abstract
Alzheimer’s disease is an incurable neurodegenerative disease primarily affecting the elderly population. Efficient automated techniques are needed for early diagnosis of Alzheimer’s. Many novel approaches are proposed by researchers for classification of Alzheimer’s disease. However, to develop more efficient learning techniques, better understanding of the work done on Alzheimer’s is needed. Here, we provide a review on 165 papers from 2005 to 2019, using various feature extraction and machine learning techniques. The machine learning techniques are surveyed under three main categories: support vector machine (SVM), artificial neural network (ANN), and deep learning (DL) and ensemble methods. We present a detailed review on these three approaches for Alzheimer’s with possible future directions.
Collapse
Affiliation(s)
- M. Tanveer
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - B. Richhariya
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - R. U. Khan
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, India
| | - A. H. Rashid
- Discipline of Mathematics, Indian Institute of Technology Indore, Simrol, Indore 8 School of Computer Science and Engineering, National Institute of Science and Technology, Berhampur, Odisha, India
| | - P. Khanna
- PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, India
| | - M. Prasad
- Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
| | - C. T. Lin
- Centre for Artificial Intelligence, School of Computer Science, FEIT, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
13
|
Shi Q, Chen W, Huang S, Wang Y, Xue Z. Deep learning for mining protein data. Brief Bioinform 2019; 22:194-218. [PMID: 31867611 DOI: 10.1093/bib/bbz156] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023] Open
Abstract
The recent emergence of deep learning to characterize complex patterns of protein big data reveals its potential to address the classic challenges in the field of protein data mining. Much research has revealed the promise of deep learning as a powerful tool to transform protein big data into valuable knowledge, leading to scientific discoveries and practical solutions. In this review, we summarize recent publications on deep learning predictive approaches in the field of mining protein data. The application architectures of these methods include multilayer perceptrons, stacked autoencoders, deep belief networks, two- or three-dimensional convolutional neural networks, recurrent neural networks, graph neural networks, and complex neural networks and are described from five perspectives: residue-level prediction, sequence-level prediction, three-dimensional structural analysis, interaction prediction, and mass spectrometry data mining. The advantages and deficiencies of these architectures are presented in relation to various tasks in protein data mining. Additionally, some practical issues and their future directions are discussed, such as robust deep learning for protein noisy data, architecture optimization for specific tasks, efficient deep learning for limited protein data, multimodal deep learning for heterogeneous protein data, and interpretable deep learning for protein understanding. This review provides comprehensive perspectives on general deep learning techniques for protein data analysis.
Collapse
Affiliation(s)
- Qiang Shi
- School of Software Engineering, Huazhong University of Science and Technology. His main interests cover machine learning especially deep learning, protein data analysis, and big data mining
| | - Weiya Chen
- School of Software Engineering, Huazhong University of Science & Technology, Wuhan, China. His research interests cover bioinformatics, virtual reality, and data visualization
| | - Siqi Huang
- Software Engineering at Huazhong University of science and technology, focusing on Machine learning and data mining
| | - Yan Wang
- School of life, University of Science & Technology; her main interests cover protein structure and function prediction and big data mining
| | - Zhidong Xue
- School of Software Engineering, Huazhong University of Science & Technology, Wuhan, China. His research interests cover bioinformatics, machine learning, and image processing
| |
Collapse
|
14
|
Gorji HT, Kaabouch N. A Deep Learning approach for Diagnosis of Mild Cognitive Impairment Based on MRI Images. Brain Sci 2019; 9:E217. [PMID: 31466398 PMCID: PMC6770590 DOI: 10.3390/brainsci9090217] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/15/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023] Open
Abstract
