1
|
Matsumoto Y, Imamura T, Kitahara R, Inoue Y, Saito T, Ueno M, Minagawa T, Ogawa T, Ishizuka O. Bi-layered Adipose Mesenchymal Cell Sheets Improve Bladder Compliance in Spinal Cord-Injured Rats. Tissue Eng Part A 2025; 31:409-418. [PMID: 39041611 DOI: 10.1089/ten.tea.2024.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
To improve bladder compliance in patients with low-compliance bladders, augmentation cystoplasty with the intestinal tract is performed. However, the use of the intestinal tract often leads to serious surgical complications. Tissue engineering technologies have the potential to improve bladder compliance without using the intestinal tract. In this study, we fabricated bi-layered adipose-derived mesenchymal cell (AMC) sheets and then determined whether the bi-layered AMC sheets could improve bladder compliance in rats with spinal cord injury (SCI). The abdominal adipose tissues of green fluorescence protein (GFP)-transfected Sprague-Dawley (SD) rats were harvested, and the attached and proliferating cells on type I collagen were used as AMCs. The AMCs were then cultured on temperature-responsive culture dishes. After reaching over-confluence, the AMCs that maintained cell-cell contacts were detached from the dishes and applied to a gelatin hydrogel sheet. Then, another detached AMC monolayer was accumulated on the AMC monolayer-applied gelatin. Prior to 4 weeks of transplantation, the levels of T8-9 in the spinal cords of recipient SD rats were partially transected. After producing the bi-layered AMC sheets and the rats with SCI, the detrusor muscles of the anterior bladder walls of the rats with SCI were incised, and the bi-layered AMC sheet was patch-transplanted onto the exposed bladder epithelium (n = 8). As a control, the sham operation was performed (n = 7). Four weeks after the transplantation, bladder capacity and bladder compliance in AMC sheet-transplanted SCI rats were significantly higher than those in sham-operated control SCI rats. The smooth muscle layers in AMC sheet-transplanted bladders were significantly larger than those in control bladders. In addition, the collagen fibers in the AMC sheet-transplanted bladders were significantly smaller than those in the control bladders. Some GFP-positive transplanted AMCs differentiated into smooth muscle actin- or desmin-positive cells. Furthermore, GFP-positive cells secreted transforming growth factor-β1 or vascular endothelial growth factor. Therefore, this study showed that bi-layered AMC sheets could improve bladder compliance and bladder tissues in SCI rats.
Collapse
Affiliation(s)
- Yuki Matsumoto
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuya Imamura
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryo Kitahara
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshihiro Inoue
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tetsuichi Saito
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Manabu Ueno
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomonori Minagawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Teruyuki Ogawa
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Osamu Ishizuka
- Department of Urology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
2
|
Lu P, Graham L, Tran AN, Villarta A, Koffler J, Tuszynski MH. A facilitatory role of astrocytes in axonal regeneration after acute and chronic spinal cord injury. Exp Neurol 2024; 379:114889. [PMID: 39019303 DOI: 10.1016/j.expneurol.2024.114889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/17/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Neuroscience dogma avers that astrocytic "scars" inhibit axonal regeneration after spinal cord injury (SCI). A recent report suggested however that astrocytes form "borders" around lesions that are permissive rather than inhibitory to axonal growth. We now provide further evidence supporting a facilitatory role of astrocytes in axonal regeneration after SCI. First, even 6months after SCI, injured axons are retained within regions of densely reactive astrocytes, in direct contact with astrocyte processes without being repelled. Second, 6 month-delayed implants of neural stem cells extend axons into reactive astrocyte borders surrounding lesions, densely contacting astrocyte surfaces. Third, bioengineered hydrogels implanted into sites of SCI re-orient reactive astrocytic processes to align along the rostral-to-caudal spinal cord axis resulting in successful regeneration into the lesion/scaffold in close association with astrocytic processes. Fourth, corticospinal axons regenerate into neural progenitor cells implanted six months after injury in close association with host astrocytic processes. Thus, astrocytes do not appear to inhibit axonal regeneration, and the close association of newly growing axons with astrocytic processes suggests a facilitatory role in axonal regeneration.
Collapse
Affiliation(s)
- Paul Lu
- VA San Diego Healthcare System, San Diego, CA, USA; Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Lori Graham
- Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Amanda N Tran
- Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Ashley Villarta
- Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Jacob Koffler
- VA San Diego Healthcare System, San Diego, CA, USA; Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA
| | - Mark H Tuszynski
- VA San Diego Healthcare System, San Diego, CA, USA; Dept. of Neurosciences, University of California - San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Ou YC, Huang CC, Kao YL, Ho PC, Tsai KJ. Stem Cell Therapy in Spinal Cord Injury-Induced Neurogenic Lower Urinary Tract Dysfunction. Stem Cell Rev Rep 2023; 19:1691-1708. [PMID: 37115409 DOI: 10.1007/s12015-023-10547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition that enormously affects an individual's health and quality of life. Neurogenic lower urinary tract dysfunction (NLUTD) is one of the most important sequelae induced by SCI, causing complications including urinary tract infection, renal function deterioration, urinary incontinence, and voiding dysfunction. Current therapeutic methods for SCI-induced NLUTD mainly target on the urinary bladder, but the outcomes are still far from satisfactory. Stem cell therapy has gained increasing attention for years for its ability to rescue the injured spinal cord directly. Stem cell differentiation and their paracrine effects, including exosomes, are the proposed mechanisms to enhance the recovery from SCI. Several animal studies have demonstrated improvement in bladder function using mesenchymal stem cells (MSCs) and neural stem cells (NSCs). Human clinical trials also provide promising results in urodynamic parameters after MSC therapy. However, there is still uncertainty about the ideal treatment window and application protocol for stem cell therapy. Besides, data on the therapeutic effects regarding NSCs and stem cell-derived exosomes in SCI-related NLUTD are scarce. Therefore, there is a pressing need for further well-designed human clinical trials to translate the stem cell therapy into a formal therapeutic option for SCI-induced NLUTD.
Collapse
Affiliation(s)
- Yin-Chien Ou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Chen Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
- Section of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yao-Lin Kao
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, 701, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital , College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Aceves M, Tucker A, Chen J, Vo K, Moses J, Amar Kumar P, Thomas H, Miranda D, Dampf G, Dietz V, Chang M, Lukose A, Jang J, Nadella S, Gillespie T, Trevino C, Buxton A, Pritchard AL, Green P, McCreedy DA, Dulin JN. Developmental stage of transplanted neural progenitor cells influences anatomical and functional outcomes after spinal cord injury in mice. Commun Biol 2023; 6:544. [PMID: 37208439 PMCID: PMC10199026 DOI: 10.1038/s42003-023-04893-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation is a promising therapeutic strategy for replacing lost neurons following spinal cord injury (SCI). However, how graft cellular composition influences regeneration and synaptogenesis of host axon populations, or recovery of motor and sensory functions after SCI, is poorly understood. We transplanted developmentally-restricted spinal cord NPCs, isolated from E11.5-E13.5 mouse embryos, into sites of adult mouse SCI and analyzed graft axon outgrowth, cellular composition, host axon regeneration, and behavior. Earlier-stage grafts exhibited greater axon outgrowth, enrichment for ventral spinal cord interneurons and Group-Z spinal interneurons, and enhanced host 5-HT+ axon regeneration. Later-stage grafts were enriched for late-born dorsal horn interneuronal subtypes and Group-N spinal interneurons, supported more extensive host CGRP+ axon ingrowth, and exacerbated thermal hypersensitivity. Locomotor function was not affected by any type of NPC graft. These findings showcase the role of spinal cord graft cellular composition in determining anatomical and functional outcomes following SCI.
