1
|
Pekdemir B, Raposo A, Saraiva A, Lima MJ, Alsharari ZD, BinMowyna MN, Karav S. Mechanisms and Potential Benefits of Neuroprotective Agents in Neurological Health. Nutrients 2024; 16:4368. [PMID: 39770989 PMCID: PMC11677798 DOI: 10.3390/nu16244368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
The brain contains many interconnected and complex cellular and molecular mechanisms. Injury to the brain causes permanent dysfunctions in these mechanisms. So, it continues to be an area where surgical intervention cannot be performed except for the removal of tumors and the repair of some aneurysms. Some agents that can cross the blood-brain barrier and reach neurons show neuroprotective effects in the brain due to their anti-apoptotic, anti-inflammatory and antioxidant properties. In particular, some agents act by reducing or modulating the accumulation of protein aggregates in neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and prion disease) caused by protein accumulation. Substrate accumulation causes increased oxidative stress and stimulates the brain's immune cells, microglia, and astrocytes, to secrete proinflammatory cytokines. Long-term or chronic neuroinflammatory response triggers apoptosis. Brain damage is observed with neuronal apoptosis and brain functions are impaired. This situation negatively affects processes such as motor movements, memory, perception, and learning. Neuroprotective agents prevent apoptosis by modulating molecules that play a role in apoptosis. In addition, they can improve impaired brain functions by supporting neuroplasticity and neurogenesis. Due to the important roles that these agents play in central nervous system damage or neurodegenerative diseases, it is important to elucidate many mechanisms. This review provides an overview of the mechanisms of flavonoids, which constitute a large part of the agents with neuroprotective effects, as well as vitamins, neurotransmitters, hormones, amino acids, and their derivatives. It is thought that understanding these mechanisms will enable the development of new therapeutic agents and different treatment strategies.
Collapse
Affiliation(s)
- Burcu Pekdemir
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal;
| | - Maria João Lima
- CERNAS Research Centre, Polytechnic University of Viseu, 3504-510 Viseu, Portugal;
| | - Zayed D. Alsharari
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia;
| | - Mona N. BinMowyna
- College of Education, Shaqra University, Shaqra 11911, Saudi Arabia;
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey;
| |
Collapse
|
2
|
Vitalakumar D, Sharma A, Flora SJS. Ferroptosis: A potential therapeutic target for neurodegenerative diseases. J Biochem Mol Toxicol 2021; 35:e22830. [PMID: 34047408 DOI: 10.1002/jbt.22830] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/25/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Ferroptosis is a newly identified regulated form of cell death, which is thought to play a major role in neurodegenerative diseases. In this review, we discuss recent studies elucidating the molecular mechanisms involved in the regulation and execution of ferroptotic cell death and also its role in the brain. Ferroptosis is regulated mainly via iron homeostasis, glutathione metabolism, and lipid peroxidation. Ferroptotic cell death and pro-ferroptotic factors are correlated with the etiopathogenesis of Parkinson's disease (PD) and Alzheimer's disease (AD). Ferroptosis and etiological factors act synergistically in PD and AD pathogenesis. Furthermore, several preclinical and clinical studies targeting ferroptosis in PD and AD have also shown positive results. Evidence of ferroptosis in the brain thus gives new insights into understanding neurodegenerative diseases. Ferroptosis studies in the brain are still in their infancy, but the existing pieces of evidence suggest a strong correlation between ferroptotic cell death and neurodegenerative diseases. Thus, ferroptosis might be a promising target for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- D Vitalakumar
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Ankita Sharma
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Swaran J S Flora
- Department of Biotechnology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
3
|
Park HA, Ellis AC. Dietary Antioxidants and Parkinson's Disease. Antioxidants (Basel) 2020; 9:antiox9070570. [PMID: 32630250 PMCID: PMC7402163 DOI: 10.3390/antiox9070570] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/14/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the depletion of dopaminergic neurons in the basal ganglia, the movement center of the brain. Approximately 60,000 people are diagnosed with PD in the United States each year. Although the direct cause of PD can vary, accumulation of oxidative stress-induced neuronal damage due to increased production of reactive oxygen species (ROS) or impaired intracellular antioxidant defenses invariably occurs at the cellular levels. Pharmaceuticals such as dopaminergic prodrugs and agonists can alleviate some of the symptoms of PD. Currently, however, there is no treatment to halt the progression of PD pathology. Due to the nature of PD, a long and progressive neurodegenerative process, strategies to prevent or delay PD pathology may be well suited to lifestyle changes like dietary modification with antioxidant-rich foods to improve intracellular redox homeostasis. In this review, we discuss cellular and genetic factors that increase oxidative stress in PD. We also discuss neuroprotective roles of dietary antioxidants including vitamin C, vitamin E, carotenoids, selenium, and polyphenols along with their potential mechanisms to alleviate PD pathology.