Mild cognitive impairment (MCI) is an intermediary stage condition between healthy people and Alzheimer's disease (AD) patients and other dementias. AD is a progressive and irreversible neurodegenerative disorder, which is a significant threat to people, age 65 and older. Although MCI does not always lead to AD, an early diagnosis at the stage of MCI can be very helpful in identifying people who are at risk of AD. Moreover, the early diagnosis of MCI can lead to more effective treatment, or at least, significantly delay the disease's progress, and can lead to social and financial benefits. Magnetic resonance imaging (MRI), which has become a significant tool for the diagnosis of MCI and AD, can provide neuropsychological data for analyzing the variance in brain structure and function. MCI is divided into early and late MCI (EMCI and LMCI) and sadly, there is no clear differentiation between the brain structure of healthy people and MCI patients, especially in the EMCI stage. This paper aims to use a deep learning approach, which is one of the most powerful branches of machine learning, to discriminate between healthy people and the two types of MCI groups based on MRI results. The convolutional neural network (CNN) with an efficient architecture was used to extract high-quality features from MRIs to classify people into healthy, EMCI, or LMCI groups. The MRIs of 600 individuals used in this study included 200 control normal (CN) people, 200 EMCI patients, and 200 LMCI patients. This study randomly selected 70 percent of the data to train our model and 30 percent for the test set. The results showed the best overall classification between CN and LMCI groups in the sagittal view with an accuracy of 94.54 percent. In addition, 93.96 percent and 93.00 percent accuracy were reached for the pairs of EMCI/LMCI and CN/EMCI, respectively.
Collapse
Affiliation(s)
- Hamed Taheri Gorji
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND 58202-7165, USA
| | - Naima Kaabouch
- Department of Electrical Engineering, University of North Dakota, Grand Forks, ND 58202-7165, USA.
| |
Collapse
|
15
|
Automated Detection of Alzheimer's Disease Using Brain MRI Images- A Study with Various Feature Extraction Techniques. J Med Syst 2019; 43:302. [PMID: 31396722 DOI: 10.1007/s10916-019-1428-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
The aim of this work is to develop a Computer-Aided-Brain-Diagnosis (CABD) system that can determine if a brain scan shows signs of Alzheimer's disease. The method utilizes Magnetic Resonance Imaging (MRI) for classification with several feature extraction techniques. MRI is a non-invasive procedure, widely adopted in hospitals to examine cognitive abnormalities. Images are acquired using the T2 imaging sequence. The paradigm consists of a series of quantitative techniques: filtering, feature extraction, Student's t-test based feature selection, and k-Nearest Neighbor (KNN) based classification. Additionally, a comparative analysis is done by implementing other feature extraction procedures that are described in the literature. Our findings suggest that the Shearlet Transform (ST) feature extraction technique offers improved results for Alzheimer's diagnosis as compared to alternative methods. The proposed CABD tool with the ST + KNN technique provided accuracy of 94.54%, precision of 88.33%, sensitivity of 96.30% and specificity of 93.64%. Furthermore, this tool also offered an accuracy, precision, sensitivity and specificity of 98.48%, 100%, 96.97% and 100%, respectively, with the benchmark MRI database.
Collapse
|
16
|
Zhang F, Tian S, Chen S, Ma Y, Li X, Guo X. Voxel-Based Morphometry: Improving the Diagnosis of Alzheimer’s Disease Based on an Extreme Learning Machine Method from the ADNI cohort. Neuroscience 2019; 414:273-279. [DOI: 10.1016/j.neuroscience.2019.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/17/2023]
|
17
|
Świetlik D, Białowąs J. Application of Artificial Neural Networks to Identify Alzheimer's Disease Using Cerebral Perfusion SPECT Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071303. [PMID: 30979022 PMCID: PMC6479441 DOI: 10.3390/ijerph16071303] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
The aim of this study was to demonstrate the usefulness of artificial neural networks in Alzheimer disease diagnosis (AD) using data of brain single photon emission computed tomography (SPECT). The results were compared with discriminant analysis. The study population consisted of 132 clinically diagnosed patients. There were 72 subjects with AD and 60 belonging to the normal control group. The artificial neural network used 36 numerical values being the count numbers obtained for each area of brain SPECT. These numbers determined the set of input data for the artificial neural network. The sensitivity of Alzheimer disease diagnosis detection by artificial neural network and discriminant analysis were 93.8% and 86.1%, respectively, and the corresponding specificity was 100% and 95%. We also used receiver operating characteristic curve (ROC) analysis and areas under receiver operating characteristics curves were correspondingly 0.97 (p < 0.0001) for the artificial neural networks (ANN) and 0.96 (p < 0.0001) for discriminant analysis. In conclusion, artificial neural networks and conventional statistics methods (discriminant analysis) are a useful tool in Alzheimer disease diagnosis.