Collapse
Affiliation(s)
- Miriam Aceves
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Ashley Tucker
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Joseph Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Katie Vo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Joshua Moses
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Hannah Thomas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Diego Miranda
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Gabrielle Dampf
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Valerie Dietz
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Matthew Chang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Aleena Lukose
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Julius Jang
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Sneha Nadella
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Tucker Gillespie
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Christian Trevino
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Andrew Buxton
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Anna L Pritchard
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Dylan A McCreedy
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Kitagawa T, Nagoshi N, Okano H, Nakamura M. A Narrative Review of Advances in Neural Precursor Cell Transplantation Therapies for Spinal Cord Injury. Neurospine 2022; 19:935-945. [PMID: 36597632 PMCID: PMC9816589 DOI: 10.14245/ns.2244628.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/11/2022] [Indexed: 12/27/2022] Open
Abstract
A spinal cord injury (SCI) is a destructive event that causes a permanent deficit in neurological function because of poor regenerative potential. Transplantation therapies have attracted attention for restoration of the injured spinal cord, and transplantation of neural precursor cells (NPCs) has been studied worldwide. Several groups have demonstrated functional recovery via this therapeutic intervention due to the multiple beneficial effects of NPC transplantation, such as reconstruction of neuronal circuits, remyelination of axons, and neuroprotection by trophic factors. Our group developed a method to induce NPCs from human induced pluripotent stem cells (hiPSCs) and established a transplantation strategy for SCI. Functional improvement in SCI animals treated with hiPSC-NPCs was observed, and the safety of transplanting these cells was evaluated from multiple perspectives. With selection of a safe cell line and pretreatment of the cells to encourage maturation and differentiation, hiPSC-NPC transplantation therapy is now in the clinical phase of testing for subacute SCI. In addition, a research challenge will be to expand the efficacy of transplantation therapy for chronic SCI. More comprehensive strategies involving combination treatments are required to treat this problematic situation.
Collapse
Affiliation(s)
- Takahiro Kitagawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan,Corresponding Author Narihito Nagoshi Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Lee S, Nam H, Joo KM, Lee SH. Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives. Neurospine 2022; 19:946-960. [PMID: 36351442 PMCID: PMC9816608 DOI: 10.14245/ns.2244658.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating central nervous system injury that leads to severe disabilities in motor and sensory functions, causing significant deterioration in patients' quality of life. Owing to the complexity of SCI pathophysiology, there has been no effective treatment for reversing neural tissue damage and recovering neurological functions. Several novel therapies targeting different stages of pathophysiological mechanisms of SCI have been developed. Among these, treatments using stem cells have great potential for the regeneration of damaged neural tissues. In this review, we have summarized recent preclinical and clinical studies focusing on neural stem cells (NSCs). NSCs are multipotent cells with specific differentiation capabilities for neural lineage. Several preclinical studies have demonstrated the regenerative effects of transplanted NSCs in SCI animal models through both paracrine effects and direct neuronal differentiation, restoring synaptic connectivity and neural networks. Based on the positive results of several preclinical studies, phase I and II clinical trials using NSCs have been performed. Despite several hurdles and issues that need to be addressed in the clinical use of NSCs in patients with SCI, gradual progress in the technical development and therapeutic efficacy of NSCs treatments has enhanced the prospects for cell-based treatments in SCI.
Collapse
Affiliation(s)
- Sungjoon Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Kyeung-Min Joo
- Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea,Corresponding Author Kyeung-Min Joo Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Sun-Ho Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea,Stem Cell and Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Korea,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea,Co-corresponding Author Sun-Ho Lee Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea
| |
Collapse
|
7
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
8
|
Pitonak M, Aceves M, Kumar PA, Dampf G, Green P, Tucker A, Dietz V, Miranda D, Letchuman S, Jonika MM, Bautista D, Blackmon H, Dulin JN. Effects of biological sex mismatch on neural progenitor cell transplantation for spinal cord injury in mice. Nat Commun 2022; 13:5380. [PMID: 36104357 PMCID: PMC9474813 DOI: 10.1038/s41467-022-33134-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
Despite advancement of neural progenitor cell transplantation to spinal cord injury clinical trials, there remains a lack of understanding of how biological sex of transplanted cells influences outcomes after transplantation. To address this, we transplanted GFP-expressing sex-matched, sex-mismatched, or mixed donor cells into sites of spinal cord injury in adult male and female mice. Biological sex of the donor cells does not influence graft neuron density, glial differentiation, formation of the reactive glial cell border, or graft axon outgrowth. However, male grafts in female hosts feature extensive hypervascularization accompanied by increased vascular diameter and perivascular cell density. We show greater T-cell infiltration within male-to-female grafts than other graft types. Together, these findings indicate a biological sex-specific immune response of female mice to male donor cells. Our work suggests that biological sex should be considered in the design of future clinical trials for cell transplantation in human injury. In this study, Pitonak et al. report that transplantation of neural progenitor cells derived from male donors trigger an immune rejection response following transplantation into sites of spinal cord injury in female mice.
Collapse
|
9
|
NPC transplantation rescues sci-driven cAMP/EPAC2 alterations, leading to neuroprotection and microglial modulation. Cell Mol Life Sci 2022; 79:455. [PMID: 35904607 PMCID: PMC9338125 DOI: 10.1007/s00018-022-04494-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/07/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Neural progenitor cell (NPC) transplantation represents a promising treatment strategy for spinal cord injury (SCI); however, the underlying therapeutic mechanisms remain incompletely understood. We demonstrate that severe spinal contusion in adult rats causes transcriptional dysregulation, which persists from early subacute to chronic stages of SCI and affects nearly 20,000 genes in total tissue extracts. Functional analysis of this dysregulated transcriptome reveals the significant downregulation of cAMP signalling components immediately after SCI, involving genes such as EPAC2 (exchange protein directly activated by cAMP), PKA, BDNF, and CAMKK2. The ectopic transplantation of spinal cord-derived NPCs at acute or subacute stages of SCI induces a significant transcriptional impact in spinal tissue, as evidenced by the normalized expression of a large proportion of SCI-affected genes. The transcriptional modulation pattern driven by NPC transplantation includes the rescued expression of cAMP signalling genes, including EPAC2. We also explore how the sustained in vivo inhibition of EPAC2 downstream signalling via the intrathecal administration of ESI-05 for 1 week impacts therapeutic mechanisms involved in the NPC-mediated treatment of SCI. NPC transplantation in SCI rats in the presence and absence of ESI-05 administration prompts increased rostral cAMP levels; however, NPC and ESI-05 treated animals exhibit a significant reduction in EPAC2 mRNA levels compared to animals receiving only NPCs treatment. Compared with transplanted animals, NPCs + ESI-05 treatment increases the scar area (as shown by GFAP staining), polarizes microglia into an inflammatory phenotype, and increases the magnitude of the gap between NeuN + cells across the lesion. Overall, our results indicate that the NPC-associated therapeutic mechanisms in the context of SCI involve the cAMP pathway, which reduces inflammation and provides a more neuropermissive environment through an EPAC2-dependent mechanism.
Collapse
|
10
|
Suzuki H, Imajo Y, Funaba M, Nishida N, Sakamoto T, Sakai T. Current Concepts of Neural Stem/Progenitor Cell Therapy for Chronic Spinal Cord Injury. Front Cell Neurosci 2022; 15:794692. [PMID: 35185471 PMCID: PMC8850278 DOI: 10.3389/fncel.2021.794692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a devastating condition that results in major neurological deficits and social burden. It continues to be managed symptomatically, and no real therapeutic strategies have been devised for its treatment. Neural stem/neural progenitor cells (NSCs/NPCs) being used for the treatment of chronic SCI in experimental SCI models can not only replace the lost cells and remyelinate axons in the injury site but also support their growth and provide neuroprotective factors. Currently, several clinical studies using NSCs/NPCs are underway worldwide. NSCs/NPCs also have the potential to differentiate into all three neuroglial lineages to regenerate neural circuits, demyelinate denuded axons, and provide trophic support to endogenous cells. This article explains the challenging pathophysiology of chronic SCI and discusses key NSC/NPC-based techniques having the greatest potential for translation over the next decade.
