1
|
Hart DA. Lithium Ions as Modulators of Complex Biological Processes: The Conundrum of Multiple Targets, Responsiveness and Non-Responsiveness, and the Potential to Prevent or Correct Dysregulation of Systems during Aging and in Disease. Biomolecules 2024; 14:905. [PMID: 39199293 PMCID: PMC11352090 DOI: 10.3390/biom14080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Lithium is one of the lightest elements on Earth and it has been in the environment since the formation of the galaxy. While a common element, it has not been found to be an essential element in biological processes, ranging from single cell organisms to Homo sapiens. Instead, at an early stage of evolution, organisms committed to a range of elements such as sodium, potassium, calcium, magnesium, zinc, and iron to serve essential functions. Such ions serve critical functions in ion channels, as co-factors in enzymes, as a cofactor in oxygen transport, in DNA replication, as a storage molecule in bone and liver, and in a variety of other roles in biological processes. While seemingly excluded from a major essential role in such processes, lithium ions appear to be able to modulate a variety of biological processes and "correct" deviation from normal activity, as a deficiency of lithium can have biological consequences. Lithium salts are found in low levels in many foods and water supplies, but the effectiveness of Li salts to affect biological systems came to recent prominence with the work of Cade, who reported that administrating Li salts calmed guinea pigs and was subsequently effective at relatively high doses to "normalize" a subset of patients with bipolar disorders. Because of its ability to modulate many biological pathways and processes (e.g., cyclic AMP, GSK-3beta, inositol metabolism, NaK ATPases, neuro processes and centers, immune-related events, respectively) both in vitro and in vivo and during development and adult life, Li salts have become both a useful tool to better understand the molecular regulation of such processes and to also provide insights into altered biological processes in vivo during aging and in disease states. While the range of targets for lithium action supports its possible role as a modulator of biological dysregulation, it presents a conundrum for researchers attempting to elucidate its specific primary target in different tissues in vivo. This review will discuss aspects of the state of knowledge regarding some of the systems that can be influenced, focusing on those involving neural and autoimmunity as examples, some of the mechanisms involved, examples of how Li salts can be used to study model systems, as well as suggesting areas where the use of Li salts could lead to additional insights into both disease mechanisms and natural processes at the molecular and cell levels. In addition, caveats regarding lithium doses used, the strengths and weaknesses of rodent models, the background genetics of the strain of mice or rats employed, and the sex of the animals or the cells used, are discussed. Low-dose lithium may have excellent potential, alone or in combination with other interventions to prevent or alleviate aging-associated conditions and disease progression.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Ghanaatfar F, Ghanaatfar A, Isapour P, Farokhi N, Bozorgniahosseini S, Javadi M, Gholami M, Ulloa L, Coleman-Fuller N, Motaghinejad M. Is lithium neuroprotective? An updated mechanistic illustrated review. Fundam Clin Pharmacol 2023; 37:4-30. [PMID: 35996185 DOI: 10.1111/fcp.12826] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/17/2022] [Accepted: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Neurodegeneration is a pathological process characterized by progressive neuronal impairment, dysfunction, and loss due to mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Many studies have shown that lithium protects against neurodegeneration. Herein, we summarize recent clinical and laboratory studies on the neuroprotective effects of lithium against neurodegeneration and its potential to modulate mitochondrial dysfunction, oxidative stress, inflammation, and apoptosis. Recent findings indicate that lithium regulates critical intracellular pathways such as phosphatidylinositol-3 (PI3)/protein kinase B (Akt)/glycogen synthase kinase-3 (GSK3β) and PI3/Akt/response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF). We queried PubMed, Web of Science, Scopus, Elsevier, and other related databases using search terms related to lithium and its neuroprotective effect in various neurodegenerative diseases and events from January 2000 to May 2022. We reviewed the major findings and mechanisms proposed for the effects of lithium. Lithium's neuroprotective potential against neural cell degeneration is mediated by inducing anti-inflammatory factors, antioxidant enzymes, and free radical scavengers to prevent mitochondrial dysfunction. Lithium effects are regulated by two essential pathways: PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF. Lithium acts as a neuroprotective agent against neurodegeneration by preventing inflammation, oxidative stress, apoptosis, and mitochondrial dysfunction using PI3/Akt/GSK3β and PI3/Akt/CREB/BDNF signaling pathways.
