1
|
McManus G, Galfano A, Budrow C, Lipari N, Tseng KY, Manfredsson FP, Bishop C. Effects of genetic knockdown of the serotonin transporter on established L-DOPA-induced dyskinesia and gene expression in hemiparkinsonian rats. Neuropharmacology 2025; 266:110227. [PMID: 39561852 DOI: 10.1016/j.neuropharm.2024.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder typified by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc) leading to motor symptoms including resting tremor, rigidity, akinesia, and postural instability. DA replacement therapy with levodopa (L-DOPA) remains the gold-standard treatment for the motor symptoms of PD. Unfortunately, chronic use of L-DOPA leads to the development of side effects known as L-DOPA-induced dyskinesia (LID). The mechanisms underlying LID are multifaceted, but accumulating research has strongly implicated maladaptive neuroplasticity within the raphe-striatal serotonin (5-HT) circuit. The 5-HT transporter (SERT) has emerged as an intriguing therapeutic target as it is upregulated in the brains of dyskinetic patients and animal models of LID, and pharmacological blockade of SERT alters L-DOPA's effects. Therefore, the current study employed an interventional genetic knockdown of SERT (SERT-KD) to investigate its role in LID expression and LID-associated transcription factors. To do so, hemiparkinsonian, stably dyskinetic rats (N = 68) received adeno-associated virus 9 (AAV9) expressing either a short-hairpin RNA against SERT (SERT-shRNA) or a scrambled control shRNA (SCR-shRNA) after which LID reinstatement and motor performance were assayed over 2 weeks. Dorsal raphe and striatal tissue were collected for the expression analyses of known parkinsonian and LID-associated genes. Results demonstrated that SERT-KD significantly and durably reduced LID and L-DOPA-induced striatal cFOS mRNA without altering L-DOPA efficacy. Such findings point to SERT-mediated adaptations as a 5-HT mechanism by which L-DOPA exerts its actions and therapeutic target for LID.
Collapse
Affiliation(s)
- Grace McManus
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA.
| | - Ashley Galfano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Carla Budrow
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Natalie Lipari
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA
| | - Kuei Y Tseng
- Department of Anatomy and Cell Biology, University of Illinois Chicago - College of Medicine, Chicago, IL, 60612, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Pheonix, AZ, 85013, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, 13902, USA.
| |
Collapse
|
2
|
Klietz M, Elaman MH, Mahmoudi N, Nösel P, Ahlswede M, Wegner F, Höglinger GU, Lanfermann H, Ding XQ. Cerebral Microstructural Alterations in Patients With Early Parkinson's Disease Detected With Quantitative Magnetic Resonance Measurements. Front Aging Neurosci 2021; 13:763331. [PMID: 34790113 PMCID: PMC8591214 DOI: 10.3389/fnagi.2021.763331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
Objective: Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly. In early stages of PD, patients typically display normal brain magnet resonance imaging (MRI) in routine screening. Advanced imaging approaches are necessary to discriminate early PD patients from healthy controls. In this study, microstructural changes in relevant brain regions of early PD patients were investigated by using quantitative MRI methods. Methods: Cerebral MRI at 3T was performed on 20 PD patients in early stages and 20 age and sex matched healthy controls. Brain relative proton density, T1, T2, and T2′ relaxation times were measured in 14 regions of interest (ROIs) in each hemisphere and compared between patients and controls to estimate PD related alterations. Results: In comparison to matched healthy controls, the PD patients revealed decreased relative proton density in contralateral prefrontal subcortical area, upper and lower pons, in ipsilateral globus pallidus, and bilaterally in splenium corporis callosi, caudate nucleus, putamen, thalamus, and mesencephalon. The T1 relaxation time was increased in contralateral prefrontal subcortical area and centrum semiovale, putamen, nucleus caudatus and mesencephalon, whereas T2 relaxation time was elevated in upper pons bilaterally and in centrum semiovale ipsilaterally. T2′ relaxation time did not show significant changes. Conclusion: Early Parkinson’s disease is associated with a distinct profile of brain microstructural changes which may relate to clinical symptoms. The quantitative MR method used in this study may be useful in early diagnosis of Parkinson’s disease. Limitations of this study include a small sample size and manual selection of the ROIs. Atlas-based or statistical mapping methods would be an alternative for an objective evaluation. More studies are necessary to validate the measurement methods for clinical use in diagnostics of early Parkinson’s disease.