Collapse
|
11
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
12
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
13
|
Doblado LR, Martínez-Ramos C, García-Verdugo JM, Moreno-Manzano V, Pradas MM. Engineered axon tracts within tubular biohybrid scaffolds. J Neural Eng 2021; 18. [PMID: 34311448 DOI: 10.1088/1741-2552/ac17d8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Injuries to the nervous system that involve the disruption of axonal pathways are devastating to the individual and require specific tissue engineering strategies. Here we analyse a cells-biomaterials strategy to overcome the obstacles limiting axon regenerationin vivo, based on the combination of a hyaluronic acid (HA) single-channel tubular conduit filled with poly-L-lactide acid (PLA) fibres in its lumen, with pre-cultured Schwann cells (SCs) as cells supportive of axon extension. The HA conduit and PLA fibres sustain the proliferation of SC, which enhance axon growth acting as a feeder layer and growth factor pumps. The parallel unidirectional ensemble formed by PLA fibres and SC tries to recapitulate the directional features of axonal pathways in the nervous system. A dorsal root ganglion (DRG) explant is planted on one of the conduit's ends to follow axon outgrowth from the DRG. After a 21 d co-culture of the DRG + SC-seeded conduit ensemble, we analyse the axonal extension throughout the conduit by scanning, transmission electronic and confocal microscopy, in order to study the features of SC and the grown axons and their association. The separate effects of SC and PLA fibres on the axon growth are also experimentally addressed. The biohybrid thus produced may be considered a synthetic axonal pathway, and the results could be of use in strategies for the regeneration of axonal tracts.
Collapse
Affiliation(s)
- Laura Rodríguez Doblado
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Department of Medicine, Universitat Jaume I, Av. Vicent-Sos Baynat s/n, Castellón 12071, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universitat de València, CIBERNED, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Universidad Católica de Valencia, Valencia, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
14
|
Li Y, Shen PP, Wang B. Induced pluripotent stem cell technology for spinal cord injury: a promising alternative therapy. Neural Regen Res 2021; 16:1500-1509. [PMID: 33433463 PMCID: PMC8323703 DOI: 10.4103/1673-5374.303013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury has long been a prominent challenge in the trauma repair process. Spinal cord injury is a research hotspot by virtue of its difficulty to treat and its escalating morbidity. Furthermore, spinal cord injury has a long period of disease progression and leads to complications that exert a lot of mental and economic pressure on patients. There are currently a large number of therapeutic strategies for treating spinal cord injury, which range from pharmacological and surgical methods to cell therapy and rehabilitation training. All of these strategies have positive effects in the course of spinal cord injury treatment. This review mainly discusses the problems regarding stem cell therapy for spinal cord injury, including the characteristics and action modes of all relevant cell types. Induced pluripotent stem cells, which represent a special kind of stem cell population, have gained impetus in cell therapy development because of a range of advantages. Induced pluripotent stem cells can be developed into the precursor cells of each neural cell type at the site of spinal cord injury, and have great potential for application in spinal cord injury therapy.
Collapse
Affiliation(s)
- Yu Li
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ping-Ping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, School of Life Science, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
15
|
Zhang J, Wang RJ, Chen M, Liu XY, Ma K, Xu HY, Deng WS, Ye YC, Li WX, Chen XY, Sun HT. Collagen/heparan sulfate porous scaffolds loaded with neural stem cells improve neurological function in a rat model of traumatic brain injury. Neural Regen Res 2021; 16:1068-1077. [PMID: 33269752 PMCID: PMC8224125 DOI: 10.4103/1673-5374.300458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
One reason for the poor therapeutic effects of stem cell transplantation in traumatic brain injury is that exogenous neural stem cells cannot effectively migrate to the local injury site, resulting in poor adhesion and proliferation of neural stem cells at the injured area. To enhance the targeted delivery of exogenous stem cells to the injury site, cell therapy combined with neural tissue engineering technology is expected to become a new strategy for treating traumatic brain injury. Collagen/heparan sulfate porous scaffolds, prepared using a freeze-drying method, have stable physical and chemical properties. These scaffolds also have good cell biocompatibility because of their high porosity, which is suitable for the proliferation and migration of neural stem cells. In the present study, collagen/heparan sulfate porous scaffolds loaded with neural stem cells were used to treat a rat model of traumatic brain injury, which was established using the controlled cortical impact method. At 2 months after the implantation of collagen/heparan sulfate porous scaffolds loaded with neural stem cells, there was significantly improved regeneration of neurons, nerve fibers, synapses, and myelin sheaths in the injured brain tissue. Furthermore, brain edema and cell apoptosis were significantly reduced, and rat motor and cognitive functions were markedly recovered. These findings suggest that the novel collagen/heparan sulfate porous scaffold loaded with neural stem cells can improve neurological function in a rat model of traumatic brain injury. This study was approved by the Institutional Ethics Committee of Characteristic Medical Center of Chinese People’s Armed Police Force, China (approval No. 2017-0007.2) on February 10, 2019.
Collapse
Affiliation(s)
- Jian Zhang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Ren-Jie Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Miao Chen
- Graduate School, Affiliated Hospital of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xiao-Yin Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Ke Ma
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Hui-You Xu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wu-Sheng Deng
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Yi-Chao Ye
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force; Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Wei-Xin Li
- Graduate School, Logistics University of People's Armed Police Force, Tianjin, China
| | - Xu-Yi Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Hong-Tao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Traumatic Brain Injury and Neuroscience, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
16
|
Salehi-Pourmehr H, Hajebrahimi S, Rahbarghazi R, Pashazadeh F, Mahmoudi J, Maasoumi N, Sadigh-Eteghad S. Stem Cell Therapy for Neurogenic Bladder Dysfunction in Rodent Models: A Systematic Review. Int Neurourol J 2020; 24:241-257. [PMID: 33017895 PMCID: PMC7538284 DOI: 10.5213/inj.2040058.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Neurogenic bladder dysfunction (NGB) has an impact on the quality of life, which made it an important research subject in preclinical studies. The present review investigates the effect of stem cell (SC) therapy on bladder functional recovery after the onset of spinal cord injury (SCI), multiple sclerosis (MS), Parkinson disease (PD), and stroke in rodent models. METHODS All experiments evaluated the regenerative potential of SC on the management of NGB in rodent models up to June 2019, were included. From 1,189 relevant publications, 20 studies met our inclusion criteria of which 15 were conducted on SCI, 2 on PD, 2 on stroke, and 1 on MS in the rodent models. We conducted a meta-analysis on SCI experiments and for other neurological diseases, detailed urodynamic findings were reported. RESULTS The common SC sources used for therapeutical purposes were neural progenitor cells, bone marrow mesenchymal SCs, human amniotic fluid SCs, and human umbilical cord blood SCs. There was a significant improvement of micturition pressure in both contusion and transaction SCI models 4 and 8 weeks post-SC transplantation. Residual urine volume, micturition volume, and bladder capacity were improved 28 days after SC transplantation only in the transaction model of SCI. Nonvoiding contraction recovered only in 56 days post-cell transplantation in the contusion model. CONCLUSION Partial bladder recovery has been evident after SC therapy in SCI models. Due to limitations in the number of studies in other neurological diseases, additional studies are necessary to confirm the detailed mechanism for bladder recovery.