Collapse
Affiliation(s)
- Fateme Ghanaatfar
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ghanaatfar
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Parisa Isapour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negin Farokhi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Mahshid Javadi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Gholami
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, North Carolina, USA
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Liu Y, Sun Y, Bai X, Li L, Zhu G. Albiflorin Alleviates Ox-LDL-Induced Human Umbilical Vein Endothelial Cell Injury through IRAK1/TAK1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6584645. [PMID: 35601145 PMCID: PMC9122697 DOI: 10.1155/2022/6584645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022]
Abstract
Introduction Atherosclerosis (AS) is a chronic inflammatory disease characterized by lipid metabolism disorder and vascular endothelial damage. Albiflorin (AF) has been certified to be effective in the therapy of certain inflammatory diseases, while the therapeutic effect and mechanism of AF on AS have not been fully elucidated. Material and Methods. Model cells for AS were created by inducing oxidized low-density lipoprotein (Ox-LDL) in human umbilical vein endothelial cells (HUVECs). After processing with AF and interleukin-1 receptor-associated kinase 1- (IRAK1-) overexpressed plasmid, cell viability was assessed by CCK-8; cholesterol efflux was tested using liquid scintillation counter; IL-6 and TNF-α levels were determined with ELISA kits; ROS and apoptosis were confirmed using Flow cytometry. Besides, IRAK1-TAK1 pathway and apoptosis- and mitochondrial fusion-related proteins were monitored with western blotting analysis. Results Our results verified that AF could not only dramatically accelerate viability and cholesterol efflux but also attenuate inflammation, ROS production, and apoptosis in Ox-LDL-induced HUVECs. Meanwhile, AF could prominently prevent the activation of IRAK1-TAK1 pathway, downregulate apoptosis-related proteins, and upregulate mitochondrial fusion-related proteins in Ox-LDL-induced HUVECs. Moreover, we testified that IRAK1 overexpression memorably could reverse suppression of AF on inflammation, apoptosis, and IRAK1-TAK1 pathway and enhancement of AF on viability, cholesterol efflux, and mitochondrial fusion in Ox-LDL-induced HUVECs. Conclusions By blocking the IRAK1/TAK1 pathway, AF can significantly slow the course of AS, suggesting that it could be a viable therapeutic option for AS.
Collapse
Affiliation(s)
- Yeling Liu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Yilai Sun
- Department of Pancreatic & Hernial Surgery Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Xue Bai
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| | - Guihua Zhu
- Department of Pharmacy, Tai'an City Central Hospital, Tai'an, Shandong 271000, China
| |
Collapse
|
4
|
Gao L, Yang WY, Qi H, Sun CJ, Qin XM, Du GH. Unveiling the anti-senescence effects and senescence-associated secretory phenotype (SASP) inhibitory mechanisms of Scutellaria baicalensis Georgi in low glucose-induced astrocytes based on boolean network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153990. [PMID: 35202958 DOI: 10.1016/j.phymed.2022.153990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated β-galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-β-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Wu-Yan Yang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Chang-Jun Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Huang L, Zhou Y, Gou ZX, Zhang F, Lu LQ. Docosahexaenoic acid reduces hypoglycemia-induced neuronal necroptosis via the peroxisome proliferator-activated receptor γ/nuclear factor-κB pathway. Brain Res 2022; 1774:147708. [PMID: 34785255 DOI: 10.1016/j.brainres.2021.147708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
DHA has been shown to be neuroprotective and important to neurogenesis, but its role in HG-induced brain injury and the underlying mechanisms remain unknown. To elucidate the therapeutic effect of DHA, we established a mouse model with insulin-induced hypoglycemic brain injury and an in vitro model of HT-22 cells using a sugar-free medium. DHA treatment significantly reduced neuronal death and improved HG-induced learning and memory deficits. Moreover, DHA inhibited neuronal necroptosis and decreased the concentrations of TNF-α, IL-1β and TNFR1. DHA also activated PPAR-γ and suppressed the NF-κB pathway in mouse brain tissues. In vitro, DHA treatment restored the viability and decreased necroptosis of HT-22 cells treated with glucose deprivation. However, the inhibition of PPAR-γ with T0070907 reversed neuroprotective and anti-necroptosis effects of DHA in HG-induced brain injury, which is associated with the activation of the downstream NF-κB pathway. We conclude that DHA displays a protective effect against HG-induced brain injury through the PPAR-γ/NF-κB pathway and represents a promising method to prevent HG-induced brain injury.