Collapse
|
4
|
Monte AS, da Silva FER, Lima CNDC, Vasconcelos GS, Gomes NS, Miyajima F, Vasconcelos SMM, Gama CS, Seeman MV, de Lucena DF, Macedo DS. Sex influences in the preventive effects of N-acetylcysteine in a two-hit animal model of schizophrenia. J Psychopharmacol 2020; 34:125-136. [PMID: 31556775 DOI: 10.1177/0269881119875979] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Schizophrenia (SCZ) is a neurodevelopmental disorder influenced by patient sex. Mechanisms underlying sex differences in SCZ remain unknown. A two-hit model of SCZ combines the exposure to perinatal infection (first-hit) with peripubertal unpredictable stress (PUS, second-hit). N-acetylcysteine (NAC) has been tested in SCZ because of the involvement of glutathione mechanisms in its neurobiology. AIMS We aim to investigate whether NAC administration to peripubertal rats of both sexes could prevent behavioral and neurochemical changes induced by the two-hit model. METHODS Wistar rats were exposed to polyinosinic:polycytidylic acid (a viral mimetic) or saline on postnatal days (PND) 5-7. On PND30-59 they received saline or NAC 220 mg/kg and between PND40-48 were subjected to PUS or left undisturbed. On PND60 behavioral and oxidative alterations were evaluated in the prefrontal cortex (PFC) and striatum. Mechanisms of hippocampal memory regulation such as immune expression of G protein-coupled estrogen receptor 1 (GPER), α7-nAChR and parvalbumin were also evaluated. RESULTS NAC prevented sensorimotor gating deficits only in females, while it prevented alterations in social interaction, working memory and locomotor activity in both sexes. Again, in rats of both sexes, NAC prevented the following neurochemical alterations: glutathione (GSH) and nitrite levels in the PFC and lipid peroxidation in the PFC and striatum. Striatal oxidative alterations in GSH and nitrite were observed in females and prevented by NAC. Two-hit induced hippocampal alterations in females, namely expression of GPER-1, α7-nAChR and parvalbumin, were prevented by NAC. CONCLUSION Our results highlights the influences of sex in NAC preventive effects in rats exposed to a two-hit schizophrenia model.
Collapse
Affiliation(s)
- Aline Santos Monte
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Francisco Eliclécio Rodrigues da Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Camila Nayane de Carvalho Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Germana Silva Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Nayana Soares Gomes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fábio Miyajima
- Fundação Oswaldo Cruz (Fiocruz-CE), Fortaleza, Ceara, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Clarissa S Gama
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, ON, Canada
| | - David Freitas de Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
- National Institute for Translational Medicine (INCT-TM, CNPq), Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Basu P, Hornung RS, Averitt DL, Maier C. Euphorbia bicolor ( Euphorbiaceae) Latex Extract Reduces Inflammatory Cytokines and Oxidative Stress in a Rat Model of Orofacial Pain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8594375. [PMID: 31612077 PMCID: PMC6757321 DOI: 10.1155/2019/8594375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/10/2019] [Indexed: 12/26/2022]
Abstract
Recent studies have reported that the transient receptor potential V1 ion channel (TRPV1), a pain generator on sensory neurons, is activated and potentiated by NADPH oxidase-generated reactive oxygen species (ROS). ROS are increased by advanced oxidation protein products (AOPPs), which activate NADPH oxidase by upregulating Nox4 expression. Our previous studies reported that Euphorbia bicolor (Euphorbiaceae) latex extract induced peripheral analgesia, partly via TRPV1, in hindpaw-inflamed male and female rats. The present study reports that E. bicolor latex extract also can evoke analgesia via reduction of oxidative stress biomarkers and proinflammatory cytokines/chemokines in a rat model of orofacial pain. Male and female rats were injected with complete Freund's adjuvant (CFA) into the left vibrissal pad to induce orofacial inflammation, and mechanical allodynia was measured by the von Frey method. Twenty-four hours later, rats received one injection of E. bicolor latex extract or vehicle into the inflamed vibrissal pad. Mechanical sensitivity was reassessed at 1, 6, 24, and/or 72 hours. Trigeminal ganglia and trunk blood were collected at each time point. In the trigeminal ganglia, ROS were quantified using 2',7'-dichlorodihydrofluorescein diacetate dye, Nox4 protein was quantified by Western blots, and cytokines/chemokines were quantified using a cytokine array. AOPPs were quantified in trunk blood using a spectrophotometric assay. E. bicolor latex extract significantly reduced orofacial mechanical allodynia in male and female rats at 24 and 72 hours, respectively. ROS, Nox4, and proinflammatory cytokines/chemokines were significantly reduced in the trigeminal ganglia, and plasma AOPP was significantly reduced in the trunk blood of extract-treated compared to vehicle-treated rats. In vitro assays indicate that E. bicolor latex extract possessed antioxidant activities by scavenging free radicals. Together our data indicate that the phytochemicals in E. bicolor latex may serve as novel therapeutics for treating oxidative stress-induced pain conditions.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | | | - Dayna L. Averitt
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| | - Camelia Maier