Collapse
Affiliation(s)
- Hanieh Salehi-Pourmehr
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
- Urology Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fariba Pashazadeh
- Research Center for Evidence-Based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narjes Maasoumi
- University Hospital Southampton, Southampton, United Kingdom
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- East-Azerbaijan Comprehensive Stroke Program, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, Faculty of Persian Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Assinck P, Sparling JS, Dworski S, Duncan GJ, Wu DL, Liu J, Kwon BK, Biernaskie J, Miller FD, Tetzlaff W. Transplantation of Skin Precursor-Derived Schwann Cells Yields Better Locomotor Outcomes and Reduces Bladder Pathology in Rats with Chronic Spinal Cord Injury. Stem Cell Reports 2020; 15:140-155. [PMID: 32559459 PMCID: PMC7363874 DOI: 10.1016/j.stemcr.2020.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cell transplantation for spinal cord injury (SCI) has largely been studied in sub-acute settings within 1–2 weeks of injury. In contrast, here we transplanted skin-derived precursors differentiated into Schwann cells (SKP-SCs) into the contused rat spinal cord 8 weeks post-injury (wpi). Twenty-one weeks later (29 wpi), SKP-SCs were found to have survived transplantation, integrated with host tissue, and mitigated the formation of a dense glial scar. Furthermore, transplanted SKP-SCs filled much of the lesion sites and greatly enhanced the presence of endogenous SCs, which myelinated thousands of sprouting/spared host axons in and around the injury site. In addition, SKP-SC transplantation improved locomotor outcomes and decreased pathological thickening of bladder wall. To date, functional improvements have very rarely been observed with cell transplantation beyond the sub-acute stage of injury. Hence, these findings indicate that skin-derived SCs are a promising candidate cell type for the treatment of chronic SCI. SKP-SCs injected 8 weeks after SCI survive long-term and integrate with host tissue SKP-SC transplants boosted the presence of endogenous SCs in the chronic SCI site Treated spinal cords showed enhanced growth and SC myelination of axons Treated rats displayed better locomotor outcomes with reduced bladder pathologies
Collapse
Affiliation(s)
- Peggy Assinck
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Joseph S Sparling
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Shaalee Dworski
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Greg J Duncan
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Di L Wu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Jie Liu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
| | - Jeff Biernaskie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Freda D Miller
- Neuroscience and Mental Health Program, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada; Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. NPJ Regen Med 2020; 5:12. [PMID: 32566251 PMCID: PMC7295991 DOI: 10.1038/s41536-020-0097-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Neural stem cell (NSC) grafts have demonstrated significant effects in animal models of spinal cord injury (SCI), yet their clinical translation remains challenging. Significant evidence suggests that the supporting matrix of NSC grafts has a crucial role in regulating NSC effects. Here we demonstrate that grafts based on porous collagen-based scaffolds (PCSs), similar to biomaterials utilized clinically in induced regeneration, can deliver and protect embryonic NSCs at SCI sites, leading to significant improvement in locomotion recovery in an experimental mouse SCI model, so that 12 weeks post-injury locomotion performance of implanted animals does not statistically differ from that of uninjured control animals. NSC-seeded PCS grafts can modulate key processes required to induce regeneration in SCI lesions including enhancing NSC neuronal differentiation and functional integration in vivo, enabling robust axonal elongation, and reducing astrogliosis. Our findings suggest that the efficacy and translational potential of emerging NSC-based SCI therapies could be enhanced by delivering NSC via scaffolds derived from well-characterized clinically proven PCS.
Collapse
|
19
|
Stem Cell Therapy for Neurogenic Bladder After Spinal Cord Injury: Clinically Possible? Int Neurourol J 2020; 24:S3-10. [PMID: 32482052 PMCID: PMC7285699 DOI: 10.5213/inj.2040150.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 12/29/2022] Open
Abstract
Neurogenic bladder (NB) after spinal cord injury (SCI) is a common complication that inhibits normal daily activities and reduces the quality of life. Regrettably, the current therapeutic methods for NB are inadequate. Therefore, numerous studies have been conducted to develop new treatments for NB associated with SCI. Moreover, a myriad of preclinical and clinical trials on the effects and safety of stem cell therapy in patients with SCI have been performed, and several studies have demonstrated improvements in urodynamic parameters, as well as in sensory and motor function, after stem cell therapy. These results are promising; however, further high-quality clinical studies are necessary to compensate for a lack of randomized trials, the modest number of participants, variation in the types of stem cells used, and inconsistency in routes of administration.
Collapse
|
20
|
Abolhasanpour N, Hajebrahimi S, Ebrahimi-Kalan A, Mehdipour A, Salehi-Pourmehr H. Urodynamic Parameters in Spinal Cord Injury-Induced Neurogenic Bladder Rats after Stem Cell Transplantation: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:2-15. [PMID: 32038054 PMCID: PMC6983271 DOI: 10.30476/ijms.2019.45318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurogenic bladder (NGB) secondary to spinal cord injury (SCI) is accompanied with several complications such as urinary tract deterioration, urinary incontinence, and consequently lower quality of life (QoL),
significant morbidities, and occasionally death. Current therapeutic methods have some side effects and there is no treatment for the upper urinary tract injuries. Stem cell therapy is a promising method for
treating this condition. However, the best timing and the best route of its transplantation have not yet been determined. Animal models of SCI, especially in rats, are the most commonly used method for evaluating
the efficacy of cell therapy in NGB improvement, and the most common assessment method is the urodynamic studies (UDS). However, there are variations in the range of UDS parameters among the published studies.
The current review aimed to discuss the effect of stem cell transplantation on bladder dysfunction recovery based on urodynamic parameters after SCI in rats. For this purpose, the cell source, doses, the route
of administration, and the complete UDS equipment and its parameters were summarized in SCI models in rats. In some urodynamic test results, to some extent, an improvement in the lower urinary system function
was observed in each treatment group. However, this improvement was far from full functional recovery. The average cell dose was about 1 million cells in every injected site. In most studies, the stem cells (SCs)
were transplanted 9 days after the injury using PE-50 and PE-60. Many researchers have recommended further experimental and clinical studies to confirm this treatment modality.
Collapse
Affiliation(s)
- Nasrin Abolhasanpour
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sakineh Hajebrahimi
- Research Center for Evidence Based-Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Urology, Imam Reza Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognitive, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence Based-Medicine, Iranian EBM Centre: A Joanna Briggs Institute Affiliated Group, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Qian K, Xu TY, Wang X, Ma T, Zhang KX, Yang K, Qian TD, Shi J, Li LX, Wang Z. Effects of neural stem cell transplantation on the motor function of rats with contusion spinal cord injuries: a meta-analysis. Neural Regen Res 2020; 15:748-758. [PMID: 31638100 PMCID: PMC6975148 DOI: 10.4103/1673-5374.266915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective To judge the efficacies of neural stem cell (NSC) transplantation on functional recovery following contusion spinal cord injuries (SCIs). Data sources Studies in which NSCs were transplanted into a clinically relevant, standardized rat model of contusion SCI were identified by searching the PubMed, Embase and Cochrane databases, and the extracted data were analyzed by Stata 14.0. Data selection Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso, Beattie, and Bresnahan lo-comotor rating scale. Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups. Outcome measures The restoration of motor function was assessed by the Basso, Beattie, and Bresnahan locomotor rating scale. Results We identified 1756 non-duplicated papers by searching the aforementioned electronic databases, and 30 full-text articles met the inclusion criteria. A total of 37 studies reported in the 30 articles were included in the meta-analysis. The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs, to a moderate extent (pooled standardized mean difference (SMD) = 0.73; 95% confidence interval (CI): 0.47-1.00; P < 0.001). NSCs obtained from different donor species (rat: SMD = 0.74; 95% CI: 0.36-1.13; human: SMD = 0.78; 95% CI: 0.31-1.25), at different donor ages (fetal: SMD = 0.67; 95% CI: 0.43-0.92; adult: SMD = 0.86; 95% CI: 0.50-1.22) and from different origins (brain-derived: SMD = 0.59; 95% CI: 0.27-0.91; spinal cord-derived: SMD = 0.51; 95% CI: 0.22-0.79) had similar efficacies on improved functional recovery; however, adult induced pluripotent stem cell-derived NSCs showed no significant efficacies. Furthermore, the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery (SMD = 0.45; 95% CI: 0.21-0.70). However, shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies (acute: SMD = 1.22; 95% CI: 0.81-1.63; subacute: SMD = 0.75; 95% CI: 0.42-1.09). For chronic injuries, NSC implantation did not significantly improve functional recovery (SMD = 0.25; 95% CI: -0.16 to 0.65). Conclusion NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.
