1
|
Yang L, Peng J, Zhang L, Zhang F, Wu J, Zhang X, Pang J, Jiang Y. Advanced Diffusion Tensor Imaging in White Matter Injury After Subarachnoid Hemorrhage. World Neurosurg 2024; 189:77-88. [PMID: 38789033 DOI: 10.1016/j.wneu.2024.05.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Subarachnoid hemorrhage (SAH) is recognized as an especially severe stroke variant, notorious for its high mortality and long-term disability rates, in addition to a range of both immediate and enduring neurologic impacts. Over half of the SAH survivors experience varying degrees of neurologic disorders, with many enduring chronic neuropsychiatric conditions. Due to the limitations of traditional imaging techniques in depicting subtle changes within brain tissues posthemorrhage, the accurate detection and diagnosis of white matter (WM) injuries are complicated. Against this backdrop, diffusion tensor imaging (DTI) has emerged as a promising biomarker for structural imaging, renowned for its enhanced sensitivity in identifying axonal damage. This capability positions DTI as an invaluable tool for forming precise and expedient prognoses for SAH survivors. This study synthesizes an assessment of DTI for the diagnosis and prognosis of neurologic dysfunctions in patients with SAH, emphasizing the notable changes observed in DTI metrics and their association with potential pathophysiological processes. Despite challenges associated with scanning technology differences and data processing, DTI demonstrates significant clinical potential for early diagnosis of cognitive impairments following SAH and monitoring therapeutic effects. Future research requires the development of highly standardized imaging paradigms to enhance diagnostic accuracy and devise targeted therapeutic strategies for SAH patients. In sum, DTI technology not only augments our understanding of the impact of SAH but also may offer new avenues for improving patient prognoses.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lifang Zhang
- Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinpeng Wu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianhui Zhang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinwei Pang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Institute of Brain Science, Southwest Medical University, Luzhou, China; Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Wroe W, Dienel A, Hong S, Matsumura K, Guzman J, Torres K, Bernal A, Zeineddine HA, Pandit PT, Blackburn SL, McBride DW. Incidence and Factors in Delayed Neurological Deficits after Subarachnoid Hemorrhage in Mice. BRAIN HEMORRHAGES 2024; 5:99-106. [PMID: 39830728 PMCID: PMC11741540 DOI: 10.1016/j.hest.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Background Delayed cerebral ischemia (DCI) is one of the most feared complications in aneurysmal subarachnoid hemorrhage (SAH). Animal models are crucial to studying the disease mechanisms and potential treatments. DCI in rodents was thought to not exist; herein we examine literature and our experience with DCI in rodents. Methods Daily behavioral performance was assessed every day from day 1 to up to 7 days post-SAH on mice from 5 different studies that used the endovascular perforation model. Performance was graded using an 8-test sensorimotor neuroscore previously described. The daily neuroscore was then used to identify the incidence and timing of delayed neurological deficits, a clinical surrogate for DCI. A total number of 298 mice (134 males, 164 females) were subjected to SAH. Fifty-one mice had histological staining done to identify infarct volume. Results The overall incidence of DND was 33.9%; 27.6% in males and 39.0% in females, but this difference was not statistically significant. The overall incidence of delayed death was 21.1%, and there was no significant difference for delayed mortality in females versus male mice. There is a non-statistically significant trend towards increased infarct volume in mice suffering DND. Conclusions Mice with endovascular puncture induced SAH develop DND at rates comparable to human patients. Future work needs to correlate the DND seen with decreased regional cerebral blood flow, another hallmark of DCI, but in spite of this need, researchers may use the murine models to test therapies for DCI after SAH.