Collapse
Affiliation(s)
- Dariusz Świetlik
- Intrafaculty College of Medical Informatics and Biostatistics, Medical University of Gdańsk, 1 Debinki St., 80-211 Gdańsk, Poland.
| | - Jacek Białowąs
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Debinki St., 80-211 Gdańsk, Poland.
| |
Collapse
|
18
|
Saravanakumar S, Thangaraj P. A Computer Aided Diagnosis System for Identifying Alzheimer's from MRI Scan using Improved Adaboost. J Med Syst 2019; 43:76. [PMID: 30756191 DOI: 10.1007/s10916-018-1147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 01/17/2023]
Abstract
The recent studies in Morphometric Magnetic Resonance Imaging (MRI) have investigated the abnormalities in the brain volume that have been associated diagnosing of the Alzheimer's Disease (AD) by making use of the Voxel-Based Morphometry (VBM). The system permits the evaluation of the volumes of grey matter in subjects such as the AD or the conditions related to it and are compared in an automated manner with the healthy controls in the entire brain. The article also reviews the findings of the VBM that are related to various stages of the AD and also its prodrome known as the Mild Cognitive Impairment (MCI). For this work, the Ada Boost classifier has been proposed to be a good selector of feature that brings down the classification error's upper bound. A Principal Component Analysis (PCA) had been employed for the dimensionality reduction and for improving efficiency. The PCA is a powerful, as well as a reliable, tool in data analysis. Calculating fitness scores will be an independent process. For this reason, the Genetic Algorithm (GA) along with a greedy search may be computed easily along with some high-performance systems of computing. The primary goal of this work was to identify better collections or permutations of the classifiers that are weak to build stronger ones. The results of the experiment prove that the GAs is one more alternative technique used for boosting the permutation of weak classifiers identified in Ada Boost which can produce some better solutions compared to the classical Ada Boost.
Collapse
Affiliation(s)
- S Saravanakumar
- Research Scholar, Anna University, Chennai, Tamilnadu, India.
| | - P Thangaraj
- Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode, India
| |
Collapse
|
19
|
Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H. Classification of Alzheimer's Disease Based on Eight-Layer Convolutional Neural Network with Leaky Rectified Linear Unit and Max Pooling. J Med Syst 2018; 42:85. [PMID: 29577169 DOI: 10.1007/s10916-018-0932-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/06/2018] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is a progressive brain disease. The goal of this study is to provide a new computer-vision based technique to detect it in an efficient way. The brain-imaging data of 98 AD patients and 98 healthy controls was collected using data augmentation method. Then, convolutional neural network (CNN) was used, CNN is the most successful tool in deep learning. An 8-layer CNN was created with optimal structure obtained by experiences. Three activation functions (AFs): sigmoid, rectified linear unit (ReLU), and leaky ReLU. The three pooling-functions were also tested: average pooling, max pooling, and stochastic pooling. The numerical experiments demonstrated that leaky ReLU and max pooling gave the greatest result in terms of performance. It achieved a sensitivity of 97.96%, a specificity of 97.35%, and an accuracy of 97.65%, respectively. In addition, the proposed approach was compared with eight state-of-the-art approaches. The method increased the classification accuracy by approximately 5% compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Department of Informatics, University of Leicester, Leicester, LE1 7RH, UK.