Collapse
Affiliation(s)
- Kai Qian
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tuo-Ye Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xi Wang
- Department of Intensive Care Unit, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Tao Ma
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Neurosurgery, the Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Kai-Xin Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province; Department of Neurosurgery, Huangshan City People's Hospital, Huangshan, Anhui Province, China
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University; Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Teng-Da Qian
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing; Department of Neurosurgery, Jintan Hospital Affiliated to Jiangsu University, Jintan, Jiangsu Province, China
| | - Jing Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Li-Xin Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Wang
- Department of Gerontology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
22
|
Hou L, Li KE, Hu Y, Bian Y, Ji W, Shi K, Li Y, Chen M, Li J, Liu X, Qiao D. Evaluation of a rat model of exercise-induced fatigue using treadmill running with progressively increasing load. AN ACAD BRAS CIENC 2019; 91:e20180957. [PMID: 31800698 DOI: 10.1590/0001-3765201920180957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/23/2019] [Indexed: 11/22/2022] Open
Abstract
The mechanism behind exercise-induced fatigue is a significant topic in the field of sports physiology. Therefore, establishing and evaluating an acute exercise-induced fatigue animal model that explores the limits of the motor system may provide greater insight into these mechanisms. Heart rate is an important quantitative parameter that accurately reflects the immediate change in physical function due to exercise load. And there is likely to be an important correlation between heart rate and behavioral performance. In this study, changes in heart rate and behavioral indexes during exercise-induced fatigue were quantitatively analyzed in rats using heart rate telemetry and video methods respectively. The behavioral indexes were used as independent variables and the degree of fatigue was used as the forecast value. Ternary quadratic function curve fitting was used to deduce a formula to calculate a fatigue score: Y = 15.2548+0.4346∙xa-0.1154∙xb+0.6826∙xc+0.0044∙xa∙xb-0.0021∙xb∙xc-0.0013∙xc∙xa-0.0023∙xa2-0.0016∙xb2 (r2=0.906). It identified a linear relationship between heart rate and exercise intensity, with a plateau in heart rate occurring during difference periods. It will serve as an effective reference for the modeling of exercise-induced fatigue. In addition, it also provides a theoretical method for analyzing the correlation between peripheral and central parameters.
Collapse
Affiliation(s)
- Lijuan Hou
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - K E Li
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Yanru Hu
- Central South University, No. 932 South Lushan Road, Changsha, Hunan, 410083, P.R. China
| | - Yijun Bian
- University of Science and Technology of China, No. 96, JinZhai Road Baohe District, Hefei, Anhui, 230027, P.R. China
| | - Wei Ji
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Kaixuan Shi
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Yiting Li
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Mengjiao Chen
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Jiaxin Li
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Xiaoli Liu
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| | - Decai Qiao
- Beijing Normal University, No. 19, XinJieKouWai St., HaiDian District, Beijing, 100875, P.R. China
| |
Collapse
|
23
|
Recent advances in the therapeutic uses of chondroitinase ABC. Exp Neurol 2019; 321:113032. [PMID: 31398353 DOI: 10.1016/j.expneurol.2019.113032] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/19/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
Many studies, using pre-clinical models of SCI, have demonstrated the efficacy of chondroitinase ABC as a treatment for spinal cord injury and this has been confirmed in laboratories worldwide and in several animal models. The aim of this review is report the current state of research in the field and to compare the relative efficacies of these new interventions to improve outcomes in both acute and chronic models of SCI. We also report new methods of chondroitinase delivery and the outcomes of two clinical trials using the enzyme to treat spinal cord injury in dogs and disc herniation in human patients. Recent studies have assessed the outcomes of combining chondroitinase with other strategies known to promote recovery following spinal cord injury and new approaches. Evidence is emerging that one of the most powerful combinations is that of chondroitinase with cell transplants. The particular benefits of each of the different cell types used for these transplant experiments are discussed. Combining chondroitinase with rehabilitation also improves outcomes. Gene therapy is an efficient method of enzyme delivery to the injured spinal cord and circumvents the issue of the enzyme's thermo-instability. Other methods of delivery, such as via nanoparticles or synthetic scaffolds, have shown promise; however, the outcomes from these experiments suggest that these methods of delivery require further optimization to achieve similar levels of efficacy to that obtained by a gene therapy approach. Pre-clinical models have also shown chondroitinase is efficacious in the treatment of other conditions, such as peripheral nerve injury, stroke, coronary reperfusion, Parkinson's disease and certain types of cancer. The wide range of conditions where the benefits of chondroitinase treatment have been demonstrated reflects the complex roles that chondroitin sulphate proteoglycans (its substrate) play in health and disease and warrants the enzyme's further development as a therapy.
Collapse
|
24
|
Shimba K, Chang CH, Asahina T, Moriya F, Kotani K, Jimbo Y, Gladkov A, Antipova O, Pigareva Y, Kolpakov V, Mukhina I, Kazantsev V, Pimashkin A. Functional Scaffolding for Brain Implants: Engineered Neuronal Network by Microfabrication and iPSC Technology. Front Neurosci 2019; 13:890. [PMID: 31555074 PMCID: PMC6727854 DOI: 10.3389/fnins.2019.00890] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/08/2019] [Indexed: 01/10/2023] Open
Abstract
Neuroengineering methods can be effectively used in the design of new approaches to treat central nervous system and brain injury caused by neurotrauma, ischemia, or neurodegenerative disorders. During the last decade, significant results were achieved in the field of implant (scaffold) development using various biocompatible and biodegradable materials carrying neuronal cells for implantation into the injury site of the brain to repair its function. Neurons derived from animal or human induced pluripotent stem (iPS) cells are expected to be an ideal cell source, and induction methods for specific cell types have been actively studied to improve efficacy and specificity. A critical goal of neuro-regeneration is structural and functional restoration of the injury site. The target treatment area has heterogeneous and complex network topology with various types of cells that need to be restored with similar neuronal network structure to recover correct functionality. However, current scaffold-based technology for brain implants operates with homogeneous neuronal cell distribution, which limits recovery in the damaged area of the brain and prevents a return to fully functional biological tissue. In this study, we present a neuroengineering concept for designing a neural circuit with a pre-defined unidirectional network architecture that provides a balance of excitation/inhibition in the scaffold to form tissue similar to that in the injured area using various types of iPS cells. Such tissue will mimic the surrounding niche in the injured site and will morphologically and topologically integrate into the brain, recovering lost function.
Collapse
Affiliation(s)
- Kenta Shimba
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Chih-Hsiang Chang
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takahiro Asahina
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumika Moriya
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Kotani
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuhiko Jimbo
- Department of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Arseniy Gladkov
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Molecular and Cellular Technologies, Central Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Oksana Antipova
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Yana Pigareva
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Vladimir Kolpakov
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Irina Mukhina
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Molecular and Cellular Technologies, Central Research Laboratory, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victor Kazantsev
- Department of Neurotechnology, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Pimashkin
- Department of Neuroengineering, Center of Translational Technologies, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Department of Neurotechnology, N. I. Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
25
|
Beckingham LJ, Todorovic M, Tello Velasquez J, Vial ML, Chen M, Ekberg JAK, St John JA. Three-dimensional cell culture can be regulated by vibration: low-frequency vibration increases the size of olfactory ensheathing cell spheroids. J Biol Eng 2019; 13:41. [PMID: 31131022 PMCID: PMC6524253 DOI: 10.1186/s13036-019-0176-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/07/2019] [Indexed: 02/01/2023] Open
Abstract
Background Olfactory ensheathing cell (OEC) transplantation is emerging as a promising therapy for spinal cord injuries. However, outcomes are inconsistent, and the method needs improvement. Currently, cells are injected into the injury site as a suspension, and often fail to form a three-dimensional (3D) network crucial for both survival of the transplanted cells, and for regeneration of severed axons. 3D culture systems are therefore likely to improve the method. Of the many 3D culture systems available, the spheroid-producing naked liquid marble (NLM) technique is particularly advantageous compared to other platforms as it rapidly generates cell spheroids which can easily be extracted for further handling. To improve production of the spheroids, we designed and tested a device which allows fine control over vibrational stimuli to liquid marble cell cultures. We applied vibrational frequencies of 20, 60, and 80 Hz with consistent amplitude to NLM containing OECs and assessed the size and number of the 3D cell spheroids generated as well as the migratory capacity of cells cultured in the vibrated spheroids. Results Vibrating the NLMs led to fewer and dramatically larger spheroids in comparison to non-vibrated NLMs. Of the frequencies tested, 60 Hz caused over 70-fold increase in spheroid volume. When transferred to a culture plate, the larger spheroids retained their structure after 72 h in culture, and cells that migrated out of the spheroids covered a significantly larger area compared to cells migrating out of spheroids formed at all the other frequencies tested. Conclusions We have shown that vibration can be used to regulate the formation of cell spheroids in NLM cultures. The ability to modulate the size of spheroids is useful for a range of 3D cell culture models and for preparing cells for in vivo transplantation.