Collapse
Affiliation(s)
- Lin Huang
- Department of Neonatology, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, 610031, Sichuan, China; Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Yue Zhou
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Zhi-Xian Gou
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Feng Zhang
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Li-Qun Lu
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China.
| |
Collapse
|
6
|
Lycopene-Loaded Microemulsion Regulates Neurogenesis in Rats with A β-Induced Alzheimer's Disease Rats Based on the Wnt/ β-catenin Pathway. Neural Plast 2021; 2021:5519330. [PMID: 34545285 PMCID: PMC8448994 DOI: 10.1155/2021/5519330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the effects of lycopene-loaded microemulsion (LME) on the cognitive function and neurogenesis in the dentate gyrus (DG) of the hippocampus and subventricular (SVZ) region of rats with amyloid β- (Aβ-) induced Alzheimer's disease (AD) and its mechanism based on the Wnt/β-catenin pathway. Methods Healthy Wistar rats were divided into four groups: the blank control (CON), AD control, traditional lycopene (LOO), and LME groups. The CON and AD groups were fed with normal saline, while the LOO group was fed with traditional lycopene, and the LME group was fed with lycopene-loaded microemulsion. Behavioral tests were performed after three weeks of gastric administration. Immunofluorescence-labeled cells were used to observe the differentiation and maturation of new nerve cells in the DG of the hippocampus and SVZ region. qRT-PCR and Western blotting detected the expression of neurogenesis genes and Wnt/β-catenin pathway-related proteins, respectively. Results On the Morris water maze test, LME rats had significantly shortened movement trajectory on the searching platform, reduced escape latency time, and increased residence time on the original platform quadrant. In addition, more LME rats crossed the platform when it was removed. Thus, LME can improve the spatial learning and memory of Aβ-induced AD rats. On qRT-PCR, LME significantly increased Reelin, Nestin, and Pax6 gene expressions, which regulate neurogenesis. Immunofluorescence showed that LME could significantly increase BrdU+, Dcx+, BrdU+/Neun+, BrdU+/Dcx+ cells in the DG and SVZ regions, thus promoting neurogenesis. LME also reduced the number of Iba1+ and Iba1+/BrdU+ cells, thus reducing the neuroinflammatory response. On Western blot, LME upregulated the Wnt/β-catenin pathway by upregulating Wnt3a, β-catenin, Disheveled (Dvl), and p-GSK3β and downregulating p-β-catenin and GSK3β. Conclusion LME attenuates cognitive impairment in Aβ-induced AD rats by promoting neurogenesis in the hippocampus and SVZ region through upregulating the Wnt/β-catenin pathway.
Collapse
|
7
|
Pancancer Analysis of Neurovascular-Related NRP Family Genes as Potential Prognostic Biomarkers of Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5546612. [PMID: 33937395 PMCID: PMC8062179 DOI: 10.1155/2021/5546612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Background Neurovascular-related genes have been implicated in the development of cancer. Studies have shown that a high expression of neuropilins (NRPs) promotes tumourigenesis and tumour malignancy. Method A multidimensional bioinformatics analysis was performed to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden (TMB), microsatellite instability (MSI), and immunological features based on public databases and find the potential prognostic value of NRPs in pancancer. Results Survival analysis revealed that a low NRP1 expression in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), low-grade glioma (LGG), and stomach adenocarcinoma (STAD) was associated with poor prognosis. A high NRP2 expression in bladder urothelial carcinoma (BLCA), kidney renal papillary cell carcinoma (KIRP), and mesothelioma (MESO) was associated with poor prognosis. Moreover, NRP1 and NRP2 were associated with TMB and MSI. Subsequent analyses showed that NRP1 and NRP2 were correlated with immune infiltration and immune checkpoints. Genome-wide association analysis revealed that the NRP1 expression was strongly associated with kidney renal clear cell carcinoma (KIRC), whereas the NRP2 expression was closely associated with BLCA. Ultimately, NRP2 was found to be involved in the development of BLCA. Conclusions Neurovascular-related NRP family genes are significantly correlated with cancer prognosis, TME, and immune infiltration, particularly in BLCA.
