1
|
Tharoor H, Maran S, Chandan AK, Pari M, Rao S, Durairaj J. Cognitive and negative symptoms in schizophrenia with L-Carnosine adjuvant therapy - A randomized double-blind placebo-controlled study. Pharmacol Res Perspect 2023; 11:e01074. [PMID: 36946070 PMCID: PMC10031293 DOI: 10.1002/prp2.1074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 03/23/2023] Open
Abstract
The antioxidant L-Carnosine is reported to improve negative and cognitive symptoms in Schizophrenia. A randomized double-blind placebo-controlled study was planned to study the effectiveness of adjuvant L-Carnosine therapy in patients with Schizophrenia. 100 eligible patients with predominant negative symptoms as measured by scale for assessment of negative symptoms (SANS total score ≥ 60) and Schizophrenia diagnosis (International Classification of Disorder-Tenth Edition, ICD-10) were recruited. They were randomly allocated to receive a fixed dose of either 400 mg L-Carnosine or identical placebo for 3 months and increased to 800 mg from 13th week till completion of study. Primary outcome measures assessed changes in SANS scores with L-Carnosine at 24 weeks compared to baseline, 4 and 12 weeks. Secondary outcome measures were done to assess the improvement in cognitive symptoms (executive function, attention, and memory) at 24 weeks using subtests of NIMHANS (National Institute for Mental Health and Neurosciences) cognitive battery. Side effects were assessed using adverse events reporting form. The attention scores (p = .023) showed significant differences in patients receiving 800 mg of L-Carnosine at the end of the study. There were no significant differences in negative symptoms in the two arms at study completion. L-Carnosine dosing of 800 mg may be a promising agent to enhance executive functions in Schizophrenia.
Collapse
Affiliation(s)
- Hema Tharoor
- Schizophrenia Research FoundationChennaiTamil NaduIndia
| | - Sindhu Maran
- Schizophrenia Research FoundationChennaiTamil NaduIndia
| | | | | | - Shruti Rao
- Schizophrenia Research FoundationChennaiTamil NaduIndia
| | | |
Collapse
|
2
|
Tsuji T, Furuhara K, Gerasimenko M, Shabalova A, Cherepanov SM, Minami K, Higashida H, Tsuji C. Oral Supplementation with L-Carnosine Attenuates Social Recognition Deficits in CD157KO Mice via Oxytocin Release. Nutrients 2022; 14:nu14040803. [PMID: 35215455 PMCID: PMC8879915 DOI: 10.3390/nu14040803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
The outcomes of supplementation with L-carnosine have been investigated in clinical trials in children with autism spectrum disorder (ASD). However, reports on the effects of L-carnosine in humans have been inconsistent, and the efficacy of L-carnosine supplementation for improving ASD symptoms has yet to be investigated in animal studies. Here, we examined the effects of oral supplementation with L-carnosine on social deficits in CD157KO mice, a murine model of ASD. Social deficits in CD157KO mice were assessed using a three-chamber social approach test. Oral supplementation with L-carnosine attenuated social behavioral deficits. The number of c-Fos-positive oxytocin neurons in the supraoptic nucleus and paraventricular nucleus was increased with L-carnosine supplementation in CD157KO mice after the three-chamber social approach test. We observed an increase in the number of c-Fos-positive neurons in the basolateral amygdala, a brain region involved in social behavior. Although the expression of oxytocin and oxytocin receptors in the hypothalamus was not altered by L-carnosine supplementation, the concentration of oxytocin in cerebrospinal fluid was increased in CD157KO mice by L-carnosine supplementation. These results suggest that L-carnosine supplementation restores social recognition impairments by augmenting the level of released oxytocin. Thus, we could imply the possibility of a safe nutritional intervention for at least some types of ASD in the human population.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
- Correspondence: (T.T.); (C.T.)
| | - Kazumi Furuhara
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Maria Gerasimenko
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Anna Shabalova
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Stanislav M Cherepanov
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Kana Minami
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Department of Health Development Nursing, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-0934, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita 565-0871, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
| | - Chiharu Tsuji
- Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; (K.F.); (M.G.); (A.S.); (S.M.C.); (K.M.); (H.H.)