Collapse
Affiliation(s)
- Lachlan J Beckingham
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Michael Todorovic
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,3Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,4School of Nursing and Midwifery, Griffith University, Gold Coast, Australia
| | - Johana Tello Velasquez
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Marie-Laure Vial
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,3Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Mo Chen
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,3Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Jenny A K Ekberg
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,3Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - James A St John
- The Clem Jones Centre for Neurobiology and Stem Cell Research, Brisbane, Australia.,2Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,3Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
26
|
Pereira IM, Marote A, Salgado AJ, Silva NA. Filling the Gap: Neural Stem Cells as A Promising Therapy for Spinal Cord Injury. Pharmaceuticals (Basel) 2019; 12:ph12020065. [PMID: 31035689 PMCID: PMC6631328 DOI: 10.3390/ph12020065] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) can lead to severe motor, sensory and social impairments having a huge impact on patients’ lives. The complex and time-dependent SCI pathophysiology has been hampering the development of novel and effective therapies. Current treatment options include surgical interventions, to stabilize and decompress the spinal cord, and rehabilitative care, without providing a cure for these patients. Novel therapies have been developed targeting different stages during trauma. Among them, cell-based therapies hold great potential for tissue regeneration after injury. Neural stem cells (NSCs), which are multipotent cells with inherent differentiation capabilities committed to the neuronal lineage, are especially relevant to promote and reestablish the damaged neuronal spinal tracts. Several studies demonstrate the regenerative effects of NSCs in SCI after transplantation by providing neurotrophic support and restoring synaptic connectivity. Therefore, human clinical trials have already been launched to assess safety in SCI patients. Here, we review NSC-based experimental studies in a SCI context and how are they currently being translated into human clinical trials.
Collapse
Affiliation(s)
- Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
27
|
Sankavaram SR, Hakim R, Covacu R, Frostell A, Neumann S, Svensson M, Brundin L. Adult Neural Progenitor Cells Transplanted into Spinal Cord Injury Differentiate into Oligodendrocytes, Enhance Myelination, and Contribute to Recovery. Stem Cell Reports 2019; 12:950-966. [PMID: 31031190 PMCID: PMC6524946 DOI: 10.1016/j.stemcr.2019.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022] Open
Abstract
Long-term survival and integration of neural progenitor cells (NPCs) transplanted following spinal cord injury (SCI) have been observed. However, questions concerning the differentiation choice, the mechanism of action, and the contribution of NPCs to functional recovery remains unanswered. Therefore, we investigated the differentiation of NPCs, global transcriptomal changes in transplanted NPCs, the effect of NPCs on neuroinflammation, and the causality between NPC transplantation and functional recovery. We found that NPCs transplanted following SCI differentiate mainly into oligodendrocytes and enhance myelination, upregulate genes related to synaptic signaling and mitochondrial activity, and downregulate genes related to cytokine production and immune system response. NPCs suppress the expression of pro-inflammatory cytokines/chemokines; moreover, NPC ablation confirm that NPCs were responsible for enhanced recovery in hindlimb locomotor function. Understanding the reaction of transplanted NPCs is important for exploiting their full potential. Existence of causality implies that NPCs are useful in the treatment of SCI. NPCs differentiate mainly into oligodendrocytes and enhance myelination NPCs suppress expression of pro-inflammatory cytokines/chemokines Causality exists between transplantation of NPCs and functional recovery NPCs upregulate genes related to synaptic signaling, oligodendrocytes/myelination
Collapse
Affiliation(s)
- Sreenivasa Raghavan Sankavaram
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Ramil Hakim
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ruxandra Covacu
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arvid Frostell
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Susanne Neumann
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Mikael Svensson
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Lou Brundin
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; Center of Molecular Medicine, Karolinska Institutet, 17177 Stockholm, Sweden; Departments of Neurology and Neurosurgery, Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
28
|
Salehi-pourmehr H, Rahbarghazi R, Mahmoudi J, Roshangar L, Chapple CR, Hajebrahimi S, Abolhasanpour N, Azghani MR. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury. Life Sci 2019; 221:20-28. [PMID: 30735734 DOI: 10.1016/j.lfs.2019.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
|
29
|
Review of the Current Knowledge on the Role of Stem Cell Transplantation in Neurorehabilitation. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3290894. [PMID: 30931325 PMCID: PMC6413404 DOI: 10.1155/2019/3290894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/14/2022]
Abstract
The management involving stem cell (SC) therapy along with physiotherapy offers tremendous chance for patients after spinal cord injury (SCI), traumatic brain injury (TBI), stroke, etc. However, there are still only a limited number of reports assessing the impact of stem cells (SCs) on the rehabilitation process and/or the results of the simultaneous use of SC and rehabilitation. Additionally, since there is still not enough convincing evidence about the effect of SCT on humans, e.g., in stroke, there have been no studies conducted concerning rehabilitation program formation and expected outcomes. It has been shown that bone marrow-derived mesenchymal stem cell (BMSCs) transplantation in rats combined with hyperbaric oxygen therapy (HBO) can promote the functional recovery of hind limbs after SCI. An anti-inflammatory effect has been shown. One case study showed that, after the simultaneous use of SCT and rehabilitation, an SCI patient progressed from ASIA Grade A to ASIA Grade C. Such promising data in the case of complete tetraplegia could be a breakthrough in the treatment of neurologic disorders in humans. Although SCT appears as a promising method for the treatment of neurological conditions, e.g., complete tetraplegia, much work should be done towards the development of rehabilitation protocols.
Collapse
|
30
|
Ruzicka J, Romanyuk N, Jirakova K, Hejcl A, Janouskova O, Machova LU, Bochin M, Pradny M, Vargova L, Jendelova P. The Effect of iPS-Derived Neural Progenitors Seeded on Laminin-Coated pHEMA-MOETACl Hydrogel with Dual Porosity in a Rat Model of Chronic Spinal Cord Injury. Cell Transplant 2019; 28:400-412. [PMID: 30654639 PMCID: PMC6628561 DOI: 10.1177/0963689718823705] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI), is a devastating condition leading to the loss of locomotor and sensory function below the injured segment. Despite some progress in acute SCI treatment using stem cells and biomaterials, chronic SCI remains to be addressed. We have assessed the use of laminin-coated hydrogel with dual porosity, seeded with induced pluripotent stem cell-derived neural progenitors (iPSC-NPs), in a rat model of chronic SCI. iPSC-NPs cultured for 3 weeks in hydrogel in vitro were positive for nestin, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2). These cell-polymer constructs were implanted into a balloon compression lesion, 5 weeks after lesion induction. Animals were behaviorally tested, and spinal cord tissue was immunohistochemically analyzed 28 weeks after SCI. The implanted iPSC-NPs survived in the scaffold for the entire experimental period. Host axons, astrocytes and blood vessels grew into the implant and an increased sprouting of host TH+ fibers was observed in the lesion vicinity. The implantation of iPSC-NP-LHM cell-polymer construct into the chronic SCI led to the integration of material into the injured spinal cord, reduced cavitation and supported the iPSC-NPs survival, but did not result in a statistically significant improvement of locomotor recovery.