Collapse
|
8
|
Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6674988. [PMID: 33898626 PMCID: PMC8052154 DOI: 10.1155/2021/6674988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
Collapse
|
9
|
Yu T, Lin Y, Xu Y, Dou Y, Wang F, Quan H, Zhao Y, Liu X. Repressor Element 1 Silencing Transcription Factor (REST) Governs Microglia-Like BV2 Cell Migration via Progranulin (PGRN). Neural Plast 2020; 2020:8855822. [PMID: 33299399 PMCID: PMC7710409 DOI: 10.1155/2020/8855822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 11/13/2020] [Indexed: 12/18/2022] Open
Abstract
Microglia activation contributes to Alzheimer's disease (AD) etiology, and microglia migration is a fundamental function during microglia activation. The repressor element-1 silencing transcription factor (REST), a powerful transcriptional factor, was found to play a neuroprotective role in AD. Despite its possible role in disease progression, little is known about whether REST participates in microglia migration. In this study, we aimed to explore the function of REST and its molecular basis during microglia migration under Aβ 1-42-treated pathological conditions. When treated by Aβ 1-42 REST was upregulated through JAK2/STAT3 signal pathway in BV2 cells. And transwell coculture system was used to evaluate cell migration function of microglia-like BV2. Small interfering RNA (siRNA) targeting progranulin (PGRN) were delivered into BV2 cells, and results showed that PGRN functions to promote BV2 migration. REST expression was inhibited by sh-RNA, which induced BV2 cell migration obviously. On the contrary, REST was overexpressed by REST recombinant plasmid transfection, which repressed BV2 cell migration, indicating that REST may act as a repressor of cell migration. To more comprehensively examine the molecular basis, we analyzed the promoter sequence of PGRN and found that it has the potential binding site of REST. Moreover, knocking-down of REST can increase the expression of PGRN, which confirms the inhibiting effect of REST on PGRN expression. Further detection of double luciferase reporter gene also confirmed the inhibition of REST on the activity of PGRN promoter, indicating that REST may be an inhibitory transcription factor of PGRN which governs microglia-like BV2 cell migration. In conclusion, the present study demonstrates that transcription factor REST may act as a repressor of microglia migration through PGRN.
Collapse
Affiliation(s)
- Tongya Yu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yingying Lin
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yuzhen Xu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yunxiao Dou
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Feihong Wang
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Hui Quan
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yanxin Zhao
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Xueyuan Liu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| |
Collapse
|
10
|
Yu T, Quan H, Xu Y, Dou Y, Wang F, Lin Y, Qi X, Zhao Y, Liu X. A β-Induced Repressor Element 1-Silencing Transcription Factor (REST) Gene Delivery Suppresses Activation of Microglia-Like BV-2 Cells. Neural Plast 2020; 2020:8888871. [PMID: 33029126 PMCID: PMC7528025 DOI: 10.1155/2020/8888871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Compelling evidence from basic molecular biology has demonstrated the crucial role of microglia in the pathogenesis of Alzheimer's disease (AD). Microglia were believed to play a dual role in both promoting and inhibiting Alzheimer's disease progression. It is of great significance to regulate the function of microglia and make them develop in a favorable way. In the present study, we investigated the function of repressor element 1-silencing transcription factor (REST) in Aβ 1-42-induced BV-2 cell dysfunction. We concluded that Aβ 1-42 could promote type I activation of BV-2 cells and induce cell proliferation, migration, and proinflammation cytokine TNF-α, IL-1β, and IL-6 expression. Meanwhile, REST was upregulated, and nuclear translocalization took place due to Aβ 1-42 stimulation. When REST was knocked down by a specific short hairpin RNA (sh-RNA), BV-2 cell proliferation, migration, and proinflammation cytokine expression and secretion induced by Aβ 1-42 were increased, demonstrating that REST may act as a repressor of microglia-like BV-2 cell activation.