Collapse
Affiliation(s)
- William Wroe
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ari Dienel
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sungha Hong
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kanako Matsumura
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jose Guzman
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kiara Torres
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Hussein A. Zeineddine
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peeyush Thankamani Pandit
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Spiros L. Blackburn
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Devin W. McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
3
|
Masood T, Lakatos S, Kis G, Ignácz M, Domoki F, Rosta J. Subarachnoid Hemorrhage Depletes Calcitonin Gene-Related Peptide Levels of Trigeminal Neurons in Rat Dura Mater. Cells 2024; 13:653. [PMID: 38667268 PMCID: PMC11048922 DOI: 10.3390/cells13080653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) remains a major cause of cerebrovascular morbidity, eliciting severe headaches and vasospasms that have been shown to inversely correlate with vasodilator calcitonin gene-related peptide (CGRP) levels. Although dura mater trigeminal afferents are an important source of intracranial CGRP, little is known about the effects of SAH on these neurons in preclinical models. The present study evaluated changes in CGRP levels and expression in trigeminal primary afferents innervating the dura mater 72 h after experimentally induced SAH in adult rats. SAH, eliciting marked damage revealed by neurological examination, significantly reduced the density of CGRP-immunoreactive nerve fibers both in the dura mater and the trigeminal caudal nucleus in the medulla but did not affect the total dural nerve fiber density. SAH attenuated ex vivo dural CGRP release by ~40% and in the trigeminal ganglion, reduced both CGRP mRNA levels and the number of highly CGRP-immunoreactive cell bodies. In summary, we provide novel complementary evidence that SAH negatively affects the integrity of the CGRP-expressing rat trigeminal neurons. Reduced CGRP levels suggest likely impaired meningeal neurovascular functions contributing to SAH complications. Further studies are to be performed to reveal the importance of impaired CGRP synthesis and its consequences in central sensory processing.
Collapse
Affiliation(s)
- Thannoon Masood
- Department of Neurosurgery, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6., H-6725 Szeged, Hungary
| | - Szandra Lakatos
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| | - Gyöngyi Kis
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Melissza Ignácz
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| | - Ferenc Domoki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| | - Judit Rosta
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., H-6720 Szeged, Hungary; (S.L.)
| |
Collapse
|
4
|
Morelli M, Adcock J, Yim TW, Rook J, Mocco J, Brophy C, Cheung-Flynn J. The Cell Permeant Phosphopetpide mimetic of VASP Alleviates Motor Function Deficits After Experimental Subarachnoid Hemorrhage. J Mol Neurosci 2024; 74:9. [PMID: 38214771 DOI: 10.1007/s12031-023-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Subarachnoid hemorrhage (SAH) due to the rupture of an intracranial aneurysm leads to delayed vasospasm and neuroischemia, which can result in profound neurologic deficit and death. Therapeutic options after SAH are currently limited to hemodynamic optimization and nimodipine, which have limited clinical efficacy. Experimental SAH results in cerebral vasospasm have demonstrated the downregulation of nitric oxide (NO)-protein kinase G (PKG) signaling elements. VP3 is a novel cell permeant phosphopeptide mimetic of VASP, a substrate of PKG and an actin-associated protein that modulates vasorelaxation in vascular smooth muscle cells. In this study, we determined that intravenous administration of high doses of VP3 did not induce systemic hypotension in rats except at the maximal soluble dose, implying that VP3 is well-tolerated and has a wide therapeutic window. Using a single cisterna magna injection rat model of SAH, we demonstrated that intravenous administration of low-dose VP3 after SAH improved neurologic deficits for up to 14 days as determined by the rotarod test. These findings suggest that strategies aimed at targeting the cerebral vasculature with VP3 may improve neurologic deficits associated with SAH.