Collapse
Affiliation(s)
- Jiri Ruzicka
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Nataliya Romanyuk
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Klara Jirakova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Ales Hejcl
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Olga Janouskova
- 2 Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, CAS, Prague, Czech Republic
| | - Lucia Urdzikova Machova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic
| | - Marcel Bochin
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic.,3 Department of Neurosciences, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Pradny
- 2 Department of Polymer Networks and Gels, Institute of Macromolecular Chemistry, CAS, Prague, Czech Republic
| | - Lydia Vargova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic.,3 Department of Neurosciences, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pavla Jendelova
- 1 Department of Tissue Culture and Stem Cells, Institute of Experimental Medicine, CAS, Prague, Czech Republic.,3 Department of Neurosciences, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
31
|
Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018; 661:119-125. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a serious devastating condition and it has a high mortality rate and morbidity rate. The early pathological changes in the immediate phase of SCI may play a major part in the development of secondary injury. Alterations in the expression of many long noncoding RNAs (lncRNAs) have been shown to play fundamental roles in the diseases of the central nervous system. However, the roles of lncRNAs and messenger RNAs (mRNAs) in the immediate phase of SCI are not clear. We examined the expression of mRNAs and lncRNAs in a rat model at 2 h after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. 772 DE lncRNAs and 992 DE mRNAs were identified in spinal cord samples in the immediate phase following SCI compared with control samples. Moreover, Gene Ontology (GO) term annotation results showed that CXCR chemokine receptor binding, neutrophil apoptotic process, neutrophil migration, neutrophil extravasation, macrophage differentiation, monocyte chemotaxis and cellular response to interleukin-1 (IL-1) were the main significantly enriched GO terms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in toll-like receptor signaling pathway, p53 signaling pathway, MAPK signaling pathway and Jak-STAT signaling pathway. IL6, MBOAT4, FOS, TNF, JUN, STAT3, CSF2, MYC, CCL2 and FGF2 were the top 10 high-degree hub nodes and may be important targets in the immediate phase of SCI. The current study on provides novel insights into how lncRNAs and mRNAs regulate the pathogenesis of the immediate phase after SCI.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
32
|
Thompson R, Sakiyama-Elbert S. Using biomaterials to promote pro-regenerative glial phenotypes after nervous system injuries. ACTA ACUST UNITED AC 2018; 13:024104. [PMID: 29186011 DOI: 10.1088/1748-605x/aa9e23] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Trauma to either the central or peripheral nervous system (PNS) often leads to significant loss of function and disability in patients. This high rate of long-term disability is due to the overall limited regenerative potential of nervous tissue, even though the PNS has more regenerative potential than the central nervous system (CNS). The supporting glial cells in the periphery, Schwann cells, are part of the reason for the improved recovery observed in the PNS. In the CNS, the glial populations, astrocytes and oligodendrocytes (OLs), do not have as much potential to promote regeneration and are at times inhibitory to neuronal growth. In particular, the inhibitory roles astrocytes play following trauma has led to a historical focus on neurons and OLs instead of astrocytes. Recently, this focus has shifted as new, regenerative astrocyte phenotypes have been described. From these observations, glial cells clearly play critical roles in native recovery pathways in both the CNS and PNS. This makes the ability to manipulate both transplanted and native glial cell phenotypes a potentially successful strategy to improve nerve injury outcomes. This review focuses on factors that cause glial cells to adopt repair phenotypes and biomaterials that manipulate and/or harness these glial phenotypes.
Collapse
Affiliation(s)
- Russell Thompson
- Department of Biomedical Engineering, University of Texas at Austin 107 W Dean Keeton, Austin, TX 78712, United States of America. Department of Biomedical Engineering, Washington University in St. Louis, 1 Brooking Drive, St. Louis, MO 63130, United States of America
| | | |
Collapse
|
33
|
Dulin JN, Adler AF, Kumamaru H, Poplawski GHD, Lee-Kubli C, Strobl H, Gibbs D, Kadoya K, Fawcett JW, Lu P, Tuszynski MH. Injured adult motor and sensory axons regenerate into appropriate organotypic domains of neural progenitor grafts. Nat Commun 2018; 9:84. [PMID: 29311559 PMCID: PMC5758751 DOI: 10.1038/s41467-017-02613-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/14/2017] [Indexed: 02/02/2023] Open
Abstract
Neural progenitor cell (NPC) transplantation has high therapeutic potential in neurological disorders. Functional restoration may depend on the formation of reciprocal connections between host and graft. While it has been reported that axons extending out of neural grafts in the brain form contacts onto phenotypically appropriate host target regions, it is not known whether adult, injured host axons regenerating into NPC grafts also form appropriate connections. We report that spinal cord NPCs grafted into the injured adult rat spinal cord self-assemble organotypic, dorsal horn-like domains. These clusters are extensively innervated by regenerating adult host sensory axons and are avoided by corticospinal axons. Moreover, host axon regeneration into grafts increases significantly after enrichment with appropriate neuronal targets. Together, these findings demonstrate that injured adult axons retain the ability to recognize appropriate targets and avoid inappropriate targets within neural progenitor grafts, suggesting that restoration of complex circuitry after SCI may be achievable.
Collapse
Affiliation(s)
- Jennifer N Dulin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew F Adler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiromi Kumamaru
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Gunnar H D Poplawski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Corinne Lee-Kubli
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hans Strobl
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Daniel Gibbs
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Ken Kadoya
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Orthopaedic Surgery, Hokkaido University, Sapporo, 060-8638, Japan
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SP, UK
| | - Paul Lu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Veterans Administration Medical Center, San Diego, CA, 92161, USA
| | - Mark H Tuszynski
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Veterans Administration Medical Center, San Diego, CA, 92161, USA.
| |
Collapse
|
34
|
Deng Z, Xu C. Role of the neuroendocrine antimicrobial peptide catestatin in innate immunity and pain. Acta Biochim Biophys Sin (Shanghai) 2017; 49:967-972. [PMID: 28981685 DOI: 10.1093/abbs/gmx083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022] Open
Abstract
Catestatin (CST) is a neuroendocrine peptide which is derived from the chromogranin A. It has been demonstrated that CST can affect a wide range of processes, such as innate immunity, inflammatory and autoimmune reactions, and several homeostatic regulations. Furthermore, CST is positive against several kinds of bacterial strains at micromolecular range, which shows its antimicrobial activity. Recently, the role of CST in acute and chronic pain has attracted much attention. In this review, we discussed the latest research findings of CST and its role in innate immunity and pain.