Collapse
Affiliation(s)
- Tongya Yu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Hui Quan
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yuzhen Xu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yunxiao Dou
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Feihong Wang
- Shanghai Tenth People's Hospital of Tongji University, Nanjing Medical University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yingying Lin
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Xue Qi
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Yanxin Zhao
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| | - Xueyuan Liu
- Shanghai Tenth People's Hospital of Tongji University, Tongji University, Middle Yanchang Rd. 301#, Jingan District, Shanghai, China 200072
| |
Collapse
|
11
|
Xu Y, Wang Q, Chen J, Ma Y, Liu X. Updating a Strategy for Histone Deacetylases and Its Inhibitors in the Potential Treatment of Cerebral Ischemic Stroke. DISEASE MARKERS 2020; 2020:8820803. [PMID: 32963637 PMCID: PMC7492879 DOI: 10.1155/2020/8820803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cerebral ischemic stroke is one of the severe diseases with a pathological condition that leads to nerve cell dysfunction with seldom available therapy options. Currently, there are few proven effective treatments available for improving cerebral ischemic stroke outcome. However, recently, there is increasing evidence that inhibition of histone deacetylase (HDAC) activity exerts a strong protective effect in in vivo and vitro models of ischemic stroke. Review Summary. HDAC is a posttranslational modification that is negatively regulated by histone acetyltransferase (HATS) and histone deacetylase. Based on function and DNA sequence similarity, histone deacetylases (HDACs) are organized into four different subclasses (I-IV). Modifications of histones play a crucial role in cerebral ischemic affair development after translation by modulating disrupted acetylation homeostasis. HDAC inhibitors (HDACi) mainly exert neuroprotective effects by enhancing histone and nonhistone acetylation levels and enhancing gene expression and protein modification functions. This article reviews HDAC and its inhibitors, hoping to find meaningful therapeutic targets. CONCLUSIONS HDAC may be a new biological target for cerebral ischemic stroke. Future drug development targeting HDAC may make it a potentially effective anticerebral ischemic stroke drug.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Jianxin Chen
- Department of Neurology, Jinan First People's Hospital, Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai, China
| |
Collapse
|
12
|
Wang Q, Yang W, Zhang J, Zhao Y, Xu Y. TREM2 Overexpression Attenuates Cognitive Deficits in Experimental Models of Vascular Dementia. Neural Plast 2020; 2020:8834275. [PMID: 32617097 PMCID: PMC7306072 DOI: 10.1155/2020/8834275] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/09/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation plays a prominent role in the pathogenesis of vascular dementia (VD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor mainly expressed on microglia and has been known for its anti-inflammatory properties during immune response. However, data evaluating the effects of TREM2 in VD are lacking. Therefore, the present study is aimed at investigating the role of TREM2 in VD. In this study, the mouse model of VD was induced by transient bilateral common carotid artery occlusion (BCCAO). We compared the hippocampal gene and protein expressions of TREM2 between the VD mice and sham-operated mice at different time points. The TREM2 mRNA and protein expression levels in the VD mice were higher than those in the sham-operated mice. The cognitive deficits of VD mice were observed in the Morris water maze test. Interestingly, overexpression of TREM2 by intracerebroventricular injection of a lentiviral vector that encoded TREM2 (LV-TREM2) significantly improved the spatial learning and memory and attenuated the hippocampal neural loss in VD mice. Further mechanistic study revealed that overexpression of TREM2 significantly inhibited microglia M1 polarization by decreasing inducible nitric oxide synthase (iNOS) and proinflammatory cytokines expression levels and conversely enhanced microglia M2 polarization by increasing Arginase-1 (Arg-1) and anti-inflammatory cytokine expression levels. These results strongly suggest that TREM2 provides a protective effect in VD via modulating the phenotype of activated microglia and may serve as a novel potential therapeutic target for VD.