Collapse
Affiliation(s)
- Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - M Handan Elaman
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Nima Mahmoudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Patrick Nösel
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Mareike Ahlswede
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | - Heinrich Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Xiao-Qi Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
3
|
Alexithymia Is Associated with Reduced Quality of Life and Increased Caregiver Burden in Parkinson's Disease. Brain Sci 2020; 10:brainsci10060401. [PMID: 32599704 PMCID: PMC7348697 DOI: 10.3390/brainsci10060401] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease of people who are beyond 50 years of age. People with PD (PwP) suffer from a large variety of motor and non-motor symptoms resulting in reduced health-related quality of life (HR-QoL). In the last two decades, alexithymia was identified as an additional non-motor symptom in PD. Alexithymia is defined as a cognitive affective disturbance resulting in difficulty to identify and distinguish feelings from bodily sensations of emotional arousal. In PD, the frequency of patients suffering of alexithymia is increased compared to healthy controls. The aim of the present study was to determine the relationship of alexithymia to HR-QoL of the PwP and caregiver burden of the corresponding caregiver. This cross-sectional questionnaire-based study used disease specific questionnaires for HR-QoL and caregiver burden. In total 119 PwP and their corresponding caregivers were included in the study. HR-QoL of the PwP correlated significantly with alexithymia (p < 0.001), especially the sub-components "identifying feelings" (p < 0.001) and "difficulties describing feelings" (p = 0.001). Caregiver burden also correlated significantly with PwP alexithymia (p < 0.001). However, caregiver burden was associated with sub-components "identifying feelings" (p < 0.008) and "external oriented thinking" (p < 0.004). These data support the importance of alexithymia as a non-motor symptom in PD.
Collapse
|
4
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
5
|
Safety and Tolerability of Pharmacotherapies for Parkinson’s Disease in Geriatric Patients. Drugs Aging 2019; 36:511-530. [DOI: 10.1007/s40266-019-00654-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Tsunekawa H, Takahata K, Okano M, Ishikawa T, Satoyoshi H, Nishimura T, Hoshino N, Muraoka S. Selegiline increases on time without exacerbation of dyskinesia in 6-hydroxydopamine-lesioned rats displaying l-Dopa-induced wearing-off and abnormal involuntary movements. Behav Brain Res 2018. [PMID: 29526790 DOI: 10.1016/j.bbr.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
3,4-Dihydroxy-l-phenylalanine (l-Dopa) remains the most effective drug for treating the motor symptoms of Parkinson's disease (PD). However, its long-term use is limited due to motor complications such as wearing-off and dyskinesia. A clinical study in PD patients with motor complications has demonstrated that selegiline, a monoamine oxidase type B inhibitor, is effective in reducing off time without worsening dyskinesia, although another study has shown worsening dyskinesia. Here, using unilateral 6-hydroxydopamine-lesioned rats showing degeneration of nigrostriatal dopaminergic neurons and l-Dopa-induced motor complications, we determined the efficacy of selegiline in controlling l-Dopa-induced motor fluctuations and exacerbated dyskinesia. Repeated administration of l-Dopa/benserazide (25/6.25 mg/kg, intraperitoneally, twice daily for 22 days) progressively shortened rotational response duration (on time) and augmented peak rotation in lesioned rats. Single subcutaneous injection of selegiline (10 mg/kg) extended l-Dopa-induced shortened on time without augmenting peak rotation. Furthermore, l-Dopa/benserazide (25/6.25 mg/kg, intraperitoneally, once daily for 7 days) progressively increased abnormal involuntary movements (l-Dopa-induced dyskinesia, LID) and peak rotation. Single subcutaneous injection of selegiline (10 mg/kg) did not exacerbate LID or alter mRNA expression of prodynorphin (PDy) and activity-regulated cytoskeleton-associated protein (Arc), both mRNAs associated with LID in the lesioned striatum. Despite undetectable plasma concentrations of selegiline and its metabolites at 24 h post-administration, these on time and LID effects did not decrease, suggesting involvement of irreversible mechanisms. Altogether, these results indicate that selegiline is effective in increasing on time without worsening dyskinesia.