Collapse
Affiliation(s)
- Zeyu Deng
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| | - Changshui Xu
- Department of Physiology, Basic Medical College of Nanchang University, Nanchang 330006, China
| |
Collapse
|
35
|
Thompson RE, Lake A, Kenny P, Saunders MN, Sakers K, Iyer NR, Dougherty JD, Sakiyama-Elbert SE. Different Mixed Astrocyte Populations Derived from Embryonic Stem Cells Have Variable Neuronal Growth Support Capacities. Stem Cells Dev 2017; 26:1597-1611. [PMID: 28851266 DOI: 10.1089/scd.2017.0121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Central nervous system injury often leads to functional impairment due, in part, to the formation of an inhibitory glial scar following injury that contributes to poor regeneration. Astrocytes are the major cellular components of the glial scar, which has led to the belief that they are primarily inhibitory following injury. Recent work has challenged this by demonstrating that some astrocytes are required for spinal cord regeneration and astrocytic roles in recovery depend on their phenotype. In this work, two mixed populations containing primarily either fibrous or protoplasmic astrocytes were derived from mouse embryonic stem cells (mESCs). Motoneuron and V2a interneuron growth on live cultures, freeze-lysed cultures, or decellularized extracellular matrix (ECM) from astrocytes were assessed. Both neuronal populations were found to extend significantly longer neurites on protoplasmic-derived substrates than fibrous-derived substrates. Interestingly, neurons extended longer neurites on protoplasmic-derived ECM than fibrous-derived ECM. ECM proteins were compared with in vivo astrocyte expression profiles, and it was found that the ESC-derived ECMs were enriched for astrocyte-specific proteins. Further characterization revealed that protoplasmic ECM had significantly higher levels of axon growth promoting proteins, while fibrous ECM had significantly higher levels of proteins that inhibit axon growth. Supporting this observation, knockdown of spondin-1 improved neurite growth on fibrous ECM, while laminin α5 and γ1 knockdown decreased neurite growth on protoplasmic ECM. These methods allow for scalable production of specific astrocyte subtype-containing populations with different neuronal growth support capacities, and can be used for further studies of the functional importance of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Russell E Thompson
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| | - Allison Lake
- 3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri.,4 Department of Psychiatry, Washington University School of Medicine , St. Louis, Missouri
| | - Peter Kenny
- 2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| | - Michael N Saunders
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| | - Kristina Sakers
- 3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri.,4 Department of Psychiatry, Washington University School of Medicine , St. Louis, Missouri
| | - Nisha R Iyer
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri
| | - Joseph D Dougherty
- 3 Department of Genetics, Washington University School of Medicine , St. Louis, Missouri.,4 Department of Psychiatry, Washington University School of Medicine , St. Louis, Missouri
| | - Shelly E Sakiyama-Elbert
- 1 Department of Biomedical Engineering, Washington University in St. Louis , St. Louis, Missouri.,2 Department of Biomedical Engineering, University of Texas at Austin , Austin, Texas
| |
Collapse
|
36
|
Orlandin JR, Ambrósio CE, Lara VM. Glial scar-modulation as therapeutic tool in spinal cord injury in animal models. Acta Cir Bras 2017; 32:168-174. [PMID: 28300871 DOI: 10.1590/s0102-865020170209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Spinal Cord injury represents, in veterinary medicine, most of the neurological attendances and may result in permanent disability, death or euthanasia. Due to inflammation resulting from trauma, it originates the glial scar, which is a cell interaction complex system. Its function is to preserve the healthy circuits, however, it creates a physical and molecular barrier that prevents cell migration and restricts the neuroregeneration ability. METHODS This review aims to present innovations in the scene of treatment of spinal cord injury, approaching cell therapy, administration of enzyme, anti-inflammatory, and other active principles capable of modulating the inflammatory response, resulting in glial scar reduction and subsequent functional improvement of animals. RESULTS Some innovative therapies as cell therapy, administration of enzymes, immunosuppressant or other drugs cause the modulation of inflammatory response proved to be a promising tool for the reduction of gliosis. CONCLUSION Those tools promise to reduce gliosis and promote locomotor recovery in animals with spinal cord injury.
Collapse
Affiliation(s)
- Jéssica Rodrigues Orlandin
- Veterinary Medicine Department, Faculty of Animal Science and Food Engineering, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | | |
Collapse
|
37
|
Salem N, Salem MY, Elmaghrabi MM, Elawady MA, Elawady MA, Sabry D, Shamaa A, Elkasapy AHH, Ibrhim N, Elamir A. Does vitamin C have the ability to augment the therapeutic effect of bone marrow-derived mesenchymal stem cells on spinal cord injury? Neural Regen Res 2017; 12:2050-2058. [PMID: 29323045 PMCID: PMC5784354 DOI: 10.4103/1673-5374.221163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Methylprednisolone (MP) is currently the only drug confirmed to exhibit a neuroprotective effect on acute spinal cord injury (SCI). Vitamin C (VC) is a natural water-soluble antioxidant that exerts neuroprotective effects through eliminating free radical damage to nerve cells. Bone marrow mesenchymal stem cells (BMMSCs), as multipotent stem cells, are promising candidates in SCI repair. To evaluate the therapeutic effects of MP, VC and BMMSCs on traumatic SCI, 80 adult male rats were randomly divided into seven groups: control, SCI (SCI induction by weight-drop method), MP (SCI induction, followed by administration of 30 mg/kg MP via the tail vein, once every other 6 hours, for five times), VC (SCI induction, followed by intraperitoneal administration of 100 mg/kg VC once a day, for 28 days), MP + VC (SCI induction, followed by administration of MP and VC as the former), BMMSCs (SCI induction, followed by injection of 3 × 106 BMMSCs at the injury site), and BMMSCs + VC (SCI induction, followed by BMMSCs injection and VC administration as the former). Locomotor recovery was assessed using the Basso Mouse Scale. Injured spinal cord tissue was evaluated using hematoxylin-eosin staining and immunohistochemical staining. Expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes was determined using real-time quantitative PCR. BMMSCs intervention better promoted recovery of nerve function of rats with SCI, mitigated nerve cell damage, and decreased expression of transforming growth factor-beta, tumor necrosis factor-alpha, and matrix metalloproteinase-2 genes than MP and/or VC. More importantly, BMMSCs in combination with VC induced more obvious improvements. These results suggest that VC can enhance the neuroprotective effects of BMMSCs against SCI.
Collapse
Affiliation(s)
- Nesrine Salem
- Department of Histology and Cell Biology, Faculty of Medicine, Banha University, Banha, Egypt
| | - Mohamed Y Salem
- Department of Histology and Cell Biology, Faculty of Medicine, Banha University, Banha, Egypt
| | | | - Moataz A Elawady
- Department of Neurosurgery, Faculty of Medicine, Banha University, Banha, Egypt
| | - Mona A Elawady
- Department of Community Medicine, Faculty of Medicine, Banha University, Banha, Egypt
| | - Dina Sabry
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ashraf Shamaa
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Noha Ibrhim
- Department of Medical Physiology, Faculty of Medicine, Banha University, Banha, Egypt
| | - Azza Elamir
- Department of Medical Biochemistry, Faculty of Medicine, El Fayoum University, Egyptian, Egypt
| |
Collapse
|
38
|
Sandhu MS, Ross HH, Lee KZ, Ormerod BK, Reier PJ, Fuller DD. Intraspinal transplantation of subventricular zone-derived neural progenitor cells improves phrenic motor output after high cervical spinal cord injury. Exp Neurol 2017; 287:205-215. [PMID: 27302679 PMCID: PMC6154390 DOI: 10.1016/j.expneurol.2016.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/06/2016] [Accepted: 06/09/2016] [Indexed: 01/30/2023]
Abstract
Following spinal cord injury (SCI), intraspinal transplantation of neural progenitor cells (NPCs) harvested from the forebrain sub-ventricular zone (SVZ) can improve locomotor outcomes. Cervical SCI often results in respiratory-related impairments, and here we used an established model cervical SCI (C2 hemisection, C2Hx) to confirm the feasibility of mid-cervical transplantation of SVZ-derived NPCs and the hypothesis that that this procedure would improve spontaneous respiratory motor recovery. NPCs were isolated from the SVZ of enhanced green fluorescent protein (GFP) expressing neonatal rats, and then intraspinally delivered immediately caudal to an acute C2Hx lesion in adult non-GFP rats. Whole body plethysmography conducted at 4 and 8wks post-transplant demonstrated increased inspiratory tidal volume in SVZ vs. sham transplants during hypoxic (P=0.003) or hypercapnic respiratory challenge (P=0.019). Phrenic nerve output was assessed at 8wks post-transplant; burst amplitude recorded ipsilateral to C2Hx was greater in SVZ vs. sham rats across a wide range of conditions (e.g., quiet breathing through maximal chemoreceptor stimulation; P<0.001). Stereological analyses at 8wks post-injury indicated survival of ~50% of transplanted NPCs with ~90% of cells distributed in ipsilateral white matter at or near the injection site. Peak inspiratory phrenic bursting after NPC transplant was positively correlated with the total number of surviving cells (P<0.001). Immunohistochemistry confirmed an astrocytic phenotype in a subset of the transplanted cells with no evidence for neuronal differentiation. We conclude that intraspinal transplantation of SVZ-derived NPCs can improve respiratory recovery following high cervical SCI.
Collapse
Affiliation(s)
- M S Sandhu
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - H H Ross
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - K Z Lee
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States
| | - B K Ormerod
- University of Florida, Department of Biomedical Engineering, P.O. Box 116131, Gainesville, FL 32611-6131, United States
| | - P J Reier
- University of Florida, Department of Neuroscience, P.O. Box 100244, Gainesville, FL 32610-0244, United States
| | - D D Fuller
- University of Florida, Department of Physical Therapy, P.O. Box 100154, Gainesville, FL 32610-0154, United States.
| |
Collapse
|