- Correspondence: (T.T.); (C.T.)
| |
Collapse
|
3
|
Varanoske AN, Wells AJ, Boffey D, Harat I, Frosti CL, Kozlowski GJ, Gepner Y, Hoffman JR. Effects of High-Dose, Short-Duration β-Alanine Supplementation on Cognitive Function, Mood, and Circulating Brain-Derived Neurotropic Factor (BDNF) in Recreationally-Active Males Before Simulated Military Operational Stress. J Diet Suppl 2020; 18:147-168. [DOI: 10.1080/19390211.2020.1733730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Alyssa N. Varanoske
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Adam J. Wells
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - David Boffey
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Idan Harat
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Cheyanne L. Frosti
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Gregory J. Kozlowski
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Yftach Gepner
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| | - Jay R. Hoffman
- Institute of Exercise Physiology and Rehabilitation Science, Division of Kinesiology, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
4
|
Schön M, Mousa A, Berk M, Chia WL, Ukropec J, Majid A, Ukropcová B, de Courten B. The Potential of Carnosine in Brain-Related Disorders: A Comprehensive Review of Current Evidence. Nutrients 2019; 11:nu11061196. [PMID: 31141890 PMCID: PMC6627134 DOI: 10.3390/nu11061196] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
Neurological, neurodegenerative, and psychiatric disorders represent a serious burden because of their increasing prevalence, risk of disability, and the lack of effective causal/disease-modifying treatments. There is a growing body of evidence indicating potentially favourable effects of carnosine, which is an over-the-counter food supplement, in peripheral tissues. Although most studies to date have focused on the role of carnosine in metabolic and cardiovascular disorders, the physiological presence of this di-peptide and its analogues in the brain together with their ability to cross the blood-brain barrier as well as evidence from in vitro, animal, and human studies suggest carnosine as a promising therapeutic target in brain disorders. In this review, we aim to provide a comprehensive overview of the role of carnosine in neurological, neurodevelopmental, neurodegenerative, and psychiatric disorders, summarizing current evidence from cell, animal, and human cross-sectional, longitudinal studies, and randomized controlled trials.
Collapse
Affiliation(s)
- Martin Schön
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Michael Berk
- School of Medicine, IMPACT Strategic Research Centre, Barwon Health, Deakin University, Geelong, Victoria 3220, Australia.
- Orygen, The Centre of Excellence in Youth Mental Health, the Department of Psychiatry and the Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria 3052, Australia.
| | - Wern L Chia
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| | - Jozef Ukropec
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
| | - Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Barbara Ukropcová
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 84215 Bratislava, Slovakia.
- Biomedical Research Center, Slovak Academy of Sciences, 81439 Bratislava, Slovakia.
- Faculty of Physical Education and Sports, Comenius University, 81469 Bratislava, Slovakia.
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Victoria 3168, Australia.
| |
Collapse
|
5
|
Ochoa-de la Paz L, Zenteno E, Gulias-Cañizo R, Quiroz-Mercado H. Taurine and GABA neurotransmitter receptors, a relationship with therapeutic potential? Expert Rev Neurother 2019; 19:289-291. [DOI: 10.1080/14737175.2019.1593827] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lenin Ochoa-de la Paz
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
- Departamento de Investigación, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, México City, México
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, México
| | - Rosario Gulias-Cañizo
- Departamento de Investigación, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, México City, México
| | - Hugo Quiroz-Mercado
- Departamento de Investigación, Asociación para Evitar la Ceguera en México I.A.P. Hospital Dr. Luis Sánchez Bulnes, México City, México
| |
Collapse
|
6
|
Bourdon AK, Spano GM, Marshall W, Bellesi M, Tononi G, Serra PA, Baghdoyan HA, Lydic R, Campagna SR, Cirelli C. Metabolomic analysis of mouse prefrontal cortex reveals upregulated analytes during wakefulness compared to sleep. Sci Rep 2018; 8:11225. [PMID: 30046159 PMCID: PMC6060152 DOI: 10.1038/s41598-018-29511-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80-100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.