Collapse
Affiliation(s)
- Madeleine Morelli
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie Adcock
- Division of Surgical Research, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tsz Wing Yim
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jerri Rook
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Mocco
- Cerebrovascular Center, Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA
| | - Colleen Brophy
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joyce Cheung-Flynn
- Department of Vascular Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
5
|
Becker K. Animal Welfare Aspects in Planning and Conducting Experiments on Rodent Models of Subarachnoid Hemorrhage. Cell Mol Neurobiol 2023; 43:3965-3981. [PMID: 37861870 PMCID: PMC11407738 DOI: 10.1007/s10571-023-01418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Subarachnoid hemorrhage is an acute life-threatening cerebrovascular disease with high socio-economic impact. The most frequent cause, the rupture of an intracerebral aneurysm, is accompanied by abrupt changes in intracerebral pressure, cerebral perfusion pressure and, consequently, cerebral blood flow. As aneurysms rupture spontaneously, monitoring of these parameters in patients is only possible with a time delay, upon hospitalization. To study alterations in cerebral perfusion immediately upon ictus, animal models are mandatory. This article addresses the points necessarily to be included in an animal project proposal according to EU directive 2010/63/EU for the protection of animals used for scientific purposes and herewith offers an insight into animal welfare aspects of using rodent models for the investigation of cerebral perfusion after subarachnoid hemorrhage. It compares surgeries, model characteristics, advantages, and drawbacks of the most-frequently used rodent models-the endovascular perforation model and the prechiasmatic and single or double cisterna magna injection model. The topics of discussing anesthesia, advice on peri- and postanesthetic handling of animals, assessing the severity of suffering the animals undergo during the procedure according to EU directive 2010/63/EU and weighing the use of these in vivo models for experimental research ethically are also presented. In conclusion, rodent models of subarachnoid hemorrhage display pathophysiological characteristics, including changes of cerebral perfusion similar to the clinical situation, rendering the models suited to study the sequelae of the bleeding. A current problem is low standardization of the models, wherefore reporting according to the ARRIVE guidelines is highly recommended. Animal welfare aspects of rodent models of subarachnoid hemorrhage. Rodent models for investigation of cerebral perfusion after subarachnoid hemorrhage are compared regarding surgeries and model characteristics, and 3R measures are suggested. Anesthesia is discussed, and advice given on peri- and postanesthetic handling. Severity of suffering according to 2010/63/EU is assessed and use of these in vivo models weighed ethically.
Collapse
Affiliation(s)
- Katrin Becker
- Institute for Translational Neurosurgery, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.
- Institute for Cardiovascular Sciences, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
6
|
Regnier-Golanov AS, Gulinello M, Hernandez MS, Golanov EV, Britz GW. Subarachnoid Hemorrhage Induces Sub-acute and Early Chronic Impairment in Learning and Memory in Mice. Transl Stroke Res 2022; 13:625-640. [PMID: 35260988 DOI: 10.1007/s12975-022-00987-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/20/2022]
Abstract
Subarachnoid hemorrhage (SAH) leads to significant long-term cognitive deficits, so-called the post-SAH syndrome. Existing neurological scales used to assess outcomes of SAH are focused on sensory-motor functions. To better evaluate short-term and chronic consequences of SAH, we explored and validated a battery of neurobehavioral tests to gauge the functional outcomes in mice after the circle of Willis perforation-induced SAH. The 18-point Garcia scale, applied up to 4 days, detected impairment only at 24-h time point and showed no significant difference between the Sham and SAH group. A decrease in locomotion was detected at 4-days post-surgery in the open field test but recovered at 30 days in Sham and SAH groups. However, an anxiety-like behavior undetected at 4 days developed at 30 days in SAH mice. At 4-days post-surgery, Y-maze revealed an impairment in working spatial memory in SAH mice, and dyadic social interactions showed a decrease in the sociability in SAH mice, which spent less time interacting with the stimulus mouse. At 30 days after ictus, SAH mice displayed mild spatial learning and memory deficits in the Barnes maze as they committed significantly more errors and used more time to find the escape box but still were able to learn the task. We also observed cognitive dysfunction in the SAH mice in the novel object recognition test. Taken together, these data suggest dysfunction of the limbic system and hippocampus in particular. We suggest a battery of 5 basic behavioral tests allowing to detect neurocognitive deficits in a sub-acute and chronic phase following the SAH.