Collapse
Affiliation(s)
- Qian Wang
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, China
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 271000, China
| | - Weixia Yang
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Jingmei Zhang
- Institute of Behavioral Medicine Education, Jining Medical University, Jining, Shandong Province 272067, China
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, China
| | - Yuzhen Xu
- Department of Neurology, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 271000, China
| |
Collapse
|
13
|
Xu Y, Wang Q, Wu Z, Lu K, Cheng X, Jin W, Zhao Y. The effect of lithium chloride on the attenuation of cognitive impairment in experimental hypoglycemic rats. Brain Res Bull 2019; 149:168-174. [PMID: 31029599 DOI: 10.1016/j.brainresbull.2019.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/14/2019] [Accepted: 04/23/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Hypoglycemia is the most common complication in the treatment of diabetes mellitus. Accumulating evidence indicated that severe hypoglycemia could induce cognitive impairment. However, the molecular mechanism of regulating this progress is largely unknown. METHODS We established a model of insulin-induced recurrent hypoglycemia in adult male Wistar rats (n = 40). Lithium chloride was injected after hypoglycemia once a day for consecutive 30 days. The loss of cognition function was evaluated by water maze test in these hypoglycemic rats. Glial cells activation and Wnt and inflammatory cytokines IL-1β, IL-6, IL-4, IL-10, TGFβ and TNFα expression were further examined to determine the mechanism of cognitive function impairment. RESULTS Hypoglycemia could induce impairment of cognitive function in rats and administration of lithium chloride could partly attenuate cognitive impairment compared to the control (p < 0.05). Lithium chloride could significantly up-regulate Wnt signaling and reduce hypoglycemia-induced neuronal death, glial cells activation and inflammatory response in the hippocampus of rats compared to the control (p < 0.05). The efficacy of lithium chloride could be reversed by injecting canonical Wnt signaling antagonist the dickkopf homolog 1. CONCLUSION Lithium chloride attenuated hypoglycemia-induced cognitive function impairment in rats; and it was associated with Wnt signaling up-regulation and reduction of inflammatory response. Our results suggested that activating Wnt signaling pathways and inhibiting inflammatory response were the therapeutic potential to prevent hypoglycemia-induced neurological damage.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qian Wang
- Department of Central Laboratory, The Central Hospital of Tai'an, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province 271000, China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaojuan Cheng
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weilin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
14
|
Jiang G, Pu T, Li Z, Zhang X, Zhou R, Cao X, Yu J, Wang X. Lithium affects rat hippocampal electrophysiology and epileptic seizures in a dose dependent manner. Epilepsy Res 2018; 146:112-120. [DOI: 10.1016/j.eplepsyres.2018.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022]
|
15
|
Mohammad Jafari R, Ghahremani MH, Rahimi N, Shadboorestan A, Rashidian A, Esmaeili J, Ejtemaei Mehr S, Dehpour AR. The anticonvulsant activity and cerebral protection of chronic lithium chloride via NMDA receptor/nitric oxide and phospho-ERK. Brain Res Bull 2018; 137:1-9. [DOI: 10.1016/j.brainresbull.2017.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
|
16
|
Wei J, Zhao F, Shang Y, Liu X, Huang H, Lao F. Protective Effect of Zeaxanthin against Tunicamycin-induced Cell Damage in SH-SY5Y Cell. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jun Wei
- The Beijing Key Laboratory of Bioactive Substances and Functional Foods, Department of Biochemistry and engineering, Beijing Union University
| | - Fanfan Zhao
- The Beijing Key Laboratory of Bioactive Substances and Functional Foods, Department of Biochemistry and engineering, Beijing Union University
| | - YingHui Shang
- The Beijing Key Laboratory of Bioactive Substances and Functional Foods, Department of Biochemistry and engineering, Beijing Union University
| | - Xinjun Liu
- The Beijing Key Laboratory of Bioactive Substances and Functional Foods, Department of Biochemistry and engineering, Beijing Union University
| | - Hanchang Huang
- The Beijing Key Laboratory of Bioactive Substances and Functional Foods, Department of Biochemistry and engineering, Beijing Union University
| | - Fengxue Lao
- The Beijing Key Laboratory of Bioactive Substances and Functional Foods, Department of Biochemistry and engineering, Beijing Union University