Collapse
Affiliation(s)
- Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Giovanna Maria Spano
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - William Marshall
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Michele Bellesi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.,Department of Experimental and Clinical Medicine, Section of Neuroscience and Cell Biology, Università Politecnica delle Marche, Ancona, Italy
| | - Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Helen A Baghdoyan
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ralph Lydic
- Department of Anesthesiology and Psychology, University of Tennessee, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States. .,Biological and Small Molecule Mass Spectrometry Core, University of Tennessee, Knoxville, TN, United States.
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, Madison, WI, United States.
| |
Collapse
|
7
|
Seino Y, Ohashi N, Kohno T. The endogenous agonist, β-alanine, activates glycine receptors in rat spinal dorsal neurons. Biochem Biophys Res Commun 2018; 500:897-901. [DOI: 10.1016/j.bbrc.2018.04.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 04/23/2018] [Indexed: 11/26/2022]
|
8
|
Guzzetti S, Calzari L, Buccarello L, Cesari V, Toschi I, Cattaldo S, Mauro A, Pregnolato F, Mazzola SM, Russo S. Taurine Administration Recovers Motor and Learning Deficits in an Angelman Syndrome Mouse Model. Int J Mol Sci 2018; 19:ijms19041088. [PMID: 29621152 PMCID: PMC5979575 DOI: 10.3390/ijms19041088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 12/13/2022] Open
Abstract
Angelman syndrome (AS, MIM 105830) is a rare neurodevelopmental disorder affecting 1:10–20,000 children. Patients show moderate to severe intellectual disability, ataxia and absence of speech. Studies on both post-mortem AS human brains and mouse models revealed dysfunctions in the extra synaptic gamma-aminobutyric acid (GABA) receptors implicated in the pathogenesis. Taurine is a free intracellular sulfur-containing amino acid, abundant in brain, considered an inhibiting neurotransmitter with neuroprotective properties. As taurine acts as an agonist of GABA-A receptors, we aimed at investigating whether it might ameliorate AS symptoms. Since mice weaning, we orally administered 1 g/kg/day taurine in water to Ube3a-deficient mice. To test the improvement of motor and cognitive skills, Rotarod, Novel Object Recognition and Open Field tests were assayed at 7, 14, 21 and 30 weeks, while biochemical tests and amino acid dosages were carried out, respectively, by Western-blot and high-performance liquid chromatography (HPLC) on frozen whole brains. Treatment of Ube3am−/p+ mice with taurine significantly improved motor and learning skills and restored the levels of the post-synaptic PSD-95 and pERK1/2-ERK1/2 ratio to wild type values. No side effects of taurine were observed. Our study indicates taurine administration as a potential therapy to ameliorate motor deficits and learning difficulties in AS.
Collapse
Affiliation(s)
- Sara Guzzetti
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy.
| | - Luciano Calzari
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy.
| | - Lucia Buccarello
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy.
| | - Valentina Cesari
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Ivan Toschi
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Stefania Cattaldo
- Laboratory of Clinical Neurobiology, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo-Verbania, Italy.
| | - Alessandro Mauro
- Laboratory of Clinical Neurobiology, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo-Verbania, Italy.
- Division of Neurology and Neurorehabilitation, Istituto Auxologico Italiano, IRCCS, 28824 Piancavallo-Verbania, Italy.