Collapse
Affiliation(s)
| | - M Gulinello
- Rodent Behavior Core, Department of Neuroscience, Albert Einstein University, Bronx, NY, 10461, USA
| | - M S Hernandez
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA
| | - E V Golanov
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA
| | - G W Britz
- Department of Neurosurgery, Houston Methodist Hospital, Houston, USA.
| |
Collapse
|
7
|
Goursaud S, Martinez de Lizarrondo S, Grolleau F, Chagnot A, Agin V, Maubert E, Gauberti M, Vivien D, Ali C, Gakuba C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Is There a Relevant Experimental Model? A Systematic Review of Preclinical Literature. Front Cardiovasc Med 2021; 8:752769. [PMID: 34869659 PMCID: PMC8634441 DOI: 10.3389/fcvm.2021.752769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Caen, France.,Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - François Grolleau
- Centre d'Epidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Clément Gakuba
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU de Caen Normandie, Service d'Anesthésie-Réanimation Chirurgicale, Caen, France
| |
Collapse
|
8
|
Wang Z, Chen J, Toyota Y, Keep RF, Xi G, Hua Y. Ultra-Early Cerebral Thrombosis Formation After Experimental Subarachnoid Hemorrhage Detected on T2* Magnetic Resonance Imaging. Stroke 2021; 52:1033-1042. [PMID: 33535782 DOI: 10.1161/strokeaha.120.032397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE The mechanisms of brain damage during ultra-early subarachnoid hemorrhage (SAH) have not been well studied. The current study examined the SAH-induced hyperacute brain damage at 4 hours using magnetic resonance imaging and brain histology in a mouse model. METHODS SAH was induced by endovascular perforation in adult mice. First, adult male wild-type mice underwent magnetic resonance imaging T2 and T2* 4 hours after an endovascular perforation or a sham operation and were euthanized to assess brain histology. Second, male and female adult lipocalin-2 knockout mice had SAH. All animals underwent magnetic resonance imaging at 4 hours, and the brains were harvested for brain histology. RESULTS T2* hypointensity vessels were observed in the brain 4 hours after SAH in male wild-type mice. The numbers of T2*-positive vessels were significantly higher in SAH brains than in sham-operated mice. Brain histology showed thrombosis and erythrocyte plugs in the T2*-positive cerebral vessels which may be venules. The number of T2*-positive vessels correlated with SAH grade and the presence of T2 lesions. Brain thrombosis was also accompanied by albumin leakage and neuronal injury. LCN2 deficient male mice had lower numbers of T2*-positive vessels after SAH compared with wild-type male mice. CONCLUSIONS SAH causes ultra-early brain vessel thrombosis that can be detected by T2* gradient-echo sequence at 4 hours after SAH. LCN2 deficiency decreased the number of T2*-positive vessels.
Collapse
Affiliation(s)
- Zhepei Wang
- Department of Neurosurgery, University of Michigan, Ann Arbor (Z.W., J.C., Y.T., R.F.K., G.X., Y.H.).,Department of Neurosurgery, The First Hospital of Ningbo, Zhejiang, China (Z.W.)
| | - Jingyin Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor (Z.W., J.C., Y.T., R.F.K., G.X., Y.H.)
| | - Yasunori Toyota
- Department of Neurosurgery, University of Michigan, Ann Arbor (Z.W., J.C., Y.T., R.F.K., G.X., Y.H.)
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor (Z.W., J.C., Y.T., R.F.K., G.X., Y.H.)
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor (Z.W., J.C., Y.T., R.F.K., G.X., Y.H.)