- Department of Biology, Texas Woman's University, Denton, 76204 TX, USA
| |
Collapse
|
6
|
Peña-Bautista C, Vento M, Baquero M, Cháfer-Pericás C. Lipid peroxidation in neurodegeneration. Clin Chim Acta 2019; 497:178-188. [PMID: 31377127 DOI: 10.1016/j.cca.2019.07.037] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases have great social and economic impact and cause millions of deaths every year. The potential molecular mechanisms in these pathologies have been widely studied and implicate lipid peroxidation as an important factor in the development of neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Data indicates that pathologic mechanisms specifically involve ferroptosis and mitochondrial dysfunction. Here we review the molecular mechanisms related to the lipid peroxidation that involve the development of neurodegeneration, as well as the utility of some biomarkers in diagnosis, prognosis and evaluation of new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Máximo Vento
- Health Research Institute La Fe, Valencia, Spain
| | - Miguel Baquero
- Division of Neurology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
7
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
8
|
Imamura Y, Shinozaki T, Okada-Ogawa A, Noma N, Shinoda M, Iwata K, Wada A, Abe O, Wang K, Svensson P. An updated review on pathophysiology and management of burning mouth syndrome with endocrinological, psychological and neuropathic perspectives. J Oral Rehabil 2019; 46:574-587. [PMID: 30892737 DOI: 10.1111/joor.12795] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 12/17/2022]
Abstract
Burning mouth syndrome (BMS) is a chronic oro-facial pain disorder of unknown cause. It is more common in peri- and post-menopausal women, and sex hormone dysregulation is believed to be an important causative factor. Psychosocial events often trigger or exacerbate symptoms, and persons with BMS appear to be predisposed towards anxiety and depression. Atrophy of small nerve fibres in the tongue epithelium has been reported, and potential neuropathic mechanisms for BMS are now widely investigated. Historically, BMS was thought to comprise endocrinological, psychosocial and neuropathic components. Neuroprotective steroids and glial cell line-derived neurotrophic factor family ligands may have pivotal roles in the peripheral mechanisms associated with atrophy of small nerve fibres. Denervation of chorda tympani nerve fibres that innervate fungiform buds leads to alternative trigeminal innervation, which results in dysgeusia and burning pain when eating hot foods. With regard to the central mechanism of BMS, depletion of neuroprotective steroids alters the brain network-related mood and pain modulation. Peripheral mechanistic studies support the use of topical clonazepam and capsaicin for the management of BMS, and some evidence supports the use of cognitive behavioural therapy. Hormone replacement therapy may address the causes of BMS, although adverse effects prevent its use as a first-line treatment. Selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors (SNRIs) may have important benefits, and well-designed controlled studies are expected. Other treatment options to be investigated include brain stimulation and TSPO (translocator protein 18 kDa) ligands.
Collapse
Affiliation(s)
- Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Takahiro Shinozaki
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Noboru Noma
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan.,Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan
| | - Masahiro Shinoda
- Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan.,Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Nihon University School of Dentistry Dental Research Center, Chiyoda-ku, Tokyo, Japan.,Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kelun Wang
- Department of Health Science and Technology, Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark
| | - Peter Svensson
- Department of Dentistry and Oral Health, Section for Orofacial Pain and Jaw Function, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Morozova A, Zorkina Y, Pavlov K, Pavlova O, Storozheva Z, Zubkov E, Zakharova N, Karpenko O, Reznik A, Chekhonin V, Kostyuk G. Association of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A With Clinical Features of Youth-Onset Schizophrenia. Front Psychiatry 2019; 10:830. [PMID: 31798476 PMCID: PMC6863060 DOI: 10.3389/fpsyt.2019.00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023] Open
Abstract
We investigated the associations of rs4680 COMT, rs6280 DRD3, and rs7322347 5HT2A with youth-onset schizophrenia in the Russian population in a case-control study, and the role of the genotype in the severity of clinical features. The association between rs7322347 and schizophrenia (p = 0.0001) is described for the first time. Furthermore, we found a link with rs6280 and rs4680 in females (p = 0.001 and p = 0.02 respectively) and with rs7322347 in males (p = 0.002). Clinical symptoms were assessed on three scales: the Clinician-Rated Dimensions of Psychosis Symptom Severity scale, Positive and Negative Syndrome Scale, and Frontal Assessment Battery. Gender differences in clinical features are of particular interest. In our study we found gender differences in the severity of clinical features-higher scores for delusions (Positive and Negative Syndrome Scale and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition) in males and higher scores for depression, delusions, somatic concern, motor retardation, poor attention were found in females.