- Department of Neurosciences, Università di Torino, 10126 Torino, Italy.
| | - Francesca Pregnolato
- Experimental Laboratory of Immunological and Rheumatologic Researches, Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy.
| | - Silvia Michela Mazzola
- Department of Veterinary Medicine, Università degli Studi di Milano, 20133 Milano, Italy.
| | - Silvia Russo
- Cytogenetics and Molecular Genetics Laboratory, Istituto Auxologico Italiano, IRCCS, 20145 Milano, Italy.
| |
Collapse
|
9
|
Kilb W, Fukuda A. Taurine as an Essential Neuromodulator during Perinatal Cortical Development. Front Cell Neurosci 2017; 11:328. [PMID: 29123472 PMCID: PMC5662885 DOI: 10.3389/fncel.2017.00328] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/04/2017] [Indexed: 01/10/2023] Open
Abstract
A variety of experimental studies demonstrated that neurotransmitters are an important factor for the development of the central nervous system, affecting neurodevelopmental events like neurogenesis, neuronal migration, programmed cell death, and differentiation. While the role of the classical neurotransmitters glutamate and gamma-aminobutyric acid (GABA) on neuronal development is well established, the aminosulfonic acid taurine has also been considered as possible neuromodulator during early neuronal development. The purpose of the present review article is to summarize the properties of taurine as neuromodulator in detail, focusing on the direct involvement of taurine on various neurodevelopmental events and the regulation of neuronal activity during early developmental epochs. The current knowledge is that taurine lacks a synaptic release mechanism but is released by volume-sensitive organic anion channels and/or a reversal of the taurine transporter. Extracellular taurine affects neurons and neuronal progenitor cells mainly via glycine, GABA(A), and GABA(B) receptors with considerable receptor and subtype-specific affinities. Taurine has been shown to directly influence neurogenesis in vitro as well as neuronal migration in vitro and in vivo. It provides a depolarizing signal for a variety of neuronal population in the immature central nervous system, thereby directly influencing neuronal activity. While in the neocortex, taurine probably enhance neuronal activity, in the immature hippocampus, a tonic taurinergic tone might be necessary to attenuate activity. In summary, taurine must be considered as an essential modulator of neurodevelopmental events, and possible adverse consequences on fetal and/or early postnatal development should be evaluated for pharmacological therapies affecting taurinergic functions.
Collapse
Affiliation(s)
- Werner Kilb
- Institute of Physiology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
10
|
Behavioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with β-alanine. Amino Acids 2017; 49:871-886. [PMID: 28161798 PMCID: PMC5383715 DOI: 10.1007/s00726-017-2383-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/18/2017] [Indexed: 12/30/2022]
Abstract
This study investigated the benefit of β-alanine (BA) supplementation on behavioral and cognitive responses relating to mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) in rats exposed to a low-pressure blast wave. Animals were fed a normal diet with or without (PL) BA supplementation (100 mg kg−1) for 30-day, prior to being exposed to a low-pressure blast wave. A third group of animals served as a control (CTL). These animals were fed a normal diet, but were not exposed to the blast. Validated cognitive-behavioral paradigms were used to assess both mTBI and PTSD-like behavior on days 7–14 following the blast. Brain-derived neurotrophic factor (BDNF), neuropeptide Y, glial fibrillary acidic protein (GFAP) and tau protein expressions were analyzed a day later. In addition, brain carnosine and histidine content was assessed as well. The prevalence of animals exhibiting mTBI-like behavior was significantly lower (p = 0.044) in BA than PL (26.5 and 46%, respectively), but no difference (p = 0.930) was noted in PTSD-like behavior between the groups (10.2 and 12.0%, respectively). Carnosine content in the cerebral cortex was higher (p = 0.048) for BA compared to PL, while a trend towards a difference was seen in the hippocampus (p = 0.058) and amygdala (p = 0.061). BDNF expression in the CA1 subregion of PL was lower than BA (p = 0.009) and CTL (p < 0.001), while GFAP expression in CA1 (p = 0.003) and CA3 (p = 0.040) subregions were higher in PL than other groups. Results indicated that BA supplementation for 30-day increased resiliency to mTBI in animals exposed to a low-pressure blast wave.
Collapse
|