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor (Z.W., J.C., Y.T., R.F.K., G.X., Y.H.)
| |
Collapse
|
9
|
Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol 2020; 36:143-158. [PMID: 32996580 DOI: 10.14670/hh-18-253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a serious cerebrovascular disease. Even if SAH patients survive the initial insults, delayed cerebral ischemia (DCI) may occur at 4 days or later post-SAH. DCI is characteristics of SAH, and is considered to develop by blood breakdown products and inflammatory reactions, or secondary to early brain injury, acute pathophysiological events that occur in the brain within the first 72 hours of aneurysmal SAH. The pathology underlying DCI may involve large artery vasospasm and/or microcirculatory disturbances by microvasospasm, microthrombosis, dysfunction of venous outflow and compression of microvasculature by vasogenic or cytotoxic tissue edema. Recent clinical evidence has shown that large artery vasospasm is not the only cause of DCI, and that both large artery vasospasm-dependent and -independent cerebral infarction causes poor outcome. Animal studies suggest that mechanisms of vasospasm may differ between large artery and arterioles or capillaries, and that many kinds of cells in the vascular wall and brain parenchyma may be involved in the pathogenesis of microcirculatory disturbances. The impairment of the paravascular and glymphatic systems also may play important roles in the development of DCI. As pathological mediators for DCI, glutamate and several matricellular proteins have been investigated in addition to inflammatory molecules. Glutamate is involved in excitotoxicity contributing to cortical spreading ischemia and epileptic activity-related events. Microvascular dysfunction is an attractive mechanism to explain the cause of poor outcomes independently of large cerebral artery vasospasm, but needs more studies to clarify the pathophysiologies or mechanisms and to develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
10
|
Mielke D, Bleuel K, Stadelmann C, Rohde V, Malinova V. The ESAS-score: A histological severity grading system of subarachnoid hemorrhage using the modified double hemorrhage model in rats. PLoS One 2020; 15:e0227349. [PMID: 32097426 PMCID: PMC7041796 DOI: 10.1371/journal.pone.0227349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022] Open
Abstract
Objective The amount of extravasated blood is an established surrogate marker for subarachnoid hemorrhage (SAH) severity, which varies in different experimental SAH (eSAH) models. A comprehensive eSAH grading system would allow a more reliable correlation of outcome parameters with SAH severity. The aim of this study was to define a severity score for eSAH related to the Fisher-Score in humans. Material and methods SAH was induced in 135 male rats using the modified double hemorrhage model. A sham group included 8 rats, in which saline solution instead of blood was injected. Histological analysis with HE(hematoxylin-eosin)-staining for the visualization of blood was performed in all rats on day 5. The amount and distribution of blood within the subarachnoid space and ventricles (IVH) was analyzed. Results The mortality rate was 49.6% (71/143). In all except five SAH rats, blood was visible within the subarachnoid space. As expected, no blood was detected in the sham group. The following eSAH severity score was established (ESAS-score): grade I: no SAH visible; grade II: local or diffuse thin SAH, no IVH; grade III: diffuse / thick layers of blood, no IVH; grade IV: additional IVH. Grade I was seen in five rats (7.9%), grade II in 28.6% (18/63), grade III in 41.3% (26/63) and grade IV in 22.2% (14/63) of the rats with eSAH. Conclusion The double hemorrhage model allows the induction of a high grade SAH in more than 60% of the rats, making it suitable for the evaluation of outcome parameters in severe SAH.
Collapse
Affiliation(s)
- Dorothee Mielke
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Kim Bleuel
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, Georg-August-University Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
| | - Vesna Malinova
- Department of Neurosurgery, Georg-August-University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
11
|
Oka F, Chung DY, Suzuki M, Ayata C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Experimental-Clinical Disconnect and the Unmet Need. Neurocrit Care 2020; 32:238-251. [PMID: 30671784 PMCID: PMC7387950 DOI: 10.1007/s12028-018-0650-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) is among the most dreaded complications following aneurysmal subarachnoid hemorrhage (SAH). Despite advances in neurocritical care, DCI remains a significant cause of morbidity and mortality, prolonged intensive care unit and hospital stay, and high healthcare costs. Large artery vasospasm has classically been thought to lead to DCI. However, recent failure of clinical trials targeting vasospasm to improve outcomes has underscored the disconnect between large artery vasospasm and DCI. Therefore, interest has shifted onto other potential mechanisms such as microvascular dysfunction and spreading depolarizations. Animal models can be instrumental in dissecting pathophysiology, but clinical relevance can be difficult to establish. METHODS Here, we performed a systematic review of the literature on animal models of SAH, focusing specifically on DCI and neurological deficits. RESULTS We find that dog, rabbit and rodent models do not consistently lead to DCI, although some degree of delayed vascular dysfunction is common. Primate models reliably recapitulate delayed neurological deficits and ischemic brain injury; however, ethical issues and cost limit their translational utility. CONCLUSIONS To facilitate translation, clinically relevant animal models that reproduce the pathophysiology and cardinal features of DCI after SAH are urgently needed.