| |
Collapse
|
17
|
Zhou T, Lin H, Jiang L, Yu T, Zeng C, Liu J, Yang Z. Mild hypothermia protects hippocampal neurons from oxygen-glucose deprivation injury through inhibiting caspase-3 activation. Cryobiology 2017; 80:55-61. [PMID: 29223591 DOI: 10.1016/j.cryobiol.2017.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/18/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
Mild hypothermia (MH) is thought to be one of the most effective therapeutic methods to treat hypoxic-ischemic encephalopathy (HIE) after cardiac arrest (CA). However, its precise mechanisms remain unclear. In this research, hippocampal neurons were cultured and treated with mild hypothermia and Ac-DEVD-CHO after oxygen-glucose deprivation (OGD). The activity of caspase-3 was detected, in order to find the precise concentration of Ac-DEVD-CHO with the same protective role in OGD injury as MH treatment. Western blot and immunofluorescence staining were conducted to analyze the effects of MH and Ac-DEVD-CHO on the expressions of caspase-3, caspase-8, and PARP. The neuronal morphology was observed with an optical microscope. The lactic acid dehydrogenase (LDH) release rate, neuronal viability, and apoptotic rate were also detected. We found that MH (32 °C) and Ac-DEVD-CHO (5.96 μMol/L) had equal effects on blocking the activation of caspase-3 and the OGD-induced cleavage of PARP, but neither had any effect on the activation of caspase-8, which goes on to activate caspase-3 in the apoptotic pathway. Meanwhile, both MH and Ac-DEVD-CHO had similar effects in protecting cell morphology, reducing LDH release, and inhibiting OGD-induced apoptosis in neurons. They also similarly improved neuronal viability after OGD. In conclusion, caspase-3 serves as a key intervention point of the key modulation site or regulatory region in MH treatment that protects neuronal apoptosis against OGD injury. Inhibiting the expression of caspase-3 had a protective effect against OGD injury in MH treatment, and caspase-3 activation could be applied to evaluate the neuroprotective effectiveness of MH on HIE.
Collapse
Affiliation(s)
- Tianen Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Lin
- Hospital of South China Agricultural University, Guangzhou, China
| | - Longyuan Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Yu
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaotao Zeng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juanhua Liu
- The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zengcheng District People's Hospital of Guangzhou, Guangzhou, China.
| |
Collapse
|
18
|
Xia MY, Zhao XY, Huang QL, Sun HY, Sun C, Yuan J, He C, Sun Y, Huang X, Kong W, Kong WJ. Activation of Wnt/β-catenin signaling by lithium chloride attenuates d-galactose-induced neurodegeneration in the auditory cortex of a rat model of aging. FEBS Open Bio 2017; 7:759-776. [PMID: 28593132 PMCID: PMC5458451 DOI: 10.1002/2211-5463.12220] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 01/09/2023] Open
Abstract
Degeneration of the central auditory system, which is characterized by reduced understanding of speech and source localization of sounds, is an important cause of age‐related hearing loss (presbycusis). Accumulating evidence has demonstrated that Wnt/β‐catenin signaling plays an essential role in the development of the auditory system but its potential role in presbycusis remains unclear. In this study, we used a rat model of aging, created by chronic systemic exposure to d‐galactose (d‐gal), and explored changes in Wnt/β‐catenin signaling in the auditory cortex. A decrease in Wnt/β‐catenin signaling in the auditory cortex was found in both naturally aging and d‐gal‐mimetic aging rats, as indicated by increased GSK3β activity and decreased β‐catenin activity. Moreover, lithium chloride (Licl), an activator of Wnt signaling pathway, was administered long term to 15‐month‐old d‐gal‐treated rats. Activation of Wnt/β‐catenin signaling by Licl attenuated d‐gal‐induced auditory cortex apoptosis and neurodegeneration. Bmi1, a transcription factor implicated in antiaging and resistance to apoptosis, can be modulated by β‐catenin activity. Here, we showed that the expression of Bmi1 was reduced and the expression of its downstream genes, p16INK4a, p19Arf, and p53 were increased in the auditory cortex both of naturally aging and d‐gal‐mimetic aging rats. In addition, Licl significantly increased Bmi1 expression and reduced p16INK4a, p19Arf, and p53 expression. Our results indicated that decreased Wnt/β‐catenin signaling might participate in the pathogenesis of central presbycusis through modulating the expression of Bmi1. Wnt/β‐catenin signaling might be used as a potential therapeutic target against presbycusis.