Collapse
Affiliation(s)
- Anna Morozova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia.,N.A. Alekseev Psychiatric Clinical Hospital № 1, Moscow, Russia
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Konstantin Pavlov
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Olga Pavlova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Zinaida Storozheva
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Eugene Zubkov
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | | | - Olga Karpenko
- N.A. Alekseev Psychiatric Clinical Hospital № 1, Moscow, Russia
| | | | - Vladimir Chekhonin
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia.,Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- N.A. Alekseev Psychiatric Clinical Hospital № 1, Moscow, Russia
| |
Collapse
|
10
|
Botsakis K, Mourtzi T, Panagiotakopoulou V, Vreka M, Stathopoulos GT, Pediaditakis I, Charalampopoulos I, Gravanis A, Delis F, Antoniou K, Zisimopoulos D, Georgiou CD, Panagopoulos NT, Matsokis N, Angelatou F. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the "weaver" mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology 2017; 121:140-157. [PMID: 28461162 DOI: 10.1016/j.neuropharm.2017.04.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/23/2022]
Abstract
Neurotrophic factors are among the most promising treatments aiming at slowing or stopping and even reversing Parkinson's disease (PD). However, in most cases, they cannot readily cross the human blood-brain-barrier (BBB). Herein, we propose as a therapeutic for PD the small molecule 17-beta-spiro-[5-androsten-17,2'-oxiran]-3beta-ol (BNN-20), a synthetic analogue of DHEA, which crosses the BBB and is deprived of endocrine side-effects. Using the "weaver" mouse, a genetic model of PD, which exhibits progressive dopaminergic neurodegeneration in the Substantia Nigra (SN), we have shown that long-term administration (P1-P21) of BNN-20 almost fully protected the dopaminergic neurons and their terminals, via i) a strong anti-apoptotic effect, probably mediated through the Tropomyosin receptor kinase B (TrkB) neurotrophin receptor's PI3K-Akt-NF-κB signaling pathway, ii) by exerting an efficient antioxidant effect, iii) by inducing significant anti-inflammatory activity and iv) by restoring Brain-Derived Neurotrophic Factor (BDNF) levels. By intercrossing "weaver" with NGL mice (dual GFP/luciferase-NF-κΒ reporter mice, NF-κΒ.GFP.Luc), we obtained Weaver/NGL mice that express the NF-κB reporter in all somatic cells. Acute BNN-20 administration to Weaver/NGL mice induced a strong NF-κB-dependent transcriptional response in the brain as detected by bioluminescence imaging, which was abolished by co-administration of the TrkB inhibitor ANA-12. This indicates that BNN-20 exerts its beneficial action (at least in part) through the TrkB-PI3K-Akt-NF-κB signaling pathway. These results could be of clinical relevance, as they suggest BNN-20 as an important neuroprotective agent acting through the TrkB neurotrophin receptor pathway, mimicking the action of the endogenous neurotrophin BDNF. Thus BNN-20 could be proposed for treatment of PD.
Collapse
Affiliation(s)
- Konstantinos Botsakis
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece
| | - Theodora Mourtzi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Vasiliki Panagiotakopoulou
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Malamati Vreka
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece
| | | | - Iosif Pediaditakis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion 71110, Greece
| | | | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion 71110, Greece; Institute of Molecular Biology & Biotechnology Foundation for Research & Technology - Hellas, GR, 70013, Heraklion, Crete, Greece
| | - Foteini Delis
- Department of Pharmacology, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | - Katerina Antoniou
- Department of Pharmacology, School of Medicine, University of Ioannina, Ioannina 45110, Greece
| | | | | | - Nikolaos T Panagopoulos
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Nikolaos Matsokis
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, Patras, 26 500, Greece
| | - Fevronia Angelatou
- Department of Physiology, School of Medicine, University of Patras, Patras, 26 500, Greece.
| |
Collapse
|