Collapse
Affiliation(s)
- Fumiaki Oka
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Cenk Ayata
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
12
|
Simader E, Budinsky L, Helbich TH, Sherif C, Höftberger R, Kasprian G, Raunegger T, Hacker P, Ankersmit HJ, Beer L, Haider T. Subarachnoid hemorrhage in rats - Visualizing blood distribution in vivo using gadolinium-enhanced magnetic resonance imaging: Technical note. J Neurosci Methods 2019; 325:108370. [PMID: 31326605 DOI: 10.1016/j.jneumeth.2019.108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND The aims of this study were to assess the feasibility of magnetic resonance imaging (MRI) to track the in vivo distribution of autologous, injected blood in a subarachnoid hemorrhage model (SAH), and to evaluate whether this technique results in observable morphological detriment. NEW METHOD We used an SAH model of stereotactic injection of autologous blood into the prechiasmatic cistern in Sprague Dawley rats. To visualize its in vivo distribution, a gadolinium-containing contrast agent was added to the autologous blood prior to injection. MRI was performed on a 9.4 T Bruker Biospec scanner preoperatively, as well as at variable time points between 30 min to 23 days after SAH. T1-weighted and diffusion-weighted images were acquired. The morphological examination was completed by a histopathological work-up. RESULTS Upon injection of contrast agent-enriched autologous blood, enhancement was observed in the entire subarachnoid space within 30 min of injection. Total clearance was noted at the first postoperative day. SAH induction did not result in changes in clinical scores or on histopathological or radiological images. COMPARISON WITH EXISTING METHODS We modified an established method to allow in vivo MRI monitoring of subarachnoid blood distribution in an SAH model. CONCLUSION This technique could be used to evaluate the distribution of blood components during the development of novel SAH models. Since no additional morphological detriment was observed, this technique could be used as a validation tool to verify correct application and induction in preclinical SAH models.
Collapse
Affiliation(s)
- Elisabeth Simader
- FFG Project 852748 "APOSEC", Medical University of Vienna, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Lubos Budinsky
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria; Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Camillo Sherif
- Department of Neurosurgery, Krankenanstalt Rudolfstiftung, Vienna, Austria
| | | | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - Thomas Raunegger
- FFG Project 852748 "APOSEC", Medical University of Vienna, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Philipp Hacker
- FFG Project 852748 "APOSEC", Medical University of Vienna, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- FFG Project 852748 "APOSEC", Medical University of Vienna, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Cardiac and Thoracic Diagnosis and Regeneration, Vienna, Austria
| | - Lucian Beer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria; Department of Radiology and Cancer Research UK Cambridge Center, Cambridge CB2 0QQ, UK
| | - Thomas Haider
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Austria.