Collapse
Affiliation(s)
- Ming-Yu Xia
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Yan Zhao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Lin Huang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Ying Sun
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Sun
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yuan
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang He
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Huang
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital Tongji, Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Jia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Zhou T, Liang Y, Jiang L, Yu T, Zeng C, Tao E. Mild hypothermia protects against oxygen glucose deprivation/reoxygenation-induced apoptosis via the Wnt/β-catenin signaling pathway in hippocampal neurons. Biochem Biophys Res Commun 2017; 486:1005-1013. [PMID: 28365156 DOI: 10.1016/j.bbrc.2017.03.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/31/2023]
Abstract
Mild hypothermia is thought to be one of the most effective therapies for cerebral ischemia/reperfusion injuries. Our previous research revealed that mild hypothermia inhibits the activation of caspase-3 and protects against oxygen glucose deprivation/reoxygenation (OGD/R)-induced injury in hippocampal neurons. However, the mechanisms behind the activation of caspase-3 remain unclear. The aims of this study were to determine whether the protective effects of mild hypothermia were exerted through the Wnt/β-catenin signaling pathway. We found that, under OGD/R conditions, the pathway was down regulated, but mild hypothermia induced the reactivation of the Wnt/β-catenin signaling pathway, which had been suppressed by OGD/R injury. Mild hypothermia also caused the down regulation of the expression of apoptosis promoting proteins (Bax cleaved caspase-3), up-regulated the expression of apoptosis inhibiting proteins (Bcl-2), and ameliorated OGD/R injury-induced apoptosis. The protective effects of mild hypothermia were blocked by DKK1 (an antagonist of the canonical Wnt signaling pathway). Taken together, these results indicate that the Wnt/β-catenin signaling pathway mediates the protective effects of mild hypothermia against OGD/R-induced apoptosis. Our study provides evidence that mild hypothermia reactivates the Wnt/β-catenin signaling pathway, which is suppressed by OGD/R injury, in hippocampal neurons and protects neurons from OGD/R-induced apoptosis via the reactivation of the Wnt/β-catenin signaling pathway, ultimately suggesting that mild hypothermia could have therapeutic effects on OGD/R-induced apoptosis.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanran Liang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Longyuan Jiang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Tao Yu
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chaotao Zeng
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Enxiang Tao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
20
|
Wang X, Zhu Y, Sun C, Wang T, Shen Y, Cai W, Sun J, Chi L, Wang H, Song N, Niu C, Shen J, Cong W, Zhu Z, Xuan Y, Li X, Jin L. Feedback Activation of Basic Fibroblast Growth Factor Signaling via the Wnt/β-Catenin Pathway in Skin Fibroblasts. Front Pharmacol 2017; 8:32. [PMID: 28217097 PMCID: PMC5289949 DOI: 10.3389/fphar.2017.00032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yuting Zhu
- Haining Hospital of Traditional Chinese Medicine Haining, China
| | - Congcong Sun
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Tao Wang
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yingjie Shen
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Wanhui Cai
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Jia Sun
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Lisha Chi
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Haijun Wang
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang, China
| | - Na Song
- School of Basic Medical Sciences, Xinxiang Medical University Xinxiang, China
| | - Chao Niu
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Jiayi Shen
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Weitao Cong
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Zhongxin Zhu
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Yuanhu Xuan
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Xiaokun Li
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| | - Litai Jin
- Key Laboratory of Biotechnology Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University Wenzhou, China
| |
Collapse
|