- Department of Electrical Engineering, The City College of New York, CUNY, New York, NY, 10031, USA.
| | - Preetha Phillips
- West Virginia School of Osteopathic Medicine, 400 N Lee St, Lewisburg, WV, 24901, USA.
| | - Yuxiu Sui
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Bin Liu
- Department of Radiology, Zhong-Da Hospital of Southeast University, Nanjing, 210009, China
| | - Ming Yang
- Department of Radiology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, People's Republic of China
| | - Hong Cheng
- Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
20
|
Diagnosis of Schizophrenia Disorder in MR Brain Images Using Multi-objective BPSO Based Feature Selection with Fuzzy SVM. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimers Dement 2017; 13:e1-e85. [PMID: 28342697 PMCID: PMC6818723 DOI: 10.1016/j.jalz.2016.11.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS We used standard searches to find publications using ADNI data. RESULTS (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial design.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Zhang Y, Wang S, Phillips P, Yang J, Yuan TF. Three-Dimensional Eigenbrain for the Detection of Subjects and Brain Regions Related with Alzheimer's Disease. J Alzheimers Dis 2016; 50:1163-79. [PMID: 26836190 DOI: 10.3233/jad-150988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Considering that Alzheimer's disease (AD) is untreatable, early diagnosis of AD from the healthy elderly controls (HC) is pivotal. However, computer-aided diagnosis (CAD) systems were not widely used due to its poor performance. OBJECTIVE Inspired from the eigenface approach for face recognition problems, we proposed an eigenbrain to detect AD brains. Eigenface is only for 2D image processing and is not suitable for volumetric image processing since faces are usually obtained as 2D images. METHODS We extended the eigenbrain to 3D. This 3D eigenbrain (3D-EB) inherits the fundamental strategies in either eigenface or 2D eigenbrain (2D-EB). All the 3D brains were transferred to a feature space, which encoded the variation among known 3D brain images. The feature space was named as the 3D-EB, and defined as eigenvectors on the set of 3D brains. We compared four different classifiers: feed-forward neural network, support vector machine (SVM) with linear kernel, polynomial (Pol) kernel, and radial basis function kernel. RESULTS The 50x10-fold stratified cross validation experiments showed that the proposed 3D-EB is better than the 2D-EB. SVM with Pol kernel performed the best among all classifiers. Our "3D-EB + Pol-SVM" achieved an accuracy of 92.81% ± 1.99% , a sensitivity of 92.07% ± 2.48% , a specificity of 93.02% ± 2.22% , and a precision of 79.03% ± 2.37% . Based on the most important 3D-EB U1, we detected 34 brain regions related with AD. The results corresponded to recent literature. CONCLUSIONS We validated the effectiveness of the proposed 3D-EB by detecting subjects and brain regions related to AD.
Collapse
Affiliation(s)
- Yudong Zhang
- School of Computer Science and Technology & School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.,Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology, Guilin, Guangxi, China
| | - Shuihua Wang
- School of Computer Science and Technology & School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Preetha Phillips
- School of Natural Sciences and Mathematics, Shepherd University, Shepherdstown, WV, USA
| | - Jiquan Yang
- Jiangsu Key Laboratory of 3d Printing Equipment And Manufacturing, Nanjing, Jiangsu, China
| | - Ti-Fei Yuan
- School of Computer Science and Technology & School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Zhu F, Ding M, Zhang X. Self-similarity inspired local descriptor for non-rigid multi-modal image registration. Inf Sci (N Y) 2016. [DOI: 10.1016/j.ins.2016.08.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
John M, Ikuta T, Ferbinteanu J. Graph analysis of structural brain networks in Alzheimer’s disease: beyond small world properties. Brain Struct Funct 2016; 222:923-942. [DOI: 10.1007/s00429-016-1255-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/17/2016] [Indexed: 01/07/2023]
|
25
|
Dual-Tree Complex Wavelet Transform and Twin Support Vector Machine for Pathological Brain Detection. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6060169] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|