Collapse
Affiliation(s)
- Hiroko Tsunekawa
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| | - Kazue Takahata
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan.
| | - Motoki Okano
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| | - Toshiko Ishikawa
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| | - Hiroshi Satoyoshi
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| | - Tetsuya Nishimura
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| | - Naoya Hoshino
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| | - Shizuko Muraoka
- Department of Scientific Research, Fujimoto Pharmaceutical Corporation, 1-3-40 Nishiotsuka, Matsubara, Osaka 580-8503, Japan
| |
Collapse
|
7
|
Paradis J, Boureau P, Moyon T, Nicklaus S, Parnet P, Paillé V. Perinatal Western Diet Consumption Leads to Profound Plasticity and GABAergic Phenotype Changes within Hypothalamus and Reward Pathway from Birth to Sexual Maturity in Rat. Front Endocrinol (Lausanne) 2017; 8:216. [PMID: 28900415 PMCID: PMC5581815 DOI: 10.3389/fendo.2017.00216] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 12/24/2022] Open
Abstract
Perinatal maternal consumption of energy dense food increases the risk of obesity in children. This is associated with an overconsumption of palatable food that is consumed for its hedonic property. The underlying mechanism that links perinatal maternal diet and offspring preference for fat is still poorly understood. In this study, we aim at studying the influence of maternal high-fat/high-sugar diet feeding [western diet (WD)] during gestation and lactation on the reward pathways controlling feeding in the rat offspring from birth to sexual maturity. We performed a longitudinal follow-up of WD and Control offspring at three critical time periods (childhood, adolescence, and adulthood) and focus on investigating the influence of perinatal exposure to palatable diet on (i) fat preference, (ii) gene expression profile, and (iii) neuroanatomical/architectural changes of the mesolimbic dopaminergic networks. We showed that WD feeding restricted to the perinatal period has a clear long-lasting influence on the organization of homeostatic and hedonic brain circuits but not on fat preference. We demonstrated a period specific evolution of the preference for fat that we correlated with specific brain molecular signatures. In offspring from WD fed dams, we observed during childhood the existence of fat preference associated with a higher expression of key gene involved in the dopamine (DA) systems; at adolescence, a high-fat preference for both groups, progressively reduced during the 3 days test for the WD group and associated with a reduced expression of key gene involved in the DA systems for the WD group that could suggest a compensatory mechanism to protect them from further high-fat exposure; and finally at adulthood, a preference for fat that was identical to control rats but associated with profound modification in key genes involved in the γ-aminobutyric acid network, serotonin receptors, and polysialic acid-NCAM-dependent remodeling of the hypothalamus. Altogether, these data reveal that maternal WD, restricted to the perinatal period, has no sustained impact on energy homeostasis and fat preference later in life even though a strong remodeling of the hypothalamic homeostatic and reward pathway involved in eating behavior occurred. Further functional experiments would be needed to understand the relevance of these circuits remodeling.
Collapse
Affiliation(s)
- Julie Paradis
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
| | - Pierre Boureau
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
| | - Thomas Moyon
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
| | - Sophie Nicklaus
- UMR 1324 Centre des Sciences du Goût et de l’Alimentation (CSGA), INRA, CNRS, Université de Bourgogne, Dijon, France
| | - Patricia Parnet
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
- *Correspondence: Patricia Parnet, ; Vincent Paillé,
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles (PhAN), INRA, Université de Nantes, Institut des Maladies de l’Appareil Digestif (IMAD), Nantes, France
- *Correspondence: Patricia Parnet, ; Vincent Paillé,
| |
Collapse
|