| |
Collapse
|
13
|
Yang XM, Chen XH, Lu JF, Zhou CM, Han JY, Chen CH. In vivo observation of cerebral microcirculation after experimental subarachnoid hemorrhage in mice. Neural Regen Res 2018; 13:456-462. [PMID: 29623930 PMCID: PMC5900508 DOI: 10.4103/1673-5374.228728] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Acute brain injury caused by subarachnoid hemorrhage is the major cause of poor prognosis. The pathology of subarachnoid hemorrhage likely involves major morphological changes in the microcirculation. However, previous studies primarily used fixed tissue or delayed injury models. Therefore, in the present study, we used in vivo imaging to observe the dynamic changes in cerebral microcirculation after subarachnoid hemorrhage. Subarachnoid hemorrhage was induced by perforation of the bifurcation of the middle cerebral and anterior cerebral arteries in male C57/BL6 mice. The diameter of pial arterioles and venules was measured by in vivo fluorescence microscopy at different time points within 180 minutes after subarachnoid hemorrhage. Cerebral blood flow was examined and leukocyte adhesion/albumin extravasation was determined at different time points before and after subarachnoid hemorrhage. Cerebral pial microcirculation was abnormal and cerebral blood flow was reduced after subarachnoid hemorrhage. Acute vasoconstriction occurred predominantly in the arterioles instead of the venules. A progressive increase in the number of adherent leukocytes in venules and substantial albumin extravasation were observed between 10 and 180 minutes after subarachnoid hemorrhage. These results show that major changes in microcirculation occur in the early stage of subarachnoid hemorrhage. Our findings may promote the development of novel therapeutic strategies for the early treatment of subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Xu-Hao Chen
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jian-Fei Lu
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Chang-Man Zhou
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Jing-Yan Han
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
| | - Chun-Hua Chen
- Department of Human Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
14
|
Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, Hua Y. MRI Characterization in the Acute Phase of Experimental Subarachnoid Hemorrhage. Transl Stroke Res 2016; 8:234-243. [PMID: 27896625 DOI: 10.1007/s12975-016-0511-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/06/2016] [Accepted: 11/08/2016] [Indexed: 12/12/2022]
Abstract
A number of mechanisms have been proposed for the early brain injury after subarachnoid hemorrhage (SAH). In this study, we investigated the radiographic characteristics and influence of gender on early brain injury after experimental SAH. SAH was induced by endovascular perforation in male and female rats. Magnetic resonance imaging was performed in a 7.0-T Varian MR scanner at 24 h after SAH. The occurrence and size of T2 lesions, ventricular dilation, and white matter injury (WMI) were determined on T2-weighted images (T2WI). The effects of SAH on heme oxygenase-1 and fibrin/fibrinogen were examined by Western blotting and immunohistochemistry. SAH severity was assessed using a MRI grading system, and neurological function was evaluated according to a modified Garcia's scoring system. T2 hyperintensity areas and enlarged ventricles were observed in T2WI coronal sections 24 h after SAH. The overall incidence of T2 lesions, WMI, and hydrocephalus was 54, 20, and 63%, respectively. Female rats had a higher incidence of T2 hyperintensity lesions and hydrocephalus, as well as larger T2 lesion volumes and higher average ventricular volume. SAH rats graded at 3-4 (our previously validated MRI grading scale) had larger T2 lesion volumes, more hydrocephalus, and worse neurological function compared with those graded at 0-2. In conclusion, T2 lesion, WMI, and hydrocephalus were the most prevalent MRI characteristics 24 h after experimental SAH. The T2 lesion area matched with fibrinogen/fibrin positive staining in the acute phase of SAH. SAH induced more severe brain injury in females compared to males in the acute phase of SAH.
Collapse
Affiliation(s)
- Dewei Guo
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.,Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - D Andrew Wilkinson
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - B Gregory Thompson
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Aditya S Pandey
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
15
|
Marrotte EJ, Mitsias P, Melvin L, Mahmood A, Tsivgoulis G, Varelas P. Real-Time Detection of Cerebral Artery Rebleeding by Transcranial Doppler Ultrasound: Hemodynamic Changes and Response to Treatment. J Clin Neurol 2016; 13:109-111. [PMID: 27868398 PMCID: PMC5242166 DOI: 10.3988/jcn.2017.13.1.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 01/05/2023] Open
Affiliation(s)
- Eric J Marrotte
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Leonard Melvin
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Georgios Tsivgoulis
- Second Department of Neurology, School of Medicine, University of Athens, Athens, Greece.
| | - Panayiotis Varelas
